mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,647 @@
1
+ import math
2
+ import unittest
3
+ from itertools import product
4
+
5
+ import mlx.core as mx
6
+ import mlx_tests
7
+ import numpy as np
8
+
9
+
10
+ def mlx_ref_attn(q, k, v, scale=1.0, mask=None, sinks=None):
11
+ q_dtype = q.dtype
12
+ q = q * mx.array(scale, q_dtype)
13
+ n_q_heads = q.shape[-3]
14
+ n_kv_heads = k.shape[-3]
15
+ n_repeats = n_q_heads // n_kv_heads
16
+
17
+ B = q.shape[0]
18
+ L = q.shape[2]
19
+ kL = k.shape[2]
20
+
21
+ if n_repeats > 1:
22
+ q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
23
+ k = mx.expand_dims(k, 2)
24
+ v = mx.expand_dims(v, 2)
25
+
26
+ scores = q @ mx.swapaxes(k, -1, -2)
27
+ is_causal = mask == "causal"
28
+ if mask is not None:
29
+
30
+ if is_causal:
31
+ offset = kL - L
32
+ q_indices = mx.arange(L) + offset
33
+ k_indices = mx.arange(kL)
34
+ mask = q_indices[:, None] >= k_indices[None]
35
+
36
+ if n_repeats > 1 and mask.ndim >= 3:
37
+ if mask.shape[-3] == 1:
38
+ mask = mx.expand_dims(mask, -3)
39
+ else:
40
+ mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
41
+
42
+ if mask.dtype == mx.bool_:
43
+ scores = mx.where(mask, scores, mx.finfo(scores.dtype).min)
44
+ else:
45
+ scores += mask
46
+
47
+ if sinks is not None:
48
+ sinks = mx.expand_dims(sinks, (0, 2, 3))
49
+ if n_repeats > 1:
50
+ sinks = mx.unflatten(sinks, 1, (n_kv_heads, n_repeats))
51
+ score_shape = list(scores.shape)
52
+ score_shape[-1] = 1
53
+ sinks = mx.broadcast_to(sinks, score_shape)
54
+ scores = mx.concatenate([sinks, scores], axis=-1)
55
+
56
+ scores = mx.softmax(scores, axis=-1, precise=True)
57
+ if sinks is not None:
58
+ scores = scores[..., 1:]
59
+
60
+ out = scores @ v
61
+ if n_repeats > 1:
62
+ out = mx.reshape(out, [B, n_q_heads, L, -1])
63
+ return out
64
+
65
+
66
+ def do_attention(f, q, k, v, scale, mask=None, transpose=False):
67
+ if transpose:
68
+ q_t = mx.transpose(q, (0, 2, 1, 3))
69
+ k_t = mx.transpose(k, (0, 2, 1, 3))
70
+ v_t = mx.transpose(v, (0, 2, 1, 3))
71
+ o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
72
+ return mx.transpose(o_t, (0, 2, 1, 3))
73
+ else:
74
+ return f(q, k, v, scale=scale, mask=mask)
75
+
76
+
77
+ def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
78
+ mx.random.seed(0)
79
+
80
+ scale = 1.0 / math.sqrt(D)
81
+ shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
82
+ shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
83
+
84
+ q = mx.random.uniform(0.0, 0.5, shape_q, dtype)
85
+ k = mx.random.uniform(0.0, 0.5, shape_kv, dtype)
86
+ v = mx.random.uniform(0.0, scale, shape_kv, dtype)
87
+
88
+ if mask is not None:
89
+ if mask == "additive":
90
+ mask = mx.random.uniform(0.0, 0.5, (B, qH, qL, kL), dtype)
91
+ elif mask == "bool":
92
+ mask = mx.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
93
+
94
+ return q, k, v, scale, mask
95
+
96
+
97
+ # SDPA for MHA (n_heads == n_kv_heads)
98
+ def mlx_primitives_sdpa(q, k, v, scale, mask=None):
99
+ p = (q * scale) @ k.transpose(0, 1, 3, 2)
100
+ qL = q.shape[2]
101
+ kL = k.shape[2]
102
+ is_causal = mask == "causal"
103
+ if mask is not None:
104
+ if is_causal:
105
+ offset = kL - qL
106
+ q_indices = mx.arange(qL) + offset
107
+ k_indices = mx.arange(kL)
108
+ mask = q_indices[:, None] >= k_indices[None]
109
+ p = mx.where(mask, p, mx.finfo(mx.float32).min)
110
+ elif mask.dtype == mx.bool_:
111
+ p = mx.where(mask, p, mx.finfo(mx.float32).min)
112
+ else:
113
+ p += mask
114
+ scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype)
115
+ return scores @ v
116
+
117
+
118
+ class TestFastSDPA(mlx_tests.MLXTestCase):
119
+ def test_sdpa_vector_kv_transposed_head_seq(self):
120
+ D = 64
121
+ Nq = 4
122
+ Nkv = 1
123
+ scale = 1.0
124
+ mx.random.seed(0)
125
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
126
+
127
+ lengths = [43, 4096]
128
+ for L in lengths:
129
+ k = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
130
+ v = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
131
+ k = k.swapaxes(1, 2)
132
+ v = v.swapaxes(1, 2)
133
+ masks = [
134
+ mx.array(True),
135
+ mx.array([True] * (L - 10) + [False] * 10),
136
+ mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
137
+ mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
138
+ ]
139
+
140
+ for m in masks:
141
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
142
+ out = mx.fast.scaled_dot_product_attention(
143
+ q,
144
+ k,
145
+ v,
146
+ scale=scale,
147
+ mask=m,
148
+ )
149
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
150
+
151
+ def test_sdpa_vector(self):
152
+ D = 64
153
+ L = 43
154
+ Nq = 4
155
+ Nkv = 1
156
+ scale = 1.0
157
+ mx.random.seed(0)
158
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
159
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
160
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
161
+
162
+ with self.assertRaises(ValueError):
163
+ mx.fast.scaled_dot_product_attention(
164
+ q,
165
+ k,
166
+ v,
167
+ scale=scale,
168
+ mask=mx.full((Nq, 2, L), False),
169
+ )
170
+
171
+ masks = [
172
+ None,
173
+ mx.array(True),
174
+ mx.array([True] * (L - 10) + [False] * 10),
175
+ mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
176
+ mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
177
+ mx.random.uniform(shape=(Nq, 1, L)),
178
+ mx.random.uniform(shape=(L, 1, Nq)).T,
179
+ mx.log(mx.random.uniform(shape=(Nq, 1, L)) > 0.2),
180
+ mx.log(mx.random.uniform(shape=(L, 1, Nq)).T > 0.2),
181
+ "causal",
182
+ ]
183
+ for m in masks:
184
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
185
+ out = mx.fast.scaled_dot_product_attention(
186
+ q,
187
+ k,
188
+ v,
189
+ scale=scale,
190
+ mask=m,
191
+ )
192
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
193
+
194
+ L = 4096
195
+ scale = 1.0
196
+ mx.random.seed(0)
197
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
198
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
199
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
200
+
201
+ masks = [
202
+ mx.array(True),
203
+ mx.array([True] * (L - 10) + [False] * 10),
204
+ mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
205
+ mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
206
+ mx.random.uniform(shape=(Nq, 1, L)),
207
+ mx.random.uniform(shape=(L, 1, Nq)).T,
208
+ mx.log(mx.random.uniform(shape=(Nq, 1, L)) > 0.2),
209
+ mx.log(mx.random.uniform(shape=(L, 1, Nq)).T > 0.2),
210
+ "causal",
211
+ ]
212
+ for m in masks:
213
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
214
+ out = mx.fast.scaled_dot_product_attention(
215
+ q,
216
+ k,
217
+ v,
218
+ scale=scale,
219
+ mask=m,
220
+ )
221
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
222
+
223
+ def test_sdpa_fully_masked(self):
224
+ Lkv = 8
225
+ mask = mx.array(False)
226
+ for D in [128]:
227
+ for Lq in [1, 8, 32]:
228
+ q = mx.random.normal(shape=(1, 4, Lq, D))
229
+ k = mx.random.normal(shape=(1, 4, Lkv, D))
230
+ v = mx.random.normal(shape=(1, 4, Lkv, D))
231
+
232
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1)
233
+ self.assertFalse(mx.any(mx.isnan(out)))
234
+
235
+ def test_sdpa_inf_score(self):
236
+ Lkv = 8
237
+ for D in [4, 128]:
238
+ for Lq in [1, 8]:
239
+ q = mx.ones(shape=(1, 4, Lq, D))
240
+ k = mx.ones(shape=(1, 4, Lkv, D))
241
+ v = mx.random.normal(shape=(1, 4, Lkv, D))
242
+ k[..., 0, :] = -float("inf")
243
+ ref = mlx_primitives_sdpa(q, k, v, scale=1, mask=None)
244
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1)
245
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
246
+
247
+ def test_sdpa_few_query(self):
248
+ D = 64
249
+ L = 43
250
+ Lq = 8
251
+ Nq = 8
252
+ Nkv = 1
253
+ scale = 1.0
254
+ mx.random.seed(0)
255
+ q = 5e-1 * mx.random.normal(shape=(1, Lq, Nq, D))
256
+ q = q.swapaxes(1, 2)
257
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
258
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
259
+
260
+ masks = [
261
+ None,
262
+ mx.array(True),
263
+ mx.array([True] * (L - 10) + [False] * 10),
264
+ mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
265
+ mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
266
+ "causal",
267
+ ]
268
+ for m in masks:
269
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
270
+ out = mx.fast.scaled_dot_product_attention(
271
+ q,
272
+ k,
273
+ v,
274
+ scale=scale,
275
+ mask=m,
276
+ )
277
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
278
+
279
+ L = 4096
280
+ scale = 1.0
281
+ mx.random.seed(0)
282
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, Lq, D))
283
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
284
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
285
+
286
+ masks = [
287
+ None,
288
+ mx.array(True),
289
+ mx.array([True] * (L - 10) + [False] * 10),
290
+ mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
291
+ mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
292
+ "causal",
293
+ ]
294
+ for m in masks:
295
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
296
+ out = mx.fast.scaled_dot_product_attention(
297
+ q,
298
+ k,
299
+ v,
300
+ scale=scale,
301
+ mask=m,
302
+ )
303
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
304
+
305
+ @unittest.skip("Different head and value dims is not enabled")
306
+ def test_sdpa_vector_value_dims(self):
307
+ D = 192
308
+ V = 128
309
+ Nq = 4
310
+ Nkv = 1
311
+ scale = 1.0
312
+ mx.random.seed(0)
313
+
314
+ for L in [43, 128, 237, 8192]:
315
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
316
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
317
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, V))
318
+ ref = mlx_primitives_sdpa(q, k, v, scale)
319
+ out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale)
320
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
321
+
322
+ def test_sdpa_vector_batched(self):
323
+ D = 64
324
+ q = mx.random.normal(shape=(2, 1, 3, D))
325
+ k = mx.random.normal(shape=(2, 1, 3, D))
326
+ v = mx.random.normal(shape=(2, 1, 3, D))
327
+
328
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
329
+ ref = mlx_ref_attn(q, k, v)
330
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
331
+
332
+ q = mx.random.normal(shape=(2, 4, 3, D))
333
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
334
+ ref = mlx_ref_attn(q, k, v)
335
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
336
+
337
+ q = mx.random.normal(shape=(2, 3, 4, D)).swapaxes(1, 2)
338
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
339
+ ref = mlx_ref_attn(q, k, v)
340
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
341
+
342
+ k = mx.random.normal(shape=(2, 3, 1, D)).swapaxes(1, 2)
343
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
344
+ ref = mlx_ref_attn(q, k, v)
345
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
346
+
347
+ q = mx.random.normal(shape=(2, 4, 3, D))
348
+ k = mx.random.normal(shape=(2, 3, 2, D)).swapaxes(1, 2)
349
+ v = mx.random.normal(shape=(2, 2, 3, D))
350
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=None, scale=1.0)
351
+ ref = mlx_ref_attn(q, k, v)
352
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
353
+
354
+ q = mx.random.normal(shape=(2, 4, 3, D))
355
+ k = mx.random.normal(shape=(2, 1, 3, D))
356
+ v = mx.random.normal(shape=(2, 1, 3, D))
357
+ mask = 10 * mx.random.normal(shape=(1, 2, 3, 3)).swapaxes(0, 1)
358
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
359
+ ref = mlx_ref_attn(q, k, v, mask=mask)
360
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
361
+
362
+ @unittest.skipIf(not mx.is_available(mx.gpu), "too slow on CPU")
363
+ def test_sdpa(self):
364
+ # fmt: off
365
+ shapes_64 = [
366
+ # ( B, qsl, ksl, head_dim, n_qh, n_kvh)
367
+ ( 1, 20, 20, 64, 3, 3),
368
+ ( 1, 63, 63, 64, 24, 24),
369
+ ( 1, 129, 129, 64, 24, 24),
370
+ ( 1, 400, 400, 64, 24, 24),
371
+ ( 1, 128, 128, 64, 32, 32),
372
+ ( 1, 64, 128, 64, 32, 32),
373
+ ( 1, 65, 128, 64, 32, 8),
374
+ ( 1, 64, 127, 64, 32, 8),
375
+ ( 1, 65, 127, 64, 32, 8),
376
+ ( 1, 127, 65, 64, 32, 8),
377
+ ]
378
+ shapes_128 = [
379
+ # ( B, qsl, ksl, head_dim, n_qh, n_kvh)
380
+ ( 1, 128, 128, 128, 32, 8),
381
+ ( 1, 64, 128, 128, 32, 8),
382
+ ( 1, 65, 127, 128, 32, 8),
383
+ ( 1, 127, 65, 128, 32, 8),
384
+ ]
385
+ for ksl in [7, 9, 32, 63, 67, 129, 400, 2000]:
386
+ shapes_128.append((1, 1, ksl, 128, 32, 32))
387
+ shapes_128.append((1, 1, ksl, 128, 32, 8))
388
+ # fmt: on
389
+
390
+ shapes = shapes_64 + shapes_128
391
+ dtypes = [mx.float16]
392
+ if mx.metal.is_available():
393
+ dtypes.append(mx.float32)
394
+ masks = [None, "additive", "bool", "causal"]
395
+ transposes = (False, True)
396
+
397
+ for dtype, t, mask_str, (B, qL, kL, D, qH, kH) in product(
398
+ dtypes, transposes, masks, shapes
399
+ ):
400
+ with self.subTest(
401
+ B=B,
402
+ qsl=qL,
403
+ ksl=kL,
404
+ head_dim=D,
405
+ n_q_heads=qH,
406
+ n_kv_heads=kH,
407
+ mask=mask_str,
408
+ transpose=t,
409
+ dtype=dtype,
410
+ ):
411
+ q, k, v, scale, mask = prepare_inputs(
412
+ B, qL, kL, D, qH, kH, mask_str, t, dtype
413
+ )
414
+
415
+ out_ref = do_attention(mlx_ref_attn, q, k, v, scale, mask, t)
416
+
417
+ out_fst = do_attention(
418
+ mx.fast.scaled_dot_product_attention,
419
+ q,
420
+ k,
421
+ v,
422
+ scale,
423
+ mask,
424
+ t,
425
+ )
426
+
427
+ # For causal mask when qL > kL, first qL-kL rows are undefined
428
+ # Compare only the valid portion
429
+ if mask_str == "causal" and qL > kL:
430
+ offset = qL - kL
431
+ if t: # transpose=True: shape is (B, qL, qH, D)
432
+ out_ref = out_ref[:, offset:, :, :]
433
+ out_fst = out_fst[:, offset:, :, :]
434
+ else: # transpose=False: shape is (B, qH, qL, D)
435
+ out_ref = out_ref[:, :, offset:, :]
436
+ out_fst = out_fst[:, :, offset:, :]
437
+
438
+ atol = 2e-5 if dtype == mx.float32 else 3e-4
439
+
440
+ self.assertListEqual(list(out_ref.shape), list(out_fst.shape))
441
+
442
+ diff = mx.abs(out_fst - out_ref) - atol * mx.abs(out_ref)
443
+ self.assertLessEqual(mx.max(diff).item(), atol)
444
+
445
+ def test_sdpa_broadcast_mask(self):
446
+ mask = mx.array(True)
447
+ D = 64
448
+ Nq = 4
449
+ Nkv = 1
450
+ scale = 1.0
451
+ L = 256
452
+
453
+ mx.random.seed(0)
454
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
455
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
456
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
457
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
458
+ out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
459
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
460
+
461
+ def test_sdpa_noncontiguous_inputs(self):
462
+ mask = mx.ones(shape=(4, 1, 7, 7), dtype=mx.bool_)
463
+ mx.random.seed(0)
464
+ q = mx.random.normal(shape=(4, 7, 32, 64)).swapaxes(1, 2)
465
+
466
+ k = mx.random.normal(shape=(4, 7, 8, 64)).swapaxes(1, 2)
467
+ v = mx.random.normal(shape=(4, 7, 8, 64)).swapaxes(1, 2)
468
+ out = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
469
+ ref = mlx_ref_attn(q, k, v, scale=1.0, mask=mask)
470
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
471
+
472
+ def test_sdpa_promote_mask(self):
473
+ mask = mx.array(2.0, mx.bfloat16)
474
+ D = 64
475
+ Nq = 4
476
+ Nkv = 1
477
+ scale = 1.0
478
+ L = 256
479
+
480
+ mx.random.seed(0)
481
+ q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
482
+ k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
483
+ v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
484
+ ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
485
+ out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
486
+ self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
487
+
488
+ def test_sdpa_nan_bug(self):
489
+ N = 128
490
+ q_shape = (1, 1, N, 128)
491
+ kv_shape = (1, 1, N, 128)
492
+ q = mx.random.uniform(shape=q_shape)
493
+ k = mx.random.uniform(shape=kv_shape)
494
+ v = mx.random.uniform(shape=kv_shape)
495
+
496
+ # Make boolean window causal mask
497
+ linds = rinds = mx.arange(N)
498
+ linds = linds[:, None]
499
+ rinds = rinds[None]
500
+ mask = linds >= rinds
501
+ mask = mask & (linds <= rinds + 111)
502
+
503
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
504
+ expected = mlx_ref_attn(q, k, v, mask=mask, scale=1.0)
505
+ self.assertFalse(mx.isnan(out).any().item())
506
+ self.assertLessEqual(mx.abs(out - expected).max().item(), 1e-4)
507
+
508
+ # And an additive one
509
+ mask = mx.log(mask)
510
+
511
+ out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1.0)
512
+ expected = mlx_ref_attn(q, k, v, mask=mask, scale=1.0)
513
+ self.assertFalse(mx.isnan(out).any().item())
514
+ self.assertLessEqual(mx.abs(out - expected).max().item(), 1e-4)
515
+
516
+ def test_sdpa_attention_sinks(self):
517
+ B = 2
518
+ N_q = N_kv = 8
519
+ T_q = T_kv = 128
520
+ D = 64
521
+
522
+ q = mx.random.normal(shape=(B, N_q, T_q, D))
523
+ k = mx.random.normal(shape=(B, N_kv, T_kv, D))
524
+ v = mx.random.normal(shape=(B, N_kv, T_kv, D))
525
+ scale = D**-0.5
526
+
527
+ # sinks should promote to correct type
528
+ sinks = mx.random.normal(shape=(N_q,))
529
+ with self.assertRaises(ValueError):
530
+ mx.fast.scaled_dot_product_attention(
531
+ q.astype(mx.float16),
532
+ k.astype(mx.float16),
533
+ v.astype(mx.float16),
534
+ scale=scale,
535
+ sinks=sinks,
536
+ )
537
+
538
+ # Wrong shapes
539
+ sinks = mx.random.normal(shape=(N_q + 1,))
540
+ with self.assertRaises(ValueError):
541
+ mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, sinks=sinks)
542
+
543
+ sinks = mx.random.normal(shape=())
544
+ with self.assertRaises(ValueError):
545
+ mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, sinks=sinks)
546
+
547
+ for T_q, T_kv, N_kv, dtype in product(
548
+ (1, 128),
549
+ (128, 4096),
550
+ (2, 8),
551
+ (mx.float16, mx.float32),
552
+ ):
553
+ with self.subTest(T_q=T_q, T_kv=T_kv, N_kv=N_kv, dtype=dtype):
554
+ q = mx.random.normal(shape=(B, N_q, T_q, D), dtype=dtype)
555
+ k = mx.random.normal(shape=(B, N_kv, T_kv, D), dtype=dtype)
556
+ v = mx.random.normal(shape=(B, N_kv, T_kv, D), dtype=dtype)
557
+ sinks = 10 * mx.random.normal(shape=(N_q,), dtype=dtype)
558
+
559
+ expected = mlx_ref_attn(q, k, v, scale, sinks=sinks)
560
+ out = mx.fast.scaled_dot_product_attention(
561
+ q, k, v, scale=scale, sinks=sinks
562
+ )
563
+ atol = 1e-5 if dtype == mx.float32 else 1e-2
564
+ self.assertTrue(mx.allclose(out, expected, atol=atol))
565
+
566
+ def test_sdpa_grad(self):
567
+ # High tolerance due to cuDNN SDPA kernel requiring tf32.
568
+ tolerance = {"rtol": 1e-2, "atol": 1e-2}
569
+
570
+ def test_vjp(slow, fast, primals):
571
+ cotan = mx.ones_like(primals[0])
572
+ o1, vjp1 = mx.vjp(slow, primals, [cotan])
573
+ o2, vjp2 = mx.vjp(fast, primals, [cotan])
574
+
575
+ self.assertTrue(mx.allclose(o1[0], o2[0], **tolerance))
576
+ for i in range(3):
577
+ self.assertTrue(mx.allclose(vjp1[i], vjp2[i], **tolerance))
578
+
579
+ def test_grad(slow, fast, args):
580
+ g1 = mx.grad(slow)(*args)
581
+ g2 = mx.grad(fast)(*args)
582
+
583
+ self.assertTrue(mx.allclose(g1, g2, **tolerance))
584
+
585
+ B, N_kv, T, D = (2, 8, 128, 64)
586
+ scale = D**-0.5
587
+
588
+ for N_q in (8, 32):
589
+ q = mx.random.normal(shape=(B, N_q, T, D), dtype=mx.float16)
590
+ k = mx.random.normal(shape=(B, N_kv, T, D), dtype=mx.float16)
591
+ v = mx.random.normal(shape=(B, N_kv, T, D), dtype=mx.float16)
592
+
593
+ mask_additive = mx.random.normal((B, N_q, T, T), dtype=mx.float16)
594
+ mask_bool = mx.random.uniform(0, 1, (B, N_q, T, T), dtype=mx.float16) < 0.5
595
+
596
+ for mask in (None, "causal", mask_additive, mask_bool):
597
+ sdpa_slow = lambda q, k, v: mlx_ref_attn(
598
+ q, k, v, scale=scale, mask=mask
599
+ )
600
+ sdpa_fast = lambda q, k, v: mx.fast.scaled_dot_product_attention(
601
+ q, k, v, scale=scale, mask=mask
602
+ )
603
+ test_vjp(sdpa_slow, sdpa_fast, [q, k, v])
604
+
605
+ loss_slow = lambda q, k, v: mlx_ref_attn(
606
+ q, k, v, scale=scale, mask=mask
607
+ ).sum()
608
+ loss_fast = lambda q, k, v: mx.fast.scaled_dot_product_attention(
609
+ q, k, v, scale=scale, mask=mask
610
+ ).sum()
611
+ test_grad(loss_slow, loss_fast, [q, k, v])
612
+
613
+ def test_sdpa_sliced(self):
614
+ N = 8
615
+ D = 64
616
+ scale = D**-0.5
617
+
618
+ for B, T_q, T_kv, offset, mask in product(
619
+ (1, 2, 4),
620
+ (1, 8),
621
+ (256, 512),
622
+ (8, 9, 64, 79),
623
+ (None, "causal"),
624
+ ):
625
+ with self.subTest(B=B, T_q=T_q, T_kv=T_kv, offset=offset, mask=mask):
626
+ q = mx.random.normal((B, N, T_q, D), mx.float16)
627
+ k = mx.random.normal((B, N, T_kv, D), mx.float16)
628
+ v = mx.random.normal((B, N, T_kv, D), mx.float16)
629
+
630
+ k = k[..., :offset, :]
631
+ v = v[..., :offset, :]
632
+
633
+ ref = mlx_ref_attn(q, k, v, scale=scale, mask=mask)
634
+
635
+ for i in range(2):
636
+ out = mx.fast.scaled_dot_product_attention(
637
+ q, k, v, scale=scale, mask=mask
638
+ )
639
+ if B == 1:
640
+ tolerance = {"rtol": 1e-3, "atol": 1e-3}
641
+ else:
642
+ tolerance = {"rtol": 1e-2, "atol": 1e-2}
643
+ self.assertTrue(mx.allclose(ref, out, **tolerance))
644
+
645
+
646
+ if __name__ == "__main__":
647
+ mlx_tests.MLXTestRunner(failfast=True)