mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,923 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import math
4
+ import unittest
5
+
6
+ import mlx.core as mx
7
+ import mlx_tests
8
+
9
+
10
+ def rope_orig(x, dims, traditional, base, scale, offset, freqs=None):
11
+ N = x.shape[-2]
12
+ dtype = x.dtype
13
+ half_D = dims // 2
14
+ positions = mx.arange(N, dtype=dtype)
15
+ if isinstance(offset, mx.array) and offset.size > 1:
16
+ expand = tuple(range(1, x.ndim - 1))
17
+ positions = mx.expand_dims(offset, expand) + positions
18
+ else:
19
+ positions = offset + positions
20
+ positions = positions * scale
21
+ if freqs is None:
22
+ inv_freqs = mx.exp(
23
+ -mx.arange(0.0, half_D, dtype=dtype) * (math.log(base) / half_D)
24
+ )
25
+ else:
26
+ inv_freqs = (1 / freqs).astype(x.dtype)
27
+ theta = mx.expand_dims(positions, -1) * inv_freqs
28
+ costheta, sintheta = mx.cos(theta), mx.sin(theta)
29
+ if traditional:
30
+ x1 = x[..., :dims:2]
31
+ x2 = x[..., 1:dims:2]
32
+ rx1 = x1 * costheta - x2 * sintheta
33
+ rx2 = x1 * sintheta + x2 * costheta
34
+ rx = mx.concatenate([rx1[..., None], rx2[..., None]], axis=-1)
35
+ if dims < x.shape[-1]:
36
+ rx = mx.reshape(rx, (*x.shape[:-1], dims))
37
+ rx = mx.concatenate([rx, x[..., dims:]], axis=-1)
38
+ return mx.reshape(rx, x.shape)
39
+ else:
40
+ x1 = x[..., : dims // 2]
41
+ x2 = x[..., dims // 2 : dims]
42
+ rx1 = x1 * costheta - x2 * sintheta
43
+ rx2 = x1 * sintheta + x2 * costheta
44
+ if dims < x.shape[-1]:
45
+ rx = mx.concatenate([rx1, rx2, x[..., dims:]], axis=-1)
46
+ else:
47
+ rx = mx.concatenate([rx1, rx2], axis=-1)
48
+ return rx
49
+
50
+
51
+ def rms_norm(x, weight, eps):
52
+ x = x.astype(mx.float32)
53
+ x = x * mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
54
+ return weight * x.astype(weight.dtype)
55
+
56
+
57
+ def layer_norm(x, weight, bias, eps):
58
+ ot = x.dtype
59
+ x = x.astype(mx.float32)
60
+ mean = x.mean(axis=-1, keepdims=True)
61
+ var = x.var(axis=-1, keepdims=True)
62
+ x = (x - mean) * mx.rsqrt(var + eps)
63
+ x = x.astype(ot)
64
+ if weight is not None:
65
+ x = x * weight
66
+ if bias is not None:
67
+ x = x + bias
68
+ return x
69
+
70
+
71
+ class TestFast(mlx_tests.MLXTestCase):
72
+ def test_rope(self):
73
+ T = 4
74
+
75
+ # Defaults: dims, dtype, base, scale, offset, traditional
76
+ defaults = (8, mx.float32, 10000.0, 1.0, 0, False)
77
+
78
+ # Per dtype absolute tolerance
79
+ tolerances = {mx.float32: 1e-6, mx.float16: 1e-3, mx.bfloat16: 1e-2}
80
+
81
+ # Test cases:
82
+ dtypes = [mx.float32, mx.float16, mx.bfloat16]
83
+ bases = [10000.0, 1000000.0]
84
+ scales = [1.0, 2.0]
85
+ offsets = [0, 3, mx.array(3)]
86
+ traditional = [True, False]
87
+
88
+ for traditional in [True, False]:
89
+ dims, dtype, _, scale, offset, _ = defaults
90
+ for base in bases:
91
+ x = mx.random.uniform(shape=(2, T, dims)).astype(dtype)
92
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
93
+ rx_fast = mx.fast.rope(
94
+ x,
95
+ dims,
96
+ traditional=traditional,
97
+ base=base,
98
+ scale=scale,
99
+ offset=offset,
100
+ )
101
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
102
+
103
+ dims, _, base, scale, offset, _ = defaults
104
+ for dtype in dtypes:
105
+ x = mx.random.uniform(shape=(2, T, dims)).astype(dtype)
106
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
107
+ rx_fast = mx.fast.rope(
108
+ x,
109
+ dims,
110
+ traditional=traditional,
111
+ base=base,
112
+ scale=scale,
113
+ offset=offset,
114
+ )
115
+ if dtype != mx.float32:
116
+ ry = rope_orig(
117
+ x.astype(mx.float32), dims, traditional, base, scale, offset
118
+ )
119
+ self.assertLess(mx.abs(ry - rx_fast).max(), tolerances[dtype])
120
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
121
+
122
+ dims, dtype, base, scale, _, _ = defaults
123
+ for offset in offsets:
124
+ x = mx.random.uniform(shape=(2, T, dims)).astype(dtype)
125
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
126
+ rx_fast = mx.fast.rope(
127
+ x,
128
+ dims,
129
+ traditional=traditional,
130
+ base=base,
131
+ scale=scale,
132
+ offset=offset,
133
+ )
134
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
135
+
136
+ dims, dtype, base, _, offset, _ = defaults
137
+ for scale in scales:
138
+ x = mx.random.uniform(shape=(2, T, dims)).astype(dtype)
139
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
140
+ rx_fast = mx.fast.rope(
141
+ x,
142
+ dims,
143
+ traditional=traditional,
144
+ base=base,
145
+ scale=scale,
146
+ offset=offset,
147
+ )
148
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
149
+
150
+ # Test transpose into rope
151
+ dims, _, base, scale, offset, traditional = defaults
152
+ x = mx.random.uniform(shape=(1, 1, 4, dims)).swapaxes(1, 2)
153
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
154
+ rx_fast = mx.fast.rope(
155
+ 1.0 * x, # multiply here to allow donation
156
+ dims,
157
+ traditional=traditional,
158
+ base=base,
159
+ scale=scale,
160
+ offset=offset,
161
+ )
162
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[mx.float32])
163
+
164
+ # Test raises with integer inputs
165
+ dims, _, base, scale, offset, traditional = defaults
166
+ x = (mx.random.uniform(shape=(2, T, dims)) * 10).astype(mx.int32)
167
+ with self.assertRaises(ValueError):
168
+ y = mx.fast.rope(
169
+ x, dims, traditional=traditional, base=base, scale=scale, offset=offset
170
+ )
171
+
172
+ def test_rope_with_freqs(self):
173
+ mx.random.seed(0)
174
+
175
+ # Check throws
176
+ T = 4
177
+ dims = 8
178
+ x = mx.random.uniform(shape=(2, T, dims))
179
+
180
+ with self.assertRaises(ValueError):
181
+ freqs = mx.random.uniform(shape=(dims - 1,))
182
+ mx.fast.rope(
183
+ x,
184
+ dims,
185
+ traditional=False,
186
+ base=None,
187
+ scale=1.0,
188
+ offset=0,
189
+ freqs=freqs,
190
+ )
191
+ with self.assertRaises(ValueError):
192
+ freqs = mx.random.uniform(shape=(1, dims))
193
+ mx.fast.rope(
194
+ x,
195
+ dims,
196
+ traditional=False,
197
+ base=None,
198
+ scale=1.0,
199
+ offset=0,
200
+ freqs=freqs,
201
+ )
202
+
203
+ freqs = mx.random.uniform(shape=(dims // 2,))
204
+
205
+ tolerances = {mx.float32: 1e-5, mx.float16: 1e-2}
206
+ for dtype in [mx.float32, mx.float16]:
207
+ x_ = x.astype(dtype)
208
+ rx = rope_orig(x_, dims, False, None, 1.0, 0, freqs)
209
+ rx_fast = mx.fast.rope(
210
+ x_,
211
+ dims,
212
+ traditional=False,
213
+ base=None,
214
+ scale=1.0,
215
+ offset=0,
216
+ freqs=freqs,
217
+ )
218
+ self.assertEqual(dtype, rx.dtype)
219
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
220
+ return
221
+
222
+ # Test single vector
223
+ x = mx.random.uniform(shape=(1, 1, dims))
224
+ rx = rope_orig(x, dims, False, None, 1.0, 0, freqs)
225
+ rx_fast = mx.fast.rope(
226
+ x,
227
+ dims,
228
+ traditional=False,
229
+ base=None,
230
+ scale=1.0,
231
+ offset=0,
232
+ freqs=freqs,
233
+ )
234
+ self.assertLess(mx.abs(rx - rx_fast).max(), 1e-5)
235
+
236
+ # Test grad with freqs
237
+ f1 = lambda x, y: (rope_orig(x, dims, False, None, 1.0, 0, freqs) * y).sum()
238
+ f2 = lambda x, y: (
239
+ mx.fast.rope(
240
+ x,
241
+ dims,
242
+ traditional=False,
243
+ base=None,
244
+ scale=1.0,
245
+ offset=0,
246
+ freqs=freqs,
247
+ )
248
+ * y
249
+ ).sum()
250
+
251
+ x = mx.random.uniform(shape=(2, 4, dims))
252
+ y = mx.random.uniform(shape=(2, 4, dims))
253
+ g1 = mx.grad(f1)(x, y)
254
+ g2 = mx.grad(f2)(x, y)
255
+ self.assertLess(mx.abs(g1 - g2).max(), 1e-5)
256
+
257
+ def test_rope_grad(self):
258
+ D = 32
259
+ defaults = (D, 10000.0, 1.0, 0, False)
260
+ for dims in (D, D // 2):
261
+ for traditional in (True, False):
262
+ _, base, scale, offset, _ = defaults
263
+ f1 = lambda x, y: (
264
+ rope_orig(x, dims, traditional, base, scale, offset) * y
265
+ ).sum()
266
+ f2 = lambda x, y: (
267
+ mx.fast.rope(
268
+ x,
269
+ dims,
270
+ traditional=traditional,
271
+ base=base,
272
+ scale=scale,
273
+ offset=offset,
274
+ )
275
+ * y
276
+ ).sum()
277
+
278
+ x = mx.random.uniform(shape=(2, 100, D))
279
+ y = mx.random.uniform(shape=(2, 100, D))
280
+ g1 = mx.grad(f1)(x, y)
281
+ g2 = mx.grad(f2)(x, y)
282
+ self.assertLess(mx.abs(g1 - g2).max(), 1e-5)
283
+
284
+ def test_rope_batch(self):
285
+ T = 4
286
+ base = 10000.0
287
+ scale = 1.0
288
+ traditional = True
289
+ batch_sizes = [3, 8, 11]
290
+ num_heads = [1, 3, 5]
291
+ dims = 32
292
+
293
+ x = mx.random.uniform(shape=(8, 4, T, dims))
294
+
295
+ offset = mx.array([1, 2, 3])
296
+ with self.assertRaises(ValueError):
297
+ mx.fast.rope(
298
+ x,
299
+ dims,
300
+ traditional=traditional,
301
+ base=base,
302
+ scale=scale,
303
+ offset=offset,
304
+ )
305
+
306
+ for batch_size in batch_sizes:
307
+ for n_head in num_heads:
308
+ x = mx.random.uniform(shape=(batch_size, n_head, T, dims))
309
+ offset = mx.arange(batch_size)
310
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
311
+ rx_fast = mx.fast.rope(
312
+ x,
313
+ dims,
314
+ traditional=traditional,
315
+ base=base,
316
+ scale=scale,
317
+ offset=offset,
318
+ )
319
+ self.assertLess(mx.abs(rx - rx_fast).max(), 1e-5)
320
+ x = mx.random.normal(shape=(2, 6, 8, 64)).transpose(0, 2, 1, 3)
321
+ dims = 64
322
+ offset = 0
323
+ rx_fast = mx.fast.rope(
324
+ x, dims, traditional=traditional, scale=scale, base=base, offset=offset
325
+ )
326
+ rx_fast_single = mx.fast.rope(
327
+ x[0:1], dims, traditional=traditional, scale=scale, base=base, offset=offset
328
+ )
329
+
330
+ rx = rope_orig(x, dims, traditional, base, scale, offset)
331
+ self.assertLess(mx.abs(rx - rx_fast).max(), 1e-5)
332
+
333
+ def test_rope_with_large_offset(self):
334
+ x = mx.random.normal(shape=(1, 1, 1024, 32))
335
+ rx_fp32 = mx.fast.rope(
336
+ x,
337
+ 32,
338
+ traditional=False,
339
+ scale=1.0,
340
+ base=10000,
341
+ offset=4000,
342
+ )
343
+ rx_bf16 = mx.fast.rope(
344
+ x.astype(mx.bfloat16),
345
+ 32,
346
+ traditional=False,
347
+ scale=1.0,
348
+ base=10000,
349
+ offset=4000,
350
+ )
351
+ self.assertLess((rx_fp32 - rx_bf16).abs().max(), 1e-1)
352
+
353
+ def test_rms_norm(self):
354
+ # Per dtype absolute tolerance
355
+ tolerances = {mx.float32: 1e-6, mx.float16: 1e-3, mx.bfloat16: 1e-2}
356
+
357
+ dtypes = [mx.float32, mx.float16, mx.bfloat16]
358
+ epss = [1e-3, 1e-5]
359
+ dimss = [31, 32, 33]
360
+ defaults = (mx.float32, 1e-5, 32)
361
+
362
+ for dtype in dtypes:
363
+ _, eps, dims = defaults
364
+ x = mx.random.uniform(
365
+ shape=(
366
+ 2,
367
+ dims,
368
+ )
369
+ ).astype(dtype)
370
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
371
+ rx = rms_norm(x, weight, eps)
372
+ rx_fast = mx.fast.rms_norm(x, weight, eps)
373
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
374
+ rx = rms_norm(x, mx.ones_like(weight), eps)
375
+ rx_fast = mx.fast.rms_norm(x, None, eps)
376
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
377
+
378
+ for eps in epss:
379
+ dtype, _, dims = defaults
380
+ x = mx.random.uniform(shape=(2, dims)).astype(dtype)
381
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
382
+ rx = rms_norm(x, weight, eps)
383
+ rx_fast = mx.fast.rms_norm(x, weight, eps)
384
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
385
+ rx = rms_norm(x, mx.ones_like(weight), eps)
386
+ rx_fast = mx.fast.rms_norm(x, None, eps)
387
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
388
+
389
+ for dims in dimss:
390
+ dtype, eps, _ = defaults
391
+ x = mx.random.uniform(shape=(2, dims)).astype(dtype)
392
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
393
+ rx = rms_norm(x, weight, eps)
394
+ rx_fast = mx.fast.rms_norm(x, weight, eps)
395
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
396
+ rx = rms_norm(x, mx.ones_like(weight), eps)
397
+ rx_fast = mx.fast.rms_norm(x, None, eps)
398
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
399
+
400
+ # Test > 4096
401
+ dims, dtype, eps = 4099, mx.float32, 1e-5
402
+ x = mx.random.uniform(shape=(dims,)).astype(dtype)
403
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
404
+ rx = rms_norm(x, weight, eps)
405
+ rx_fast = mx.fast.rms_norm(x, weight, eps)
406
+ self.assertLess(mx.abs(rx - rx_fast).max(), 1e-6)
407
+
408
+ # Wrong size w raises
409
+ with self.assertRaises(ValueError):
410
+ x = mx.random.uniform(shape=(1, 5))
411
+ mx.fast.rms_norm(x, mx.ones((4,)), 1e-5)
412
+
413
+ def test_rms_norm_grad(self):
414
+ D = 32
415
+ eps = 1e-5
416
+ f1 = lambda x, w, y: (rms_norm(x, w, eps) * y).sum()
417
+ f2 = lambda x, w, y: (mx.fast.rms_norm(x, w, eps) * y).sum()
418
+ f3 = lambda x, y: (rms_norm(x, mx.ones((x.shape[-1],)), eps) * y).sum()
419
+ f4 = lambda x, y: (mx.fast.rms_norm(x, None, eps) * y).sum()
420
+
421
+ x = mx.random.uniform(shape=(8, 100, D))
422
+ w = mx.random.uniform(shape=(D,))
423
+ y = mx.random.uniform(shape=(8, 100, D))
424
+ gx1, gw1 = mx.grad(f1, argnums=(0, 1))(x, w, y)
425
+ gx2, gw2 = mx.grad(f2, argnums=(0, 1))(x, w, y)
426
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
427
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 1e-5)
428
+ gx1 = mx.grad(f3, argnums=(0,))(x, y)
429
+ gx2 = mx.grad(f4, argnums=(0,))(x, y)
430
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
431
+
432
+ D = 8192
433
+ x = mx.random.uniform(shape=(2, 2, D))
434
+ w = mx.random.uniform(shape=(D,))
435
+ y = mx.random.uniform(shape=(2, 2, D))
436
+ gx1, gw1 = mx.grad(f1, argnums=(0, 1))(x, w, y)
437
+ gx2, gw2 = mx.grad(f2, argnums=(0, 1))(x, w, y)
438
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
439
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 1e-5)
440
+ gx1 = mx.grad(f3, argnums=(0,))(x, y)
441
+ gx2 = mx.grad(f4, argnums=(0,))(x, y)
442
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
443
+
444
+ def gf(f):
445
+ def inner(x, w, y):
446
+ gx, gw = mx.grad(f, argnums=(0, 1))(x, w, y)
447
+ return (gx + gw).sum()
448
+
449
+ return inner
450
+
451
+ gx1, gw1 = mx.grad(gf(f1), argnums=(0, 1))(x, w, y)
452
+ gx2, gw2 = mx.grad(gf(f2), argnums=(0, 1))(x, w, y)
453
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
454
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 1e-5)
455
+
456
+ def test_layer_norm_dim_check(self):
457
+ with self.assertRaises(ValueError):
458
+ weight = mx.ones((129,))
459
+ x = mx.random.randint(low=0, high=10, shape=(4, 128))
460
+ mx.fast.layer_norm(x, weight, None, 1e-3)
461
+
462
+ with self.assertRaises(ValueError):
463
+ bias = mx.ones((129,))
464
+ x = mx.random.randint(low=0, high=10, shape=(4, 128))
465
+ mx.fast.layer_norm(x, None, bias, 1e-3)
466
+
467
+ def test_layer_norm(self):
468
+ # Per dtype absolute tolerance
469
+ tolerances = {mx.float32: 1e-5, mx.float16: 5e-3, mx.bfloat16: 5e-2}
470
+
471
+ dtypes = [mx.float32, mx.float16, mx.bfloat16]
472
+ epss = [1e-3, 1e-5]
473
+ dimss = [31, 32, 33]
474
+ defaults = (mx.float32, 1e-5, 32)
475
+
476
+ for dtype in dtypes:
477
+ _, eps, dims = defaults
478
+ x = mx.random.uniform(
479
+ shape=(
480
+ 2,
481
+ dims,
482
+ )
483
+ ).astype(dtype)
484
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
485
+ bias = mx.random.uniform(shape=(dims,)).astype(dtype)
486
+ rx = layer_norm(x, weight, bias, eps)
487
+ rx_fast = mx.fast.layer_norm(x, weight, bias, eps)
488
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
489
+ rx = layer_norm(x, weight, None, eps)
490
+ rx_fast = mx.fast.layer_norm(x, weight, None, eps)
491
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
492
+ rx = layer_norm(x, None, bias, eps)
493
+ rx_fast = mx.fast.layer_norm(x, None, bias, eps)
494
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
495
+ rx = layer_norm(x, None, None, eps)
496
+ rx_fast = mx.fast.layer_norm(x, None, None, eps)
497
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
498
+
499
+ for eps in epss:
500
+ dtype, _, dims = defaults
501
+ x = mx.random.uniform(shape=(2, dims)).astype(dtype)
502
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
503
+ bias = mx.random.uniform(shape=(dims,)).astype(dtype)
504
+ rx = layer_norm(x, weight, bias, eps)
505
+ rx_fast = mx.fast.layer_norm(x, weight, bias, eps)
506
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
507
+ rx = layer_norm(x, weight, None, eps)
508
+ rx_fast = mx.fast.layer_norm(x, weight, None, eps)
509
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
510
+ rx = layer_norm(x, None, bias, eps)
511
+ rx_fast = mx.fast.layer_norm(x, None, bias, eps)
512
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
513
+ rx = layer_norm(x, None, None, eps)
514
+ rx_fast = mx.fast.layer_norm(x, None, None, eps)
515
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
516
+
517
+ for dims in dimss:
518
+ dtype, eps, _ = defaults
519
+ x = mx.random.uniform(shape=(2, dims)).astype(dtype)
520
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
521
+ bias = mx.random.uniform(shape=(dims,)).astype(dtype)
522
+ rx = layer_norm(x, weight, bias, eps)
523
+ rx_fast = mx.fast.layer_norm(x, weight, bias, eps)
524
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
525
+ rx = layer_norm(x, weight, None, eps)
526
+ rx_fast = mx.fast.layer_norm(x, weight, None, eps)
527
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
528
+ rx = layer_norm(x, None, bias, eps)
529
+ rx_fast = mx.fast.layer_norm(x, None, bias, eps)
530
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
531
+ rx = layer_norm(x, None, None, eps)
532
+ rx_fast = mx.fast.layer_norm(x, None, None, eps)
533
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
534
+
535
+ # Test > 4096
536
+ dims, dtype, eps = 4099, mx.float32, 1e-5
537
+ x = mx.random.uniform(shape=(dims,)).astype(dtype)
538
+ weight = mx.random.uniform(shape=(dims,)).astype(dtype)
539
+ bias = mx.random.uniform(shape=(dims,)).astype(dtype)
540
+ rx = layer_norm(x, weight, bias, eps)
541
+ rx_fast = mx.fast.layer_norm(x, weight, bias, eps)
542
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
543
+ rx = layer_norm(x, weight, None, eps)
544
+ rx_fast = mx.fast.layer_norm(x, weight, None, eps)
545
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
546
+ rx = layer_norm(x, None, bias, eps)
547
+ rx_fast = mx.fast.layer_norm(x, None, bias, eps)
548
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
549
+ rx = layer_norm(x, None, None, eps)
550
+ rx_fast = mx.fast.layer_norm(x, None, None, eps)
551
+ self.assertLess(mx.abs(rx - rx_fast).max(), tolerances[dtype])
552
+
553
+ def test_slice_into_layer_norm(self):
554
+ dim = 128
555
+ eps = 1e-5
556
+ x = mx.random.uniform(shape=(8, 100, 128))[:, 99:]
557
+ rx_fast = mx.fast.layer_norm(x, weight=None, bias=None, eps=eps)
558
+ rx = layer_norm(x, None, None, eps)
559
+ self.assertLess(mx.abs(rx - rx_fast).max(), 1e-4)
560
+
561
+ def test_layer_norm_grad(self):
562
+ D = 32
563
+ eps = 1e-5
564
+ f1 = lambda x, w, b, y: (layer_norm(x, w, b, eps) * y).sum()
565
+ f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, eps) * y).sum()
566
+
567
+ x = mx.random.uniform(shape=(8, 100, D))
568
+ w = mx.random.uniform(shape=(D,))
569
+ b = mx.random.uniform(shape=(D,))
570
+ y = mx.random.uniform(shape=(8, 100, D))
571
+
572
+ gx1, gw1, gb1 = mx.grad(f1, argnums=(0, 1, 2))(x, w, b, y)
573
+ gx2, gw2, gb2 = mx.grad(f2, argnums=(0, 1, 2))(x, w, b, y)
574
+ self.assertLess(mx.abs(gx1 - gx2).max(), 1e-5)
575
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 1e-5)
576
+ self.assertLess(mx.abs(gb1 - gb2).max() / mx.abs(gb1).mean(), 1e-5)
577
+
578
+ D = 8192
579
+ x = mx.random.uniform(shape=(8, 100, D))
580
+ w = mx.random.uniform(shape=(D,))
581
+ b = mx.random.uniform(shape=(D,))
582
+ y = mx.random.uniform(shape=(8, 100, D))
583
+
584
+ gx1, gw1, gb1 = mx.grad(f1, argnums=(0, 1, 2))(x, w, b, y)
585
+ gx2, gw2, gb2 = mx.grad(f2, argnums=(0, 1, 2))(x, w, b, y)
586
+ self.assertLess(mx.abs(gx1 - gx2).max(), 5e-5)
587
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 5e-5)
588
+ self.assertLess(mx.abs(gb1 - gb2).max() / mx.abs(gb1).mean(), 5e-5)
589
+
590
+ def gf(f):
591
+ def inner(x, w, b, y):
592
+ gx, gw, gb = mx.grad(f, argnums=(0, 1, 2))(x, w, b, y)
593
+ return ((gx + gw + gb) * y).sum()
594
+
595
+ return inner
596
+
597
+ gx1, gw1, gb1 = mx.grad(gf(f1), argnums=(0, 1, 2))(x, w, b, y)
598
+ gx2, gw2, gb2 = mx.grad(gf(f2), argnums=(0, 1, 2))(x, w, b, y)
599
+ self.assertLess(mx.abs(gx1 - gx2).max() / mx.abs(gx1).mean(), 5e-5)
600
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 5e-5)
601
+ self.assertLess(mx.abs(gb1).max(), 1e-9)
602
+ self.assertLess(mx.abs(gb2).max(), 1e-9)
603
+
604
+ def test_layer_norm_grad_no_params(self):
605
+ eps = 1e-5
606
+ f1 = lambda x: layer_norm(x, None, None, eps).sum()
607
+ f2 = lambda x: mx.fast.layer_norm(x, None, None, eps).sum()
608
+ x = mx.random.normal(shape=(2, 2, 8))
609
+ mx.eval(x)
610
+
611
+ gx1 = mx.grad(f1)(x)
612
+ gx2 = mx.grad(f2)(x)
613
+ self.assertTrue(mx.allclose(gx1, gx2, atol=1e-6))
614
+
615
+ def test_layer_norm_grad_params(self):
616
+ eps = 1e-5
617
+ f1 = lambda params, x: (layer_norm(x, params[0], params[1], eps)).sum()
618
+ f2 = lambda params, x: (mx.fast.layer_norm(x, params[0], params[1], eps)).sum()
619
+
620
+ w = mx.ones((8,))
621
+ b = mx.zeros((8,))
622
+ x = mx.random.normal(shape=(2, 2, 8))
623
+ mx.eval(x, w, b)
624
+
625
+ gw1, gb1 = mx.grad(f1)((w, b), x)
626
+ gw2, gb2 = mx.grad(f2)((w, b), x)
627
+ self.assertLess(mx.abs(gw1 - gw2).max() / mx.abs(gw1).mean(), 1e-5)
628
+ self.assertLess(mx.abs(gb1 - gb2).max() / mx.abs(gb1).mean(), 1e-5)
629
+
630
+ def test_fast_transforms(self):
631
+ x = mx.random.uniform(shape=(2, 2, 8))
632
+
633
+ defaults = (8, False, 10000.0, 1.0, 0)
634
+ dims, traditional, base, scale, offset = defaults
635
+
636
+ # VJP
637
+ _, vjp_out = mx.vjp(lambda x: rope_orig(x, *defaults), (x,), (mx.ones_like(x),))
638
+ _, vjp_fast_out = mx.vjp(
639
+ lambda x: mx.fast.rope(
640
+ x, dims, traditional=traditional, base=base, scale=scale, offset=offset
641
+ ),
642
+ (x,),
643
+ (mx.ones_like(x),),
644
+ )
645
+ self.assertTrue(mx.allclose(vjp_out[0], vjp_fast_out[0]))
646
+
647
+ # JVP
648
+ _, jvp_out = mx.jvp(lambda x: rope_orig(x, *defaults), (x,), (mx.ones_like(x),))
649
+ _, jvp_fast_out = mx.jvp(
650
+ lambda x: mx.fast.rope(
651
+ x, dims, traditional=traditional, base=base, scale=scale, offset=offset
652
+ ),
653
+ (x,),
654
+ (mx.ones_like(x),),
655
+ )
656
+ self.assertTrue(mx.allclose(jvp_out[0], jvp_fast_out[0]))
657
+
658
+ # VMAP
659
+ x = mx.random.uniform(shape=(2, 2, 2, 8))
660
+ vmap_out = mx.vmap(lambda x: rope_orig(x, *defaults))(x)
661
+ vmap_fast_out = mx.vmap(
662
+ lambda x: mx.fast.rope(
663
+ x, dims, traditional=traditional, base=base, scale=scale, offset=offset
664
+ )
665
+ )(x)
666
+ self.assertTrue(mx.allclose(vmap_out, vmap_fast_out))
667
+
668
+ @unittest.skipIf(not mx.is_available(mx.gpu), "No GPU available")
669
+ def test_custom_kernel_basic(self):
670
+ if mx.metal.is_available():
671
+ source = """
672
+ uint elem = thread_position_in_grid.x;
673
+ out1[elem] = a[elem];
674
+ """
675
+ custom_kernel = mx.fast.metal_kernel
676
+ elif mx.cuda.is_available():
677
+ source = """
678
+ auto elem = cooperative_groups::this_grid().thread_rank();
679
+ out1[elem] = a[elem];
680
+ """
681
+ custom_kernel = mx.fast.cuda_kernel
682
+
683
+ mx.random.seed(7)
684
+ a = mx.random.normal(shape=(2, 2))
685
+ kernel = custom_kernel(
686
+ name="basic",
687
+ input_names=["a"],
688
+ output_names=["out1"],
689
+ source=source,
690
+ )
691
+ out = kernel(
692
+ inputs=[a],
693
+ grid=(4, 1, 1),
694
+ threadgroup=(2, 1, 1),
695
+ output_shapes=[(2, 2)],
696
+ output_dtypes=[mx.float32],
697
+ stream=mx.gpu,
698
+ )
699
+ self.assertTrue(mx.allclose(out[0], a))
700
+
701
+ @unittest.skipIf(not mx.is_available(mx.gpu), "No GPU available")
702
+ def test_custom_kernel_args(self):
703
+ if mx.metal.is_available():
704
+ source = """
705
+ uint elem = thread_position_in_grid.x;
706
+ T tmp = a[0];
707
+ if (e) {
708
+ out1[elem] = a[1] + b[2] + c[3] + d + f;
709
+ } else {
710
+ out1[elem] = 1;
711
+ }
712
+ out2[elem] = a[1] + b[2] + c[1] - d;
713
+ """
714
+ custom_kernel = mx.fast.metal_kernel
715
+ elif mx.cuda.is_available():
716
+ source = """
717
+ auto elem = cooperative_groups::this_grid().thread_rank();
718
+ T tmp = a[0];
719
+ if (e) {
720
+ out1[elem] = a[1] + b[2] + static_cast<float>(c[3]) + d[0] + f;
721
+ } else {
722
+ out1[elem] = 1;
723
+ }
724
+ out2[elem] = a[1] + b[2] + static_cast<float>(c[1]) - d[0];
725
+ """
726
+ custom_kernel = mx.fast.cuda_kernel
727
+
728
+ mx.random.seed(7)
729
+ a = mx.random.normal(shape=(3, 6))
730
+ c = mx.random.normal(shape=(2, 2)).astype(mx.bfloat16)
731
+
732
+ kernel = custom_kernel(
733
+ name="arg_test",
734
+ input_names=["a", "b", "c", "d"],
735
+ output_names=["out1", "out2"],
736
+ source=source,
737
+ )
738
+ out = kernel(
739
+ inputs=[
740
+ a,
741
+ mx.array([3, 4, 5]),
742
+ c,
743
+ 7.3,
744
+ ],
745
+ template=[
746
+ ("e", True),
747
+ ("f", 3),
748
+ ("T", mx.float16),
749
+ ],
750
+ grid=(6, 1, 1),
751
+ threadgroup=(2, 1, 1),
752
+ output_shapes=[(3, 2), (3, 2)],
753
+ output_dtypes=[mx.float32, mx.int32],
754
+ stream=mx.gpu,
755
+ )
756
+
757
+ self.assertTrue(mx.allclose(out[0], mx.full((3, 2), 14.0484)))
758
+ self.assertTrue(mx.allclose(out[1], mx.full((3, 2), -2, dtype=mx.int32)))
759
+
760
+ @unittest.skipIf(not mx.is_available(mx.gpu), "No GPU available")
761
+ def test_custom_kernel_strides(self):
762
+ if mx.metal.is_available():
763
+ source = """
764
+ uint elem = thread_position_in_grid.x;
765
+ uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
766
+ T tmp = inp[loc];
767
+ out[elem] = metal::precise::exp(tmp) * threads_per_simdgroup;
768
+ """
769
+ source_contig = """
770
+ uint elem = thread_position_in_grid.x;
771
+ T tmp = inp[elem];
772
+ out[elem] = metal::precise::exp(tmp) * threads_per_simdgroup;
773
+ """
774
+ custom_kernel = mx.fast.metal_kernel
775
+ elif mx.cuda.is_available():
776
+ source = """
777
+ auto elem = cooperative_groups::this_grid().thread_rank();
778
+ auto loc = elem_to_loc(elem, inp_shape.data(), inp_strides.data(), inp_ndim);
779
+ T tmp = inp[loc];
780
+ out[elem] = exp(tmp) * WARP_SIZE;
781
+ """
782
+ source_contig = """
783
+ auto elem = cooperative_groups::this_grid().thread_rank();
784
+ T tmp = inp[elem];
785
+ out[elem] = exp(tmp) * WARP_SIZE;
786
+ """
787
+ custom_kernel = mx.fast.cuda_kernel
788
+
789
+ mx.random.seed(7)
790
+ a = mx.random.normal(shape=(3, 6))
791
+
792
+ # non contiguous
793
+ a = mx.tile(a[::2], [4, 1])
794
+
795
+ for contig in [True, False]:
796
+ kernel = custom_kernel(
797
+ name="myexp" + str(contig),
798
+ input_names=["inp"],
799
+ output_names=["out"],
800
+ source=source_contig if contig else source,
801
+ ensure_row_contiguous=contig,
802
+ )
803
+ outputs = kernel(
804
+ inputs=[a],
805
+ template=[("T", mx.float32)],
806
+ grid=(a.size, 1, 1),
807
+ threadgroup=(256, 1, 1),
808
+ output_shapes=[a.shape],
809
+ output_dtypes=[a.dtype],
810
+ stream=mx.gpu,
811
+ )
812
+ self.assertTrue(mx.allclose(mx.exp(a) * 32, outputs[0]))
813
+
814
+ @unittest.skipIf(not mx.is_available(mx.gpu), "No GPU available")
815
+ def test_custom_kernel_helper(self):
816
+ if mx.metal.is_available():
817
+ header = """
818
+ template <typename T>
819
+ T do_exp(T x) {
820
+ return metal::precise::exp(x);
821
+ }
822
+ """
823
+ source = """
824
+ uint elem = thread_position_in_grid.x;
825
+ out1[elem] = do_exp(a[elem]);
826
+ """
827
+ custom_kernel = mx.fast.metal_kernel
828
+ elif mx.cuda.is_available():
829
+ header = """
830
+ template <typename T>
831
+ __device__ T do_exp(T x) {
832
+ return exp(x);
833
+ }
834
+ """
835
+ source = """
836
+ auto elem = cooperative_groups::this_grid().thread_rank();
837
+ out1[elem] = do_exp(a[elem]);
838
+ """
839
+ custom_kernel = mx.fast.cuda_kernel
840
+
841
+ mx.random.seed(7)
842
+ a = mx.random.normal(shape=(2, 2))
843
+ kernel = custom_kernel(
844
+ name="helper",
845
+ input_names=["a"],
846
+ output_names=["out1"],
847
+ header=header,
848
+ source=source,
849
+ )
850
+ out = kernel(
851
+ inputs=[a],
852
+ grid=(4, 1, 1),
853
+ threadgroup=(2, 1, 1),
854
+ output_shapes=[(2, 2)],
855
+ output_dtypes=[mx.float32],
856
+ stream=mx.gpu,
857
+ )
858
+ self.assertTrue(mx.allclose(out[0], mx.exp(a)))
859
+
860
+ @unittest.skipIf(not mx.is_available(mx.gpu), "No GPU available")
861
+ def test_custom_kernel_attributes(self):
862
+ if mx.metal.is_available():
863
+ source = "out[0] = threads_per_threadgroup.x;"
864
+ custom_kernel = mx.fast.metal_kernel
865
+ elif mx.cuda.is_available():
866
+ source = "out[0] = blockDim.x;"
867
+ custom_kernel = mx.fast.cuda_kernel
868
+
869
+ a = mx.zeros(shape=(1, 1))
870
+ kernel = custom_kernel(
871
+ name="test_fun",
872
+ input_names=["a"],
873
+ output_names=["out"],
874
+ source=source,
875
+ )
876
+ out = kernel(
877
+ inputs=[a],
878
+ grid=(2, 1, 1),
879
+ threadgroup=(2, 1, 1),
880
+ output_shapes=[(1, 1)],
881
+ output_dtypes=[mx.uint32],
882
+ stream=mx.gpu,
883
+ )[0]
884
+ self.assertEqual(out.item(), 2)
885
+
886
+ @unittest.skipIf(not mx.metal.is_available(), "Metal is not available")
887
+ def test_custom_kernel_caching(self):
888
+ def call_kernel(a: mx.array, source):
889
+ kernel = mx.fast.metal_kernel(
890
+ name="my_kernel",
891
+ input_names=["inp"],
892
+ output_names=["out"],
893
+ source=source,
894
+ )
895
+ return kernel(
896
+ inputs=[a],
897
+ grid=(a.size, 1, 1),
898
+ threadgroup=(a.size, 1, 1),
899
+ output_shapes=[a.shape],
900
+ output_dtypes=[a.dtype],
901
+ stream=mx.gpu,
902
+ )[0]
903
+
904
+ a = mx.random.normal(shape=(32,))
905
+
906
+ source = """
907
+ uint elem = thread_position_in_grid.x;
908
+ out[elem] = 0.0;
909
+ """
910
+
911
+ out = call_kernel(a, source)
912
+ self.assertTrue(mx.array_equal(out, mx.zeros_like(out)))
913
+
914
+ source = """
915
+ uint elem = thread_position_in_grid.x;
916
+ out[elem] = 1.0;
917
+ """
918
+ out = call_kernel(a, source)
919
+ self.assertTrue(mx.array_equal(out, mx.ones_like(out)))
920
+
921
+
922
+ if __name__ == "__main__":
923
+ mlx_tests.MLXTestRunner()