mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,334 @@
1
+ #pragma once
2
+
3
+ #include <cuda.h>
4
+ #include <cuda_fp4.h>
5
+ #include <cuda_runtime.h>
6
+ #include "mlx/backend/cuda/vector_types.cuh"
7
+
8
+ namespace mlx::core::cu {
9
+
10
+ using bf16x4 = Vector4_t<__nv_bfloat16>;
11
+ using fp16x4 = Vector4_t<__half>;
12
+ using f32x4 = Vector4_t<float>;
13
+
14
+ template <typename T>
15
+ __device__ __forceinline__ uint16_t
16
+ scale_cvt_Tx4_to_fp4x4_fallback(const Vector4_t<T> input, const float scale) {
17
+ // Fallback implementation for architectures that do not support cvt
18
+ // instructions or for cuda versions with no fp4 support (< 12.8) -> scalar
19
+ uint16_t out_fp4x4 = 0;
20
+ fp32x4 scaled;
21
+ scaled.x = static_cast<float>(input.x) * scale;
22
+ scaled.y = static_cast<float>(input.y) * scale;
23
+ scaled.z = static_cast<float>(input.z) * scale;
24
+ scaled.w = static_cast<float>(input.w) * scale;
25
+ uint8_t q0 = __nv_fp4_e2m1(scaled.x).__x;
26
+ uint8_t q1 = __nv_fp4_e2m1(scaled.y).__x;
27
+ uint8_t q2 = __nv_fp4_e2m1(scaled.z).__x;
28
+ uint8_t q3 = __nv_fp4_e2m1(scaled.w).__x;
29
+ out_fp4x4 = (static_cast<uint16_t>(q3) << 12) |
30
+ (static_cast<uint16_t>(q2) << 8) | (static_cast<uint16_t>(q1) << 4) |
31
+ static_cast<uint16_t>(q0);
32
+ return out_fp4x4;
33
+ }
34
+
35
+ #if (CUDART_VERSION >= 12080) && (__CUDA_ARCH__ >= 1000) && \
36
+ defined(__CUDA_ARCH_SPECIFIC__)
37
+
38
+ __device__ __forceinline__ uint16_t
39
+ scale_cvt_bf16x4_to_fp4x4_rn(const bf16x4 input_bf16x4, const float2 scale) {
40
+ uint16_t out_fp4x4 = 0;
41
+ asm volatile(
42
+ "{\n"
43
+ ".reg.b16 x0_bf16; \n\t" // first bf16
44
+ ".reg.b16 x1_bf16; \n\t" // second bf16
45
+ ".reg.b16 x2_bf16; \n\t" // third bf16
46
+ ".reg.b16 x3_bf16; \n\t" // fourth bf16
47
+ ".reg.b32 x0; \n\t" // to hold scaled first
48
+ ".reg.b32 x1; \n\t" // to hold scaled second
49
+ ".reg.b32 x2; \n\t" // to hold scaled third
50
+ ".reg.b32 x3; \n\t" // to hold scaled fourth
51
+ ".reg.b64 x01; \n\t" // to hold vector mul
52
+ ".reg.b64 x23; \n\t"
53
+ ".reg.b8 q0; \n\t" // output byte fp4x2 (first pair)
54
+ ".reg.b8 q1; \n\t" // output byte fp4x2 (second pair)
55
+ "mov.b64 {x0_bf16, x1_bf16, x2_bf16, x3_bf16} , %1; \n\t" // unpack bf16
56
+ "cvt.f32.bf16 x0, x0_bf16; \n\t" // convert to f32
57
+ "cvt.f32.bf16 x1, x1_bf16; \n\t"
58
+ "cvt.f32.bf16 x2, x2_bf16; \n\t"
59
+ "cvt.f32.bf16 x3, x3_bf16; \n\t"
60
+ "mov.b64 x01, {x0, x1}; \n\t"
61
+ "mul.f32x2 x01, x01, %2; \n\t" // scale first pair
62
+ "mov.b64 x23, {x2, x3}; \n\t"
63
+ "mul.f32x2 x23, x23, %2; \n\t" // scale second pair
64
+ "mov.b64 {x0, x1}, x01; \n\t"
65
+ "mov.b64 {x2, x3}, x23; \n\t"
66
+ "cvt.rn.satfinite.e2m1x2.f32 q0, x1, x0; \n\t" // convert to fp4x2 first
67
+ // pair
68
+ "cvt.rn.satfinite.e2m1x2.f32 q1, x3, x2; \n\t" // convert to fp4x2 second
69
+ // pair
70
+ "mov.b16 %0, {q0, q1}; \n\t" // pack to output
71
+ "}"
72
+ : "=h"(out_fp4x4)
73
+ : "l"(reinterpret_cast<const uint64_t&>(input_bf16x4)),
74
+ "l"(reinterpret_cast<const uint64_t&>(
75
+ scale))); // here cast is needed becuase an asm operand must have
76
+ // scalar type
77
+ return out_fp4x4;
78
+ }
79
+
80
+ __device__ __forceinline__ uint16_t scale_cvt_bf16x4_to_fp4x4_rs(
81
+ const bf16x4 input_bf16x4,
82
+ const float2 scale,
83
+ uint32_t rbits) {
84
+ uint16_t out_fp4x4 = 0;
85
+ asm volatile(
86
+ "{\n"
87
+ ".reg.b16 x0_bf16; \n\t"
88
+ ".reg.b16 x1_bf16; \n\t"
89
+ ".reg.b16 x2_bf16; \n\t"
90
+ ".reg.b16 x3_bf16; \n\t"
91
+ ".reg.b32 x0; \n\t"
92
+ ".reg.b32 x1; \n\t"
93
+ ".reg.b32 x2; \n\t"
94
+ ".reg.b32 x3; \n\t"
95
+ ".reg.b64 x01; \n\t"
96
+ ".reg.b64 x23; \n\t"
97
+ ".reg.b16 q0; \n\t"
98
+ "mov.b64 {x0_bf16, x1_bf16, x2_bf16, x3_bf16} , %1; \n\t"
99
+ "cvt.f32.bf16 x0, x0_bf16; \n\t"
100
+ "cvt.f32.bf16 x1, x1_bf16; \n\t"
101
+ "cvt.f32.bf16 x2, x2_bf16; \n\t"
102
+ "cvt.f32.bf16 x3, x3_bf16; \n\t"
103
+ "mov.b64 x01, {x0, x1}; \n\t"
104
+ "mul.f32x2 x01, x01, %2; \n\t"
105
+ "mov.b64 x23, {x2, x3}; \n\t"
106
+ "mul.f32x2 x23, x23, %2; \n\t"
107
+ "mov.b64 {x0, x1}, x01; \n\t"
108
+ "mov.b64 {x2, x3}, x23; \n\t"
109
+ "cvt.rs.satfinite.e2m1x4.f32 q0, {x3, x2, x1, x0}, %3; \n\t"
110
+ "}"
111
+ : "=h"(out_fp4x4)
112
+ : "l"(reinterpret_cast<const uint64_t&>(input_bf16x4)),
113
+ "l"(reinterpret_cast<const uint64_t&>(scale)),
114
+ "r"(rbits));
115
+ return out_fp4x4;
116
+ }
117
+
118
+ __device__ __forceinline__ uint16_t scale_cvt_fp32x4_to_fp4x4_rn(
119
+ const float2 input_fp32x2_0,
120
+ const float2 input_fp32x2_1,
121
+ const float2 scale) {
122
+ uint16_t out_fp4x4 = 0;
123
+ asm volatile(
124
+ "{\n"
125
+ ".reg.b32 x0; \n\t"
126
+ ".reg.b32 x1; \n\t"
127
+ ".reg.b32 x2; \n\t"
128
+ ".reg.b32 x3; \n\t"
129
+ ".reg.b64 x01; \n\t"
130
+ ".reg.b64 x23; \n\t"
131
+ ".reg.b8 q0; \n\t"
132
+ ".reg.b8 q1; \n\t"
133
+ "mov.b64 x01, {%1, %2}; \n\t"
134
+ "mul.f32x2 x01, x01, %5; \n\t"
135
+ "mov.b64 x23, {%3, %4}; \n\t"
136
+ "mul.f32x2 x23, x23, %5; \n\t"
137
+ "mov.b64 {x0, x1}, x01; \n\t"
138
+ "mov.b64 {x2, x3}, x23; \n\t"
139
+ "cvt.rn.satfinite.e2m1x2.f32 q0, x1, x0; \n\t"
140
+ "cvt.rn.satfinite.e2m1x2.f32 q1, x3, x2; \n\t"
141
+ "mov.b16 %0, {q0, q1}; \n\t"
142
+ "}"
143
+ : "=h"(out_fp4x4)
144
+ : "f"(input_fp32x2_0.x),
145
+ "f"(input_fp32x2_0.y),
146
+ "f"(input_fp32x2_1.x),
147
+ "f"(input_fp32x2_1.y),
148
+ "l"(reinterpret_cast<const uint64_t&>(scale)));
149
+ return out_fp4x4;
150
+ }
151
+
152
+ __device__ __forceinline__ uint16_t scale_cvt_fp32x4_to_fp4x4_rs(
153
+ const float2 input_fp32x2_0,
154
+ const float2 input_fp32x2_1,
155
+ const float2 scale,
156
+ uint32_t rbits) {
157
+ uint16_t out_fp4x4 = 0;
158
+ asm volatile(
159
+ "{\n"
160
+ ".reg.b32 x0; \n\t"
161
+ ".reg.b32 x1; \n\t"
162
+ ".reg.b32 x2; \n\t"
163
+ ".reg.b32 x3; \n\t"
164
+ ".reg.b64 x01; \n\t"
165
+ ".reg.b64 x23; \n\t"
166
+ ".reg.b16 q0; \n\t"
167
+ "mov.b64 x01, {%1, %2}; \n\t"
168
+ "mul.f32x2 x01, x01, %5; \n\t"
169
+ "mov.b64 x23, {%3, %4}; \n\t"
170
+ "mul.f32x2 x23, x23, %5; \n\t"
171
+ "mov.b64 {x0, x1}, x01; \n\t"
172
+ "mov.b64 {x2, x3}, x23; \n\t"
173
+ "cvt.rs.satfinite.e2m1x4.f32 q0, {x3, x2, x1, x0}, %6; \n\t"
174
+ "}"
175
+ : "=h"(out_fp4x4)
176
+ : "f"(input_fp32x2_0.x),
177
+ "f"(input_fp32x2_0.y),
178
+ "f"(input_fp32x2_1.x),
179
+ "f"(input_fp32x2_1.y),
180
+ "l"(reinterpret_cast<const uint64_t&>(scale)),
181
+ "r"(rbits));
182
+ return out_fp4x4;
183
+ }
184
+
185
+ __device__ __forceinline__ uint16_t
186
+ scale_cvt_fp16x4_to_fp4x4_rn(const fp16x4 input_fp16x4, const float2 scale) {
187
+ uint16_t out_fp4x4 = 0;
188
+ asm volatile(
189
+ "{\n"
190
+ ".reg.b16 x0_fp16; \n\t"
191
+ ".reg.b16 x1_fp16; \n\t"
192
+ ".reg.b16 x2_fp16; \n\t"
193
+ ".reg.b16 x3_fp16; \n\t"
194
+ ".reg.b32 x0; \n\t"
195
+ ".reg.b32 x1; \n\t"
196
+ ".reg.b32 x2; \n\t"
197
+ ".reg.b32 x3; \n\t"
198
+ ".reg.b64 x01; \n\t"
199
+ ".reg.b64 x23; \n\t"
200
+ ".reg.b8 q0; \n\t"
201
+ ".reg.b8 q1; \n\t"
202
+ "mov.b64 {x0_fp16, x1_fp16, x2_fp16, x3_fp16} , %1; \n\t"
203
+ "cvt.f32.f16 x0, x0_fp16; \n\t"
204
+ "cvt.f32.f16 x1, x1_fp16; \n\t"
205
+ "cvt.f32.f16 x2, x2_fp16; \n\t"
206
+ "cvt.f32.f16 x3, x3_fp16; \n\t"
207
+ "mov.b64 x01, {x0, x1}; \n\t"
208
+ "mul.f32x2 x01, x01, %2; \n\t"
209
+ "mov.b64 x23, {x2, x3}; \n\t"
210
+ "mul.f32x2 x23, x23, %2; \n\t"
211
+ "mov.b64 {x0, x1}, x01; \n\t"
212
+ "mov.b64 {x2, x3}, x23; \n\t"
213
+ "cvt.rn.satfinite.e2m1x2.f32 q0, x1, x0; \n\t"
214
+ "cvt.rn.satfinite.e2m1x2.f32 q1, x3, x2; \n\t"
215
+ "mov.b16 %0, {q0, q1}; \n\t"
216
+ "}"
217
+ : "=h"(out_fp4x4)
218
+ : "l"(reinterpret_cast<const uint64_t&>(input_fp16x4)),
219
+ "l"(reinterpret_cast<const uint64_t&>(scale)));
220
+ return out_fp4x4;
221
+ }
222
+
223
+ __device__ __forceinline__ uint16_t scale_cvt_fp16x4_to_fp4x4_rs(
224
+ const fp16x4 input_fp16x4,
225
+ const float2 scale,
226
+ uint32_t rbits) {
227
+ uint16_t out_fp4x4 = 0;
228
+ asm volatile(
229
+ "{\n"
230
+ ".reg.b16 x0_fp16; \n\t"
231
+ ".reg.b16 x1_fp16; \n\t"
232
+ ".reg.b16 x2_fp16; \n\t"
233
+ ".reg.b16 x3_fp16; \n\t"
234
+ ".reg.b32 x0; \n\t"
235
+ ".reg.b32 x1; \n\t"
236
+ ".reg.b32 x2; \n\t"
237
+ ".reg.b32 x3; \n\t"
238
+ ".reg.b64 x01; \n\t"
239
+ ".reg.b64 x23; \n\t"
240
+ ".reg.b16 q0; \n\t"
241
+ "mov.b64 {x0_fp16, x1_fp16, x2_fp16, x3_fp16} , %1; \n\t"
242
+ "cvt.f32.f16 x0, x0_fp16; \n\t"
243
+ "cvt.f32.f16 x1, x1_fp16; \n\t"
244
+ "cvt.f32.f16 x2, x2_fp16; \n\t"
245
+ "cvt.f32.f16 x3, x3_fp16; \n\t"
246
+ "mov.b64 x01, {x0, x1}; \n\t"
247
+ "mul.f32x2 x01, x01, %2; \n\t"
248
+ "mov.b64 x23, {x2, x3}; \n\t"
249
+ "mul.f32x2 x23, x23, %2; \n\t"
250
+ "mov.b64 {x0, x1}, x01; \n\t"
251
+ "mov.b64 {x2, x3}, x23; \n\t"
252
+ "cvt.rs.satfinite.e2m1x4.f32 q0, {x3, x2, x1, x0}, %3; \n\t"
253
+ "}"
254
+ : "=h"(out_fp4x4)
255
+ : "l"(reinterpret_cast<const uint64_t&>(input_fp16x4)),
256
+ "l"(reinterpret_cast<const uint64_t&>(scale)),
257
+ "r"(rbits));
258
+ return out_fp4x4;
259
+ }
260
+
261
+ template <bool USE_SR>
262
+ __device__ __forceinline__ uint16_t scale_cvt_bf16x4_to_fp4x4(
263
+ const bf16x4 input,
264
+ const float scale,
265
+ uint32_t rbits) {
266
+ float2 scale_fp32x2 = make_float2(scale, scale);
267
+ if constexpr (USE_SR) {
268
+ return scale_cvt_bf16x4_to_fp4x4_rs(input, scale_fp32x2, rbits);
269
+ } else {
270
+ return scale_cvt_bf16x4_to_fp4x4_rn(input, scale_fp32x2);
271
+ }
272
+ }
273
+
274
+ template <bool USE_SR>
275
+ __device__ __forceinline__ uint16_t scale_cvt_fp16x4_to_fp4x4(
276
+ const fp16x4 input,
277
+ const float scale,
278
+ uint32_t rbits) {
279
+ float2 scale_fp32x2 = make_float2(scale, scale);
280
+ if constexpr (USE_SR) {
281
+ return scale_cvt_fp16x4_to_fp4x4_rs(input, scale_fp32x2, rbits);
282
+ } else {
283
+ return scale_cvt_fp16x4_to_fp4x4_rn(input, scale_fp32x2);
284
+ }
285
+ }
286
+
287
+ template <bool USE_SR>
288
+ __device__ __forceinline__ uint16_t
289
+ scale_cvt_f32x4_to_fp4x4(const f32x4 input, const float scale, uint32_t rbits) {
290
+ float2 scale_fp32x2 = make_float2(scale, scale);
291
+ float2 input_fp32x2_0 = make_float2(input.x, input.y);
292
+ float2 input_fp32x2_1 = make_float2(input.z, input.w);
293
+
294
+ if constexpr (USE_SR) {
295
+ return scale_cvt_fp32x4_to_fp4x4_rs(
296
+ input_fp32x2_0, input_fp32x2_1, scale_fp32x2, rbits);
297
+ } else {
298
+ return scale_cvt_fp32x4_to_fp4x4_rn(
299
+ input_fp32x2_0, input_fp32x2_1, scale_fp32x2);
300
+ }
301
+ }
302
+
303
+ template <typename T, bool USE_SR>
304
+ __device__ __forceinline__ uint16_t scale_cvt_Tx4_to_fp4x4_fast(
305
+ const Vector4_t<T> input,
306
+ const float scale,
307
+ uint32_t rbits) {
308
+ if constexpr (std::is_same<T, __nv_bfloat16>::value) {
309
+ return scale_cvt_bf16x4_to_fp4x4<USE_SR>(input, scale, rbits);
310
+ } else if constexpr (std::is_same<T, __half>::value) {
311
+ return scale_cvt_fp16x4_to_fp4x4<USE_SR>(input, scale, rbits);
312
+ } else {
313
+ return scale_cvt_f32x4_to_fp4x4<USE_SR>(input, scale, rbits);
314
+ }
315
+ }
316
+ #endif // (CUDART_VERSION >= 12080) && (__CUDA_ARCH__ >= 1000) &&
317
+ // (__CUDA_ARCH_FAMILY_SPECIFIC__ >= 1000)
318
+
319
+ template <typename T, bool USE_SR>
320
+ __device__ __forceinline__ uint16_t scale_cvt_Tx4_to_fp4x4(
321
+ const Vector4_t<T> input,
322
+ const float scale,
323
+ uint32_t rbits) {
324
+ #if (CUDART_VERSION >= 12080) && (__CUDA_ARCH__ >= 1000) && \
325
+ (__CUDA_ARCH_FAMILY_SPECIFIC__ >= 1000)
326
+ return scale_cvt_Tx4_to_fp4x4_fast<T, USE_SR>(input, scale, rbits);
327
+ #else
328
+ static_assert(
329
+ !USE_SR,
330
+ "Stochastic rounding (USE_SR=true) requires CUDA >= 12.8 and compute capability >= 1000.");
331
+ return scale_cvt_Tx4_to_fp4x4_fallback(input, scale);
332
+ #endif
333
+ }
334
+ } // namespace mlx::core::cu
@@ -0,0 +1,304 @@
1
+ // Copyright © 2025 Apple Inc.
2
+
3
+ #include "mlx/backend/cuda/device/utils.cuh"
4
+ #include "mlx/backend/cuda/kernel_utils.cuh"
5
+ #include "mlx/backend/cuda/quantized/qmv.h"
6
+ #include "mlx/backend/cuda/quantized/quantized_utils.cuh"
7
+ #include "mlx/dtype_utils.h"
8
+
9
+ #include <cooperative_groups.h>
10
+ #include <cooperative_groups/reduce.h>
11
+
12
+ namespace mlx::core::cu {
13
+
14
+ namespace cg = cooperative_groups;
15
+
16
+ static constexpr int rows_per_block = 8;
17
+
18
+ template <typename T>
19
+ __device__ void adjust_matrix_offsets(
20
+ const T*& x,
21
+ const uint32_t*& w,
22
+ const uint8_t*& scales,
23
+ T*& y,
24
+ int output_stride,
25
+ const int& x_batch_ndims,
26
+ const Shape x_shape,
27
+ const Strides x_strides,
28
+ const int& w_batch_ndims,
29
+ const Shape w_shape,
30
+ const Strides w_strides,
31
+ const Strides s_strides) {
32
+ uint32_t idx = cg::this_grid().block_index().z;
33
+ if (x_batch_ndims == 1) {
34
+ x += idx * x_strides[0];
35
+ } else {
36
+ x += elem_to_loc(idx, x_shape.data(), x_strides.data(), x_batch_ndims);
37
+ }
38
+ if (w_batch_ndims == 1) {
39
+ w += idx * w_strides[0];
40
+ scales += idx * s_strides[0];
41
+ } else {
42
+ auto [w_idx, s_idx] = elem_to_loc(
43
+ idx, w_shape.data(), w_strides.data(), s_strides.data(), w_batch_ndims);
44
+ w += w_idx;
45
+ scales += s_idx;
46
+ }
47
+ y += idx * output_stride;
48
+ }
49
+
50
+ template <
51
+ typename T,
52
+ int rows_per_block,
53
+ int n_per_thread,
54
+ int bits,
55
+ int group_size,
56
+ bool use_mx_scale>
57
+ __device__ void fp_qmv_impl(
58
+ const uint32_t* mat,
59
+ const uint8_t* scales_,
60
+ const T* vec,
61
+ T* out,
62
+ int rows,
63
+ int cols) {
64
+ auto block = cg::this_thread_block();
65
+ auto warp = cg::tiled_partition<WARP_SIZE>(block);
66
+
67
+ constexpr int vals_per_item = bits == 8 ? 4 : 8;
68
+ constexpr int nv_per_thread = vals_per_item * n_per_thread;
69
+ auto g_idx = block.group_index();
70
+ auto t_idx = block.thread_index();
71
+ int row = g_idx.y * rows_per_block + t_idx.y;
72
+
73
+ vec += g_idx.x * cols;
74
+ out += g_idx.x * rows;
75
+
76
+ using ScaleType =
77
+ std::conditional_t<use_mx_scale, __nv_fp8_e8m0, __nv_fp8_e4m3>;
78
+ auto scales = (ScaleType*)(scales_);
79
+ auto packed_cols = cols / vals_per_item;
80
+
81
+ if (row < rows) {
82
+ constexpr int scales_per_step = std::max(nv_per_thread / group_size, 1);
83
+ constexpr int scale_step = (WARP_SIZE * nv_per_thread) / group_size;
84
+ constexpr int n_per_step = n_per_thread / scales_per_step;
85
+ // Offset scales to correct row
86
+ scales += row * (cols / group_size) +
87
+ (warp.thread_rank() * nv_per_thread) / group_size;
88
+ float sum = 0.0f;
89
+ for (int col = n_per_thread * warp.thread_rank(); col < packed_cols;
90
+ col += (WARP_SIZE * n_per_thread)) {
91
+ auto local_vec =
92
+ unsafe_load_vector<nv_per_thread>(vec + vals_per_item * col, 0);
93
+ auto local_mat =
94
+ unsafe_load_vector<n_per_thread>(mat + row * packed_cols + col, 0);
95
+ #pragma unroll
96
+ for (int i = 0; i < scales_per_step; ++i) {
97
+ float2 local_sum = {0.0f, 0.0f};
98
+ #pragma unroll
99
+ for (int j = 0; j < n_per_step; ++j) {
100
+ int k = n_per_step * i + j;
101
+ if constexpr (bits == 8) {
102
+ auto v = dequant_fp8(local_mat[k]);
103
+ local_sum.x +=
104
+ v.x * static_cast<float>(local_vec[vals_per_item * k]);
105
+ local_sum.x +=
106
+ v.y * static_cast<float>(local_vec[vals_per_item * k + 1]);
107
+ local_sum.y +=
108
+ v.z * static_cast<float>(local_vec[vals_per_item * k + 2]);
109
+ local_sum.y +=
110
+ v.w * static_cast<float>(local_vec[vals_per_item * k + 3]);
111
+ } else {
112
+ auto v = dequant_fp4(local_mat[k]);
113
+ local_sum.x +=
114
+ v.x * static_cast<float>(local_vec[vals_per_item * k]);
115
+ local_sum.y +=
116
+ v.y * static_cast<float>(local_vec[vals_per_item * k + 1]);
117
+ local_sum.x +=
118
+ v.z * static_cast<float>(local_vec[vals_per_item * k + 2]);
119
+ local_sum.y +=
120
+ v.w * static_cast<float>(local_vec[vals_per_item * k + 3]);
121
+
122
+ v = dequant_fp4(local_mat[k] >> 16);
123
+ local_sum.x +=
124
+ v.x * static_cast<float>(local_vec[vals_per_item * k + 4]);
125
+ local_sum.y +=
126
+ v.y * static_cast<float>(local_vec[vals_per_item * k + 5]);
127
+ local_sum.x +=
128
+ v.z * static_cast<float>(local_vec[vals_per_item * k + 6]);
129
+ local_sum.y +=
130
+ v.w * static_cast<float>(local_vec[vals_per_item * k + 7]);
131
+ }
132
+ }
133
+ sum += (local_sum.x + local_sum.y) * float(scales[i]);
134
+ }
135
+ scales += scale_step;
136
+ }
137
+
138
+ sum = cg::reduce(warp, sum, cg::plus<float>{});
139
+ if (warp.thread_rank() == 0) {
140
+ out[row] = static_cast<T>(sum);
141
+ }
142
+ }
143
+ }
144
+
145
+ template <
146
+ typename T,
147
+ int rows_per_block,
148
+ int n_per_thread,
149
+ int bits,
150
+ int group_size,
151
+ bool use_mx_scale>
152
+ __global__ void fp_qmv_single(
153
+ const uint32_t* mat,
154
+ const uint8_t* scales,
155
+ const T* vec,
156
+ T* out,
157
+ int rows,
158
+ int cols) {
159
+ fp_qmv_impl<T, rows_per_block, n_per_thread, bits, group_size, use_mx_scale>(
160
+ mat, scales, vec, out, rows, cols);
161
+ }
162
+
163
+ template <
164
+ typename T,
165
+ int rows_per_block,
166
+ int n_per_thread,
167
+ int bits,
168
+ int group_size,
169
+ bool use_mx_scale>
170
+ __global__ void fp_qmv_batched(
171
+ const uint32_t* mat,
172
+ const uint8_t* scales,
173
+ const T* vec,
174
+ T* out,
175
+ int rows,
176
+ int cols,
177
+ int vec_batch_ndims,
178
+ const __grid_constant__ Shape vec_shape,
179
+ const __grid_constant__ Strides vec_strides,
180
+ int mat_batch_ndims,
181
+ const __grid_constant__ Shape mat_shape,
182
+ const __grid_constant__ Strides mat_strides,
183
+ const __grid_constant__ Strides scales_strides) {
184
+ adjust_matrix_offsets<T>(
185
+ vec,
186
+ mat,
187
+ scales,
188
+ out,
189
+ rows * vec_shape[vec_batch_ndims],
190
+ vec_batch_ndims,
191
+ vec_shape,
192
+ vec_strides,
193
+ mat_batch_ndims,
194
+ mat_shape,
195
+ mat_strides,
196
+ scales_strides);
197
+ fp_qmv_impl<T, rows_per_block, n_per_thread, bits, group_size, use_mx_scale>(
198
+ mat, scales, vec, out, rows, cols);
199
+ }
200
+
201
+ template <typename F>
202
+ void dispatch_1_2_4(int n, F&& f) {
203
+ switch (n) {
204
+ case 1:
205
+ f(std::integral_constant<int, 1>{});
206
+ break;
207
+ case 2:
208
+ f(std::integral_constant<int, 2>{});
209
+ break;
210
+ case 4:
211
+ f(std::integral_constant<int, 4>{});
212
+ break;
213
+ }
214
+ }
215
+
216
+ void fp_qmv(
217
+ const array& mat,
218
+ const array& scales,
219
+ const array& vec,
220
+ array& out,
221
+ int bits,
222
+ int group_size,
223
+ int M,
224
+ int N,
225
+ int K,
226
+ CommandEncoder& encoder) {
227
+ encoder.set_input_array(mat);
228
+ encoder.set_input_array(scales);
229
+ encoder.set_input_array(vec);
230
+ encoder.set_output_array(out);
231
+ dispatch_float_types(out.dtype(), "qmv", [&](auto type_tag) {
232
+ using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
233
+ if constexpr (!std::is_same_v<T, double>) {
234
+ dim3 block_dims{WARP_SIZE, rows_per_block};
235
+ uint32_t B = out.size() / (M * N);
236
+ uint32_t blocks_y = (N + rows_per_block - 1) / rows_per_block;
237
+ const uint32_t* mat_ptr = gpu_ptr<uint32_t>(mat);
238
+ const T* vec_ptr = gpu_ptr<T>(vec);
239
+ int n = 1;
240
+ if (K % 32 == 0 && cu::is_aligned<4>(mat_ptr) &&
241
+ ((bits == 4 && cu::is_aligned<8>(vec_ptr)) ||
242
+ cu::is_aligned<4>(vec_ptr))) {
243
+ n = 4;
244
+ } else if (
245
+ cu::is_aligned<2>(mat_ptr) &&
246
+ ((bits == 4 && cu::is_aligned<4>(vec_ptr)) ||
247
+ cu::is_aligned<2>(vec_ptr))) {
248
+ n = 2;
249
+ }
250
+ dispatch_1_2_4(n, [&](auto n) {
251
+ dispatch_bool(B > 1, [&](auto batched) {
252
+ if (!batched.value) {
253
+ auto kernel =
254
+ fp_qmv_single<T, rows_per_block, n.value, 4, 32, true>;
255
+ if (bits == 8) {
256
+ kernel = fp_qmv_single<T, rows_per_block, n.value, 8, 32, true>;
257
+ } else if (group_size == 16) {
258
+ kernel = fp_qmv_single<T, rows_per_block, n.value, 4, 16, false>;
259
+ }
260
+ encoder.add_kernel_node(
261
+ kernel,
262
+ {static_cast<uint32_t>(M), blocks_y},
263
+ block_dims,
264
+ 0,
265
+ mat_ptr,
266
+ gpu_ptr<uint8_t>(scales),
267
+ vec_ptr,
268
+ gpu_ptr<T>(out),
269
+ N,
270
+ K);
271
+ } else {
272
+ auto kernel =
273
+ fp_qmv_batched<T, rows_per_block, n.value, 4, 32, true>;
274
+ if (bits == 8) {
275
+ kernel = fp_qmv_batched<T, rows_per_block, n.value, 8, 32, true>;
276
+ } else if (group_size == 16) {
277
+ kernel = fp_qmv_batched<T, rows_per_block, n.value, 4, 16, false>;
278
+ }
279
+ encoder.add_kernel_node(
280
+ kernel,
281
+ {static_cast<uint32_t>(M), blocks_y, B},
282
+ block_dims,
283
+ 0,
284
+ mat_ptr,
285
+ gpu_ptr<uint8_t>(scales),
286
+ vec_ptr,
287
+ gpu_ptr<T>(out),
288
+ N,
289
+ K,
290
+ vec.ndim() - 2,
291
+ const_param(vec.shape()),
292
+ const_param(vec.strides()),
293
+ mat.ndim() - 2,
294
+ const_param(mat.shape()),
295
+ const_param(mat.strides()),
296
+ const_param(scales.strides()));
297
+ }
298
+ });
299
+ });
300
+ }
301
+ });
302
+ }
303
+
304
+ } // namespace mlx::core::cu
@@ -0,0 +1,21 @@
1
+ // Copyright © 2025 Apple Inc.
2
+
3
+ #pragma once
4
+
5
+ #include "mlx/backend/cuda/device.h"
6
+
7
+ namespace mlx::core::cu {
8
+
9
+ void fp_qmv(
10
+ const array& w,
11
+ const array& scales,
12
+ const array& vec,
13
+ array& out,
14
+ int bits,
15
+ int group_size,
16
+ int M,
17
+ int N,
18
+ int K,
19
+ CommandEncoder& encoder);
20
+
21
+ } // namespace mlx::core::cu