mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,811 @@
|
|
|
1
|
+
Custom Extensions in MLX
|
|
2
|
+
========================
|
|
3
|
+
|
|
4
|
+
You can extend MLX with custom operations on the CPU or GPU. This guide
|
|
5
|
+
explains how to do that with a simple example.
|
|
6
|
+
|
|
7
|
+
Introducing the Example
|
|
8
|
+
-----------------------
|
|
9
|
+
|
|
10
|
+
Let's say you would like an operation that takes in two arrays, ``x`` and
|
|
11
|
+
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
|
12
|
+
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
|
13
|
+
You can do that in MLX directly:
|
|
14
|
+
|
|
15
|
+
.. code-block:: python
|
|
16
|
+
|
|
17
|
+
import mlx.core as mx
|
|
18
|
+
|
|
19
|
+
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
|
20
|
+
return alpha * x + beta * y
|
|
21
|
+
|
|
22
|
+
This function performs that operation while leaving the implementation and
|
|
23
|
+
function transformations to MLX.
|
|
24
|
+
|
|
25
|
+
However, you may want to customize the underlying implementation, perhaps to
|
|
26
|
+
make it faster. In this tutorial we will go through adding custom extensions.
|
|
27
|
+
It will cover:
|
|
28
|
+
|
|
29
|
+
* The structure of the MLX library.
|
|
30
|
+
* Implementing a CPU operation.
|
|
31
|
+
* Implementing a GPU operation using metal.
|
|
32
|
+
* Adding the ``vjp`` and ``jvp`` function transformation.
|
|
33
|
+
* Building a custom extension and binding it to python.
|
|
34
|
+
|
|
35
|
+
Operations and Primitives
|
|
36
|
+
-------------------------
|
|
37
|
+
|
|
38
|
+
Operations in MLX build the computation graph. Primitives provide the rules for
|
|
39
|
+
evaluating and transforming the graph. Let's start by discussing operations in
|
|
40
|
+
more detail.
|
|
41
|
+
|
|
42
|
+
Operations
|
|
43
|
+
^^^^^^^^^^^
|
|
44
|
+
|
|
45
|
+
Operations are the front-end functions that operate on arrays. They are defined
|
|
46
|
+
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
|
47
|
+
|
|
48
|
+
We would like an operation :meth:`axpby` that takes in two arrays, ``x`` and
|
|
49
|
+
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
|
50
|
+
C++:
|
|
51
|
+
|
|
52
|
+
.. code-block:: C++
|
|
53
|
+
|
|
54
|
+
/**
|
|
55
|
+
* Scale and sum two vectors element-wise
|
|
56
|
+
* z = alpha * x + beta * y
|
|
57
|
+
*
|
|
58
|
+
* Use NumPy-style broadcasting between x and y
|
|
59
|
+
* Inputs are upcasted to floats if needed
|
|
60
|
+
**/
|
|
61
|
+
array axpby(
|
|
62
|
+
const array& x, // Input array x
|
|
63
|
+
const array& y, // Input array y
|
|
64
|
+
const float alpha, // Scaling factor for x
|
|
65
|
+
const float beta, // Scaling factor for y
|
|
66
|
+
StreamOrDevice s = {} // Stream on which to schedule the operation
|
|
67
|
+
);
|
|
68
|
+
|
|
69
|
+
The simplest way to implement this is with existing operations:
|
|
70
|
+
|
|
71
|
+
.. code-block:: C++
|
|
72
|
+
|
|
73
|
+
array axpby(
|
|
74
|
+
const array& x, // Input array x
|
|
75
|
+
const array& y, // Input array y
|
|
76
|
+
const float alpha, // Scaling factor for x
|
|
77
|
+
const float beta, // Scaling factor for y
|
|
78
|
+
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
|
|
79
|
+
) {
|
|
80
|
+
// Scale x and y on the provided stream
|
|
81
|
+
auto ax = multiply(array(alpha), x, s);
|
|
82
|
+
auto by = multiply(array(beta), y, s);
|
|
83
|
+
|
|
84
|
+
// Add and return
|
|
85
|
+
return add(ax, by, s);
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
The operations themselves do not contain the implementations that act on the
|
|
89
|
+
data, nor do they contain the rules of transformations. Rather, they are an
|
|
90
|
+
easy to use interface that use :class:`Primitive` building blocks.
|
|
91
|
+
|
|
92
|
+
Primitives
|
|
93
|
+
^^^^^^^^^^^
|
|
94
|
+
|
|
95
|
+
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
|
96
|
+
defines how to create output arrays given input arrays. Further, a
|
|
97
|
+
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
|
98
|
+
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
|
|
99
|
+
more concrete:
|
|
100
|
+
|
|
101
|
+
.. code-block:: C++
|
|
102
|
+
|
|
103
|
+
class Axpby : public Primitive {
|
|
104
|
+
public:
|
|
105
|
+
explicit Axpby(Stream stream, float alpha, float beta)
|
|
106
|
+
: Primitive(stream), alpha_(alpha), beta_(beta){};
|
|
107
|
+
|
|
108
|
+
/**
|
|
109
|
+
* A primitive must know how to evaluate itself on the CPU/GPU
|
|
110
|
+
* for the given inputs and populate the output array.
|
|
111
|
+
*
|
|
112
|
+
* To avoid unnecessary allocations, the evaluation function
|
|
113
|
+
* is responsible for allocating space for the array.
|
|
114
|
+
*/
|
|
115
|
+
void eval_cpu(
|
|
116
|
+
const std::vector<array>& inputs,
|
|
117
|
+
std::vector<array>& outputs) override;
|
|
118
|
+
void eval_gpu(
|
|
119
|
+
const std::vector<array>& inputs,
|
|
120
|
+
std::vector<array>& outputs) override;
|
|
121
|
+
|
|
122
|
+
/** The Jacobian-vector product. */
|
|
123
|
+
std::vector<array> jvp(
|
|
124
|
+
const std::vector<array>& primals,
|
|
125
|
+
const std::vector<array>& tangents,
|
|
126
|
+
const std::vector<int>& argnums) override;
|
|
127
|
+
|
|
128
|
+
/** The vector-Jacobian product. */
|
|
129
|
+
std::vector<array> vjp(
|
|
130
|
+
const std::vector<array>& primals,
|
|
131
|
+
const std::vector<array>& cotangents,
|
|
132
|
+
const std::vector<int>& argnums,
|
|
133
|
+
const std::vector<array>& outputs) override;
|
|
134
|
+
|
|
135
|
+
/**
|
|
136
|
+
* The primitive must know how to vectorize itself across
|
|
137
|
+
* the given axes. The output is a pair containing the array
|
|
138
|
+
* representing the vectorized computation and the axis which
|
|
139
|
+
* corresponds to the output vectorized dimension.
|
|
140
|
+
*/
|
|
141
|
+
std::pair<std::vector<array>, std::vector<int>> vmap(
|
|
142
|
+
const std::vector<array>& inputs,
|
|
143
|
+
const std::vector<int>& axes) override;
|
|
144
|
+
|
|
145
|
+
/** The name of primitive. */
|
|
146
|
+
const char* name() const override {
|
|
147
|
+
return "Axpby";
|
|
148
|
+
}
|
|
149
|
+
|
|
150
|
+
/** Equivalence check **/
|
|
151
|
+
bool is_equivalent(const Primitive& other) const override;
|
|
152
|
+
|
|
153
|
+
private:
|
|
154
|
+
float alpha_;
|
|
155
|
+
float beta_;
|
|
156
|
+
};
|
|
157
|
+
|
|
158
|
+
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
|
159
|
+
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
|
160
|
+
implementations of how the output array is produced given the inputs through
|
|
161
|
+
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
|
162
|
+
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
|
163
|
+
:meth:`Axpby::vmap`.
|
|
164
|
+
|
|
165
|
+
Using the Primitive
|
|
166
|
+
^^^^^^^^^^^^^^^^^^^
|
|
167
|
+
|
|
168
|
+
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
|
169
|
+
computation graph. An :class:`array` can be constructed by providing its data
|
|
170
|
+
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
|
171
|
+
inputs that are passed to the primitive.
|
|
172
|
+
|
|
173
|
+
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
|
174
|
+
|
|
175
|
+
.. code-block:: C++
|
|
176
|
+
|
|
177
|
+
array axpby(
|
|
178
|
+
const array& x, // Input array x
|
|
179
|
+
const array& y, // Input array y
|
|
180
|
+
const float alpha, // Scaling factor for x
|
|
181
|
+
const float beta, // Scaling factor for y
|
|
182
|
+
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
|
|
183
|
+
) {
|
|
184
|
+
// Promote dtypes between x and y as needed
|
|
185
|
+
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
|
186
|
+
|
|
187
|
+
// Upcast to float32 for non-floating point inputs x and y
|
|
188
|
+
auto out_dtype = issubdtype(promoted_dtype, float32)
|
|
189
|
+
? promoted_dtype
|
|
190
|
+
: promote_types(promoted_dtype, float32);
|
|
191
|
+
|
|
192
|
+
// Cast x and y up to the determined dtype (on the same stream s)
|
|
193
|
+
auto x_casted = astype(x, out_dtype, s);
|
|
194
|
+
auto y_casted = astype(y, out_dtype, s);
|
|
195
|
+
|
|
196
|
+
// Broadcast the shapes of x and y (on the same stream s)
|
|
197
|
+
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
|
|
198
|
+
auto out_shape = broadcasted_inputs[0].shape();
|
|
199
|
+
|
|
200
|
+
// Construct the array as the output of the Axpby primitive
|
|
201
|
+
// with the broadcasted and upcasted arrays as inputs
|
|
202
|
+
return array(
|
|
203
|
+
/* const std::vector<int>& shape = */ out_shape,
|
|
204
|
+
/* Dtype dtype = */ out_dtype,
|
|
205
|
+
/* std::unique_ptr<Primitive> primitive = */
|
|
206
|
+
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
|
207
|
+
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
|
208
|
+
}
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
This operation now handles the following:
|
|
212
|
+
|
|
213
|
+
#. Upcast inputs and resolve the output data type.
|
|
214
|
+
#. Broadcast the inputs and resolve the output shape.
|
|
215
|
+
#. Construct the primitive :class:`Axpby` using the given stream, ``alpha``, and ``beta``.
|
|
216
|
+
#. Construct the output :class:`array` using the primitive and the inputs.
|
|
217
|
+
|
|
218
|
+
Implementing the Primitive
|
|
219
|
+
--------------------------
|
|
220
|
+
|
|
221
|
+
No computation happens when we call the operation alone. The operation only
|
|
222
|
+
builds the computation graph. When we evaluate the output array, MLX schedules
|
|
223
|
+
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
|
224
|
+
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
|
225
|
+
|
|
226
|
+
.. warning::
|
|
227
|
+
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
|
228
|
+
no memory has been allocated for the output array. It falls on the implementation
|
|
229
|
+
of these functions to allocate memory as needed.
|
|
230
|
+
|
|
231
|
+
Implementing the CPU Back-end
|
|
232
|
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
233
|
+
|
|
234
|
+
Let's start by implementing :meth:`Axpby::eval_cpu`.
|
|
235
|
+
|
|
236
|
+
The method will go over each element of the output array, find the
|
|
237
|
+
corresponding input elements of ``x`` and ``y`` and perform the operation
|
|
238
|
+
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
|
239
|
+
|
|
240
|
+
.. code-block:: C++
|
|
241
|
+
|
|
242
|
+
template <typename T>
|
|
243
|
+
void axpby_impl(
|
|
244
|
+
const mx::array& x,
|
|
245
|
+
const mx::array& y,
|
|
246
|
+
mx::array& out,
|
|
247
|
+
float alpha_,
|
|
248
|
+
float beta_,
|
|
249
|
+
mx::Stream stream) {
|
|
250
|
+
out.set_data(mx::allocator::malloc(out.nbytes()));
|
|
251
|
+
|
|
252
|
+
// Get the CPU command encoder and register input and output arrays
|
|
253
|
+
auto& encoder = mx::cpu::get_command_encoder(stream);
|
|
254
|
+
encoder.set_input_array(x);
|
|
255
|
+
encoder.set_input_array(y);
|
|
256
|
+
encoder.set_output_array(out);
|
|
257
|
+
|
|
258
|
+
// Launch the CPU kernel
|
|
259
|
+
encoder.dispatch([x_ptr = x.data<T>(),
|
|
260
|
+
y_ptr = y.data<T>(),
|
|
261
|
+
out_ptr = out.data<T>(),
|
|
262
|
+
size = out.size(),
|
|
263
|
+
shape = out.shape(),
|
|
264
|
+
x_strides = x.strides(),
|
|
265
|
+
y_strides = y.strides(),
|
|
266
|
+
alpha_,
|
|
267
|
+
beta_]() {
|
|
268
|
+
|
|
269
|
+
// Cast alpha and beta to the relevant types
|
|
270
|
+
T alpha = static_cast<T>(alpha_);
|
|
271
|
+
T beta = static_cast<T>(beta_);
|
|
272
|
+
|
|
273
|
+
// Do the element-wise operation for each output
|
|
274
|
+
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
|
275
|
+
// Map linear indices to offsets in x and y
|
|
276
|
+
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
|
277
|
+
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
|
278
|
+
|
|
279
|
+
// We allocate the output to be contiguous and regularly strided
|
|
280
|
+
// (defaults to row major) and hence it doesn't need additional mapping
|
|
281
|
+
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
|
282
|
+
}
|
|
283
|
+
});
|
|
284
|
+
}
|
|
285
|
+
|
|
286
|
+
Our implementation should work for all incoming floating point arrays.
|
|
287
|
+
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
|
288
|
+
``complex64``. We throw an error if we encounter an unexpected type.
|
|
289
|
+
|
|
290
|
+
.. code-block:: C++
|
|
291
|
+
|
|
292
|
+
void Axpby::eval_cpu(
|
|
293
|
+
const std::vector<mx::array>& inputs,
|
|
294
|
+
std::vector<mx::array>& outputs) {
|
|
295
|
+
auto& x = inputs[0];
|
|
296
|
+
auto& y = inputs[1];
|
|
297
|
+
auto& out = outputs[0];
|
|
298
|
+
|
|
299
|
+
// Dispatch to the correct dtype
|
|
300
|
+
if (out.dtype() == mx::float32) {
|
|
301
|
+
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
|
302
|
+
} else if (out.dtype() == mx::float16) {
|
|
303
|
+
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
|
304
|
+
} else if (out.dtype() == mx::bfloat16) {
|
|
305
|
+
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
|
306
|
+
} else if (out.dtype() == mx::complex64) {
|
|
307
|
+
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
|
308
|
+
} else {
|
|
309
|
+
throw std::runtime_error(
|
|
310
|
+
"Axpby is only supported for floating point types.");
|
|
311
|
+
}
|
|
312
|
+
}
|
|
313
|
+
|
|
314
|
+
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
|
315
|
+
you do not plan on running the operation on the GPU or using transforms on
|
|
316
|
+
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
|
317
|
+
primitive here.
|
|
318
|
+
|
|
319
|
+
Implementing the GPU Back-end
|
|
320
|
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
321
|
+
|
|
322
|
+
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
|
323
|
+
GPU kernels in MLX are written using Metal.
|
|
324
|
+
|
|
325
|
+
.. note::
|
|
326
|
+
|
|
327
|
+
Here are some helpful resources if you are new to Metal:
|
|
328
|
+
|
|
329
|
+
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
|
330
|
+
* Documentation for metal shading language: `Metal Specification`_
|
|
331
|
+
* Using metal from C++: `Metal-cpp`_
|
|
332
|
+
|
|
333
|
+
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
|
334
|
+
there are elements in the output. Each thread will pick the element it needs
|
|
335
|
+
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
|
336
|
+
element in the output.
|
|
337
|
+
|
|
338
|
+
.. code-block:: C++
|
|
339
|
+
|
|
340
|
+
template <typename T>
|
|
341
|
+
[[kernel]] void axpby_general(
|
|
342
|
+
device const T* x [[buffer(0)]],
|
|
343
|
+
device const T* y [[buffer(1)]],
|
|
344
|
+
device T* out [[buffer(2)]],
|
|
345
|
+
constant const float& alpha [[buffer(3)]],
|
|
346
|
+
constant const float& beta [[buffer(4)]],
|
|
347
|
+
constant const int* shape [[buffer(5)]],
|
|
348
|
+
constant const int64_t* x_strides [[buffer(6)]],
|
|
349
|
+
constant const int64_t* y_strides [[buffer(7)]],
|
|
350
|
+
constant const int& ndim [[buffer(8)]],
|
|
351
|
+
uint index [[thread_position_in_grid]]) {
|
|
352
|
+
// Convert linear indices to offsets in array
|
|
353
|
+
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
|
354
|
+
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
|
355
|
+
|
|
356
|
+
// Do the operation and update the output
|
|
357
|
+
out[index] =
|
|
358
|
+
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
|
359
|
+
}
|
|
360
|
+
|
|
361
|
+
We then need to instantiate this template for all floating point types and give
|
|
362
|
+
each instantiation a unique host name so we can identify it.
|
|
363
|
+
|
|
364
|
+
.. code-block:: C++
|
|
365
|
+
|
|
366
|
+
instantiate_kernel("axpby_general_float32", axpby_general, float)
|
|
367
|
+
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
|
|
368
|
+
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
|
|
369
|
+
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
|
|
370
|
+
|
|
371
|
+
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
|
372
|
+
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
|
373
|
+
below.
|
|
374
|
+
|
|
375
|
+
.. code-block:: C++
|
|
376
|
+
|
|
377
|
+
/** Evaluate primitive on GPU */
|
|
378
|
+
void Axpby::eval_gpu(
|
|
379
|
+
const std::vector<array>& inputs,
|
|
380
|
+
std::vector<array>& outputs) {
|
|
381
|
+
// Prepare inputs
|
|
382
|
+
assert(inputs.size() == 2);
|
|
383
|
+
auto& x = inputs[0];
|
|
384
|
+
auto& y = inputs[1];
|
|
385
|
+
auto& out = outputs[0];
|
|
386
|
+
|
|
387
|
+
// Each primitive carries the stream it should execute on
|
|
388
|
+
// and each stream carries its device identifiers
|
|
389
|
+
auto& s = stream();
|
|
390
|
+
// We get the needed metal device using the stream
|
|
391
|
+
auto& d = metal::device(s.device);
|
|
392
|
+
|
|
393
|
+
// Allocate output memory
|
|
394
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
395
|
+
|
|
396
|
+
// Resolve name of kernel
|
|
397
|
+
std::stream kname;
|
|
398
|
+
kname = "axpby_general_" + type_to_name(out);
|
|
399
|
+
|
|
400
|
+
// Load the metal library
|
|
401
|
+
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
|
402
|
+
|
|
403
|
+
// Make a kernel from this metal library
|
|
404
|
+
auto kernel = d.get_kernel(kname, lib);
|
|
405
|
+
|
|
406
|
+
// Prepare to encode kernel
|
|
407
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
408
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
409
|
+
|
|
410
|
+
// Kernel parameters are registered with buffer indices corresponding to
|
|
411
|
+
// those in the kernel declaration at axpby.metal
|
|
412
|
+
int ndim = out.ndim();
|
|
413
|
+
size_t nelem = out.size();
|
|
414
|
+
|
|
415
|
+
// Encode input arrays to kernel
|
|
416
|
+
compute_encoder.set_input_array(x, 0);
|
|
417
|
+
compute_encoder.set_input_array(y, 1);
|
|
418
|
+
|
|
419
|
+
// Encode output arrays to kernel
|
|
420
|
+
compute_encoder.set_output_array(out, 2);
|
|
421
|
+
|
|
422
|
+
// Encode alpha and beta
|
|
423
|
+
compute_encoder.set_bytes(alpha_, 3);
|
|
424
|
+
compute_encoder.set_bytes(beta_, 4);
|
|
425
|
+
|
|
426
|
+
// Encode shape, strides and ndim
|
|
427
|
+
compute_encoder.set_vector_bytes(x.shape(), 5);
|
|
428
|
+
compute_encoder.set_vector_bytes(x.strides(), 6);
|
|
429
|
+
compute_encoder.set_bytes(y.strides(), 7);
|
|
430
|
+
compute_encoder.set_bytes(ndim, 8);
|
|
431
|
+
|
|
432
|
+
// We launch 1 thread for each input and make sure that the number of
|
|
433
|
+
// threads in any given threadgroup is not higher than the max allowed
|
|
434
|
+
size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());
|
|
435
|
+
|
|
436
|
+
// Fix the 3D size of each threadgroup (in terms of threads)
|
|
437
|
+
MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);
|
|
438
|
+
|
|
439
|
+
// Fix the 3D size of the launch grid (in terms of threads)
|
|
440
|
+
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
|
|
441
|
+
|
|
442
|
+
// Launch the grid with the given number of threads divided among
|
|
443
|
+
// the given threadgroups
|
|
444
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
445
|
+
}
|
|
446
|
+
|
|
447
|
+
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
|
448
|
+
|
|
449
|
+
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
|
450
|
+
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
|
451
|
+
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
|
452
|
+
metal compute command encoder instead of building a new one and calling
|
|
453
|
+
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
|
454
|
+
pipelines) to the active command buffer until some specified limit is hit or
|
|
455
|
+
the command buffer needs to be flushed for synchronization.
|
|
456
|
+
|
|
457
|
+
Primitive Transforms
|
|
458
|
+
^^^^^^^^^^^^^^^^^^^^^
|
|
459
|
+
|
|
460
|
+
Next, let's add implementations for transformations in a :class:`Primitive`.
|
|
461
|
+
These transformations can be built on top of other operations, including the
|
|
462
|
+
one we just defined:
|
|
463
|
+
|
|
464
|
+
.. code-block:: C++
|
|
465
|
+
|
|
466
|
+
/** The Jacobian-vector product. */
|
|
467
|
+
std::vector<array> Axpby::jvp(
|
|
468
|
+
const std::vector<array>& primals,
|
|
469
|
+
const std::vector<array>& tangents,
|
|
470
|
+
const std::vector<int>& argnums) {
|
|
471
|
+
// Forward mode diff that pushes along the tangents
|
|
472
|
+
// The jvp transform on the primitive can be built with ops
|
|
473
|
+
// that are scheduled on the same stream as the primitive
|
|
474
|
+
|
|
475
|
+
// If argnums = {0}, we only push along x in which case the
|
|
476
|
+
// jvp is just the tangent scaled by alpha
|
|
477
|
+
// Similarly, if argnums = {1}, the jvp is just the tangent
|
|
478
|
+
// scaled by beta
|
|
479
|
+
if (argnums.size() > 1) {
|
|
480
|
+
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
|
481
|
+
auto scale_arr = array(scale, tangents[0].dtype());
|
|
482
|
+
return {multiply(scale_arr, tangents[0], stream())};
|
|
483
|
+
}
|
|
484
|
+
// If argnums = {0, 1}, we take contributions from both
|
|
485
|
+
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
|
486
|
+
else {
|
|
487
|
+
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
|
488
|
+
}
|
|
489
|
+
}
|
|
490
|
+
|
|
491
|
+
.. code-block:: C++
|
|
492
|
+
|
|
493
|
+
/** The vector-Jacobian product. */
|
|
494
|
+
std::vector<array> Axpby::vjp(
|
|
495
|
+
const std::vector<array>& primals,
|
|
496
|
+
const std::vector<array>& cotangents,
|
|
497
|
+
const std::vector<int>& argnums,
|
|
498
|
+
const std::vector<int>& /* unused */) {
|
|
499
|
+
// Reverse mode diff
|
|
500
|
+
std::vector<array> vjps;
|
|
501
|
+
for (auto arg : argnums) {
|
|
502
|
+
auto scale = arg == 0 ? alpha_ : beta_;
|
|
503
|
+
auto scale_arr = array(scale, cotangents[0].dtype());
|
|
504
|
+
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
|
505
|
+
}
|
|
506
|
+
return vjps;
|
|
507
|
+
}
|
|
508
|
+
|
|
509
|
+
Note, a transformation does not need to be fully defined to start using
|
|
510
|
+
the :class:`Primitive`.
|
|
511
|
+
|
|
512
|
+
.. code-block:: C++
|
|
513
|
+
|
|
514
|
+
/** Vectorize primitive along given axis */
|
|
515
|
+
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
|
516
|
+
const std::vector<array>& inputs,
|
|
517
|
+
const std::vector<int>& axes) {
|
|
518
|
+
throw std::runtime_error("[Axpby] vmap not implemented.");
|
|
519
|
+
}
|
|
520
|
+
|
|
521
|
+
Building and Binding
|
|
522
|
+
--------------------
|
|
523
|
+
|
|
524
|
+
Let's look at the overall directory structure first.
|
|
525
|
+
|
|
526
|
+
| extensions
|
|
527
|
+
| ├── axpby
|
|
528
|
+
| │ ├── axpby.cpp
|
|
529
|
+
| │ ├── axpby.h
|
|
530
|
+
| │ └── axpby.metal
|
|
531
|
+
| ├── mlx_sample_extensions
|
|
532
|
+
| │ └── __init__.py
|
|
533
|
+
| ├── bindings.cpp
|
|
534
|
+
| ├── CMakeLists.txt
|
|
535
|
+
| └── setup.py
|
|
536
|
+
|
|
537
|
+
* ``extensions/axpby/`` defines the C++ extension library
|
|
538
|
+
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
|
539
|
+
associated Python package
|
|
540
|
+
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
|
541
|
+
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
|
542
|
+
Python bindings
|
|
543
|
+
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
|
544
|
+
the Python package
|
|
545
|
+
|
|
546
|
+
Binding to Python
|
|
547
|
+
^^^^^^^^^^^^^^^^^^
|
|
548
|
+
|
|
549
|
+
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
|
550
|
+
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
|
551
|
+
already provided, adding our :meth:`axpby` is simple.
|
|
552
|
+
|
|
553
|
+
.. code-block:: C++
|
|
554
|
+
|
|
555
|
+
NB_MODULE(_ext, m) {
|
|
556
|
+
m.doc() = "Sample extension for MLX";
|
|
557
|
+
|
|
558
|
+
m.def(
|
|
559
|
+
"axpby",
|
|
560
|
+
&axpby,
|
|
561
|
+
"x"_a,
|
|
562
|
+
"y"_a,
|
|
563
|
+
"alpha"_a,
|
|
564
|
+
"beta"_a,
|
|
565
|
+
nb::kw_only(),
|
|
566
|
+
"stream"_a = nb::none(),
|
|
567
|
+
R"(
|
|
568
|
+
Scale and sum two vectors element-wise
|
|
569
|
+
``z = alpha * x + beta * y``
|
|
570
|
+
|
|
571
|
+
Follows numpy style broadcasting between ``x`` and ``y``
|
|
572
|
+
Inputs are upcasted to floats if needed
|
|
573
|
+
|
|
574
|
+
Args:
|
|
575
|
+
x (array): Input array.
|
|
576
|
+
y (array): Input array.
|
|
577
|
+
alpha (float): Scaling factor for ``x``.
|
|
578
|
+
beta (float): Scaling factor for ``y``.
|
|
579
|
+
|
|
580
|
+
Returns:
|
|
581
|
+
array: ``alpha * x + beta * y``
|
|
582
|
+
)");
|
|
583
|
+
}
|
|
584
|
+
|
|
585
|
+
Most of the complexity in the above example comes from additional bells and
|
|
586
|
+
whistles such as the literal names and doc-strings.
|
|
587
|
+
|
|
588
|
+
.. warning::
|
|
589
|
+
|
|
590
|
+
:mod:`mlx.core` must be imported before importing
|
|
591
|
+
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
|
592
|
+
ensure that the casters for :mod:`mlx.core` components like
|
|
593
|
+
:class:`mlx.core.array` are available.
|
|
594
|
+
|
|
595
|
+
.. _Building with CMake:
|
|
596
|
+
|
|
597
|
+
Building with CMake
|
|
598
|
+
^^^^^^^^^^^^^^^^^^^^
|
|
599
|
+
|
|
600
|
+
Building the C++ extension library only requires that you ``find_package(MLX
|
|
601
|
+
CONFIG)`` and then link it to your library.
|
|
602
|
+
|
|
603
|
+
.. code-block:: cmake
|
|
604
|
+
|
|
605
|
+
# Add library
|
|
606
|
+
add_library(mlx_ext)
|
|
607
|
+
|
|
608
|
+
# Add sources
|
|
609
|
+
target_sources(
|
|
610
|
+
mlx_ext
|
|
611
|
+
PUBLIC
|
|
612
|
+
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
|
|
613
|
+
)
|
|
614
|
+
|
|
615
|
+
# Add include headers
|
|
616
|
+
target_include_directories(
|
|
617
|
+
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
|
|
618
|
+
)
|
|
619
|
+
|
|
620
|
+
# Link to mlx
|
|
621
|
+
target_link_libraries(mlx_ext PUBLIC mlx)
|
|
622
|
+
|
|
623
|
+
We also need to build the attached Metal library. For convenience, we provide a
|
|
624
|
+
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
|
625
|
+
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
|
626
|
+
automatically imported with MLX package).
|
|
627
|
+
|
|
628
|
+
Here is what that looks like in practice:
|
|
629
|
+
|
|
630
|
+
.. code-block:: cmake
|
|
631
|
+
|
|
632
|
+
# Build metallib
|
|
633
|
+
if(MLX_BUILD_METAL)
|
|
634
|
+
|
|
635
|
+
mlx_build_metallib(
|
|
636
|
+
TARGET mlx_ext_metallib
|
|
637
|
+
TITLE mlx_ext
|
|
638
|
+
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
|
|
639
|
+
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
|
|
640
|
+
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
|
|
641
|
+
)
|
|
642
|
+
|
|
643
|
+
add_dependencies(
|
|
644
|
+
mlx_ext
|
|
645
|
+
mlx_ext_metallib
|
|
646
|
+
)
|
|
647
|
+
|
|
648
|
+
endif()
|
|
649
|
+
|
|
650
|
+
Finally, we build the nanobind_ bindings
|
|
651
|
+
|
|
652
|
+
.. code-block:: cmake
|
|
653
|
+
|
|
654
|
+
nanobind_add_module(
|
|
655
|
+
_ext
|
|
656
|
+
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
|
657
|
+
NB_DOMAIN mlx
|
|
658
|
+
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
|
659
|
+
)
|
|
660
|
+
target_link_libraries(_ext PRIVATE mlx_ext)
|
|
661
|
+
|
|
662
|
+
if(BUILD_SHARED_LIBS)
|
|
663
|
+
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
|
664
|
+
endif()
|
|
665
|
+
|
|
666
|
+
Building with ``setuptools``
|
|
667
|
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
668
|
+
|
|
669
|
+
Once we have set out the CMake build rules as described above, we can use the
|
|
670
|
+
build utilities defined in :mod:`mlx.extension`:
|
|
671
|
+
|
|
672
|
+
.. code-block:: python
|
|
673
|
+
|
|
674
|
+
from mlx import extension
|
|
675
|
+
from setuptools import setup
|
|
676
|
+
|
|
677
|
+
if __name__ == "__main__":
|
|
678
|
+
setup(
|
|
679
|
+
name="mlx_sample_extensions",
|
|
680
|
+
version="0.0.0",
|
|
681
|
+
description="Sample C++ and Metal extensions for MLX primitives.",
|
|
682
|
+
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
|
683
|
+
cmdclass={"build_ext": extension.CMakeBuild},
|
|
684
|
+
packages=["mlx_sample_extensions"],
|
|
685
|
+
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
|
686
|
+
extras_require={"dev":[]},
|
|
687
|
+
zip_safe=False,
|
|
688
|
+
python_requires=">=3.8",
|
|
689
|
+
)
|
|
690
|
+
|
|
691
|
+
.. note::
|
|
692
|
+
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
|
693
|
+
even though it only contains a ``__init__.py`` to ensure the following:
|
|
694
|
+
|
|
695
|
+
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
|
696
|
+
* The C++ extension library and the metal library are co-located with the python
|
|
697
|
+
bindings and copied together if the package is installed
|
|
698
|
+
|
|
699
|
+
To build the package, first install the build dependencies with ``pip install
|
|
700
|
+
-r requirements.txt``. You can then build inplace for development using
|
|
701
|
+
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
|
702
|
+
|
|
703
|
+
This results in the directory structure:
|
|
704
|
+
|
|
705
|
+
| extensions
|
|
706
|
+
| ├── mlx_sample_extensions
|
|
707
|
+
| │ ├── __init__.py
|
|
708
|
+
| │ ├── libmlx_ext.dylib # C++ extension library
|
|
709
|
+
| │ ├── mlx_ext.metallib # Metal library
|
|
710
|
+
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
|
711
|
+
| ...
|
|
712
|
+
|
|
713
|
+
When you try to install using the command ``python -m pip install .`` (in
|
|
714
|
+
``extensions/``), the package will be installed with the same structure as
|
|
715
|
+
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
|
716
|
+
copied along with the Python binding since they are specified as
|
|
717
|
+
``package_data``.
|
|
718
|
+
|
|
719
|
+
Usage
|
|
720
|
+
-----
|
|
721
|
+
|
|
722
|
+
After installing the extension as described above, you should be able to simply
|
|
723
|
+
import the Python package and play with it as you would any other MLX operation.
|
|
724
|
+
|
|
725
|
+
Let's look at a simple script and its results:
|
|
726
|
+
|
|
727
|
+
.. code-block:: python
|
|
728
|
+
|
|
729
|
+
import mlx.core as mx
|
|
730
|
+
from mlx_sample_extensions import axpby
|
|
731
|
+
|
|
732
|
+
a = mx.ones((3, 4))
|
|
733
|
+
b = mx.ones((3, 4))
|
|
734
|
+
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
|
735
|
+
|
|
736
|
+
print(f"c shape: {c.shape}")
|
|
737
|
+
print(f"c dtype: {c.dtype}")
|
|
738
|
+
print(f"c is correct: {mx.all(c == 6.0).item()}")
|
|
739
|
+
|
|
740
|
+
Output:
|
|
741
|
+
|
|
742
|
+
.. code-block::
|
|
743
|
+
|
|
744
|
+
c shape: [3, 4]
|
|
745
|
+
c dtype: float32
|
|
746
|
+
c is correct: True
|
|
747
|
+
|
|
748
|
+
Results
|
|
749
|
+
^^^^^^^
|
|
750
|
+
|
|
751
|
+
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
|
752
|
+
with the naive :meth:`simple_axpby` we first defined.
|
|
753
|
+
|
|
754
|
+
.. code-block:: python
|
|
755
|
+
|
|
756
|
+
import mlx.core as mx
|
|
757
|
+
from mlx_sample_extensions import axpby
|
|
758
|
+
import time
|
|
759
|
+
|
|
760
|
+
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
|
761
|
+
return alpha * x + beta * y
|
|
762
|
+
|
|
763
|
+
M = 4096
|
|
764
|
+
N = 4096
|
|
765
|
+
|
|
766
|
+
x = mx.random.normal((M, N))
|
|
767
|
+
y = mx.random.normal((M, N))
|
|
768
|
+
alpha = 4.0
|
|
769
|
+
beta = 2.0
|
|
770
|
+
|
|
771
|
+
mx.eval(x, y)
|
|
772
|
+
|
|
773
|
+
def bench(f):
|
|
774
|
+
# Warm up
|
|
775
|
+
for i in range(5):
|
|
776
|
+
z = f(x, y, alpha, beta)
|
|
777
|
+
mx.eval(z)
|
|
778
|
+
|
|
779
|
+
# Timed run
|
|
780
|
+
s = time.perf_counter()
|
|
781
|
+
for i in range(100):
|
|
782
|
+
z = f(x, y, alpha, beta)
|
|
783
|
+
mx.eval(z)
|
|
784
|
+
e = time.perf_counter()
|
|
785
|
+
return 1000 * (e - s) / 100
|
|
786
|
+
|
|
787
|
+
simple_time = bench(simple_axpby)
|
|
788
|
+
custom_time = bench(axpby)
|
|
789
|
+
|
|
790
|
+
print(f"Simple axpby: {simple_time:.3f} ms | Custom axpby: {custom_time:.3f} ms")
|
|
791
|
+
|
|
792
|
+
The results are ``Simple axpby: 1.559 ms | Custom axpby: 0.774 ms``. We see
|
|
793
|
+
modest improvements right away!
|
|
794
|
+
|
|
795
|
+
This operation is now good to be used to build other operations, in
|
|
796
|
+
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
|
797
|
+
:meth:`grad`.
|
|
798
|
+
|
|
799
|
+
Scripts
|
|
800
|
+
-------
|
|
801
|
+
|
|
802
|
+
.. admonition:: Download the code
|
|
803
|
+
|
|
804
|
+
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
|
805
|
+
|
|
806
|
+
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
|
807
|
+
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
|
808
|
+
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
|
809
|
+
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
810
|
+
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
|
811
|
+
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|