mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,808 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module Optimizers
|
|
5
|
+
class Optimizer
|
|
6
|
+
def initialize(learning_rate: 1e-3, schedulers: nil, **_kwargs)
|
|
7
|
+
@initialized = false
|
|
8
|
+
@state = { "step" => 0 }
|
|
9
|
+
@schedulers = {}
|
|
10
|
+
(schedulers || {}).each { |k, v| @schedulers[k.to_s] = v }
|
|
11
|
+
maybe_schedule("learning_rate", learning_rate)
|
|
12
|
+
end
|
|
13
|
+
|
|
14
|
+
def update(model, gradients)
|
|
15
|
+
parameters = model.respond_to?(:parameters) ? model.parameters : model
|
|
16
|
+
updated = apply_gradients(gradients, parameters)
|
|
17
|
+
return updated unless model.respond_to?(:update)
|
|
18
|
+
|
|
19
|
+
model.update(updated)
|
|
20
|
+
end
|
|
21
|
+
|
|
22
|
+
def init(parameters)
|
|
23
|
+
update_state_shape(parameters, @state)
|
|
24
|
+
initialize_parameter_state(parameters, @state)
|
|
25
|
+
@initialized = true
|
|
26
|
+
end
|
|
27
|
+
|
|
28
|
+
def init_single(_parameter, state)
|
|
29
|
+
state
|
|
30
|
+
end
|
|
31
|
+
|
|
32
|
+
def apply_gradients(gradients, parameters)
|
|
33
|
+
return parameters if gradients.nil? || parameters.nil?
|
|
34
|
+
|
|
35
|
+
init(gradients) unless @initialized
|
|
36
|
+
|
|
37
|
+
@schedulers.each do |name, scheduler|
|
|
38
|
+
@state[name] = scheduler.call(step)
|
|
39
|
+
end
|
|
40
|
+
@state["step"] = step + 1
|
|
41
|
+
|
|
42
|
+
apply_tree(gradients, parameters, @state)
|
|
43
|
+
end
|
|
44
|
+
|
|
45
|
+
def apply_single(gradient, parameter, _state = nil)
|
|
46
|
+
if parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
47
|
+
MLX::Core.subtract(parameter, MLX::Core.multiply(gradient, learning_rate))
|
|
48
|
+
else
|
|
49
|
+
parameter
|
|
50
|
+
end
|
|
51
|
+
end
|
|
52
|
+
|
|
53
|
+
def state
|
|
54
|
+
@state
|
|
55
|
+
end
|
|
56
|
+
|
|
57
|
+
def state=(state)
|
|
58
|
+
@initialized = false
|
|
59
|
+
@state = state || {}
|
|
60
|
+
end
|
|
61
|
+
|
|
62
|
+
def step
|
|
63
|
+
@state["step"] || 0
|
|
64
|
+
end
|
|
65
|
+
|
|
66
|
+
def learning_rate
|
|
67
|
+
@state["learning_rate"]
|
|
68
|
+
end
|
|
69
|
+
|
|
70
|
+
def learning_rate=(learning_rate)
|
|
71
|
+
@state["learning_rate"] = learning_rate
|
|
72
|
+
end
|
|
73
|
+
|
|
74
|
+
protected
|
|
75
|
+
|
|
76
|
+
def maybe_schedule(name, parameter)
|
|
77
|
+
key = name.to_s
|
|
78
|
+
if parameter.respond_to?(:call)
|
|
79
|
+
@schedulers[key] = parameter
|
|
80
|
+
@state[key] = parameter.call(step)
|
|
81
|
+
else
|
|
82
|
+
@state[key] = parameter
|
|
83
|
+
end
|
|
84
|
+
end
|
|
85
|
+
|
|
86
|
+
private
|
|
87
|
+
|
|
88
|
+
def apply_tree(gradients, parameters, state)
|
|
89
|
+
if gradients.is_a?(Hash) && parameters.is_a?(Hash)
|
|
90
|
+
gradients.each_with_object({}) do |(k, grad), out|
|
|
91
|
+
state_child = if state.is_a?(Hash)
|
|
92
|
+
state[k] ||= {}
|
|
93
|
+
else
|
|
94
|
+
{}
|
|
95
|
+
end
|
|
96
|
+
out[k] = apply_tree(grad, parameters[k], state_child)
|
|
97
|
+
end
|
|
98
|
+
elsif gradients.is_a?(Array) && parameters.is_a?(Array)
|
|
99
|
+
gradients.each_with_index.map do |grad, i|
|
|
100
|
+
state_child = if state.is_a?(Array)
|
|
101
|
+
state[i] ||= {}
|
|
102
|
+
else
|
|
103
|
+
{}
|
|
104
|
+
end
|
|
105
|
+
apply_tree(grad, parameters[i], state_child)
|
|
106
|
+
end
|
|
107
|
+
else
|
|
108
|
+
apply_single(gradients, parameters, state)
|
|
109
|
+
end
|
|
110
|
+
end
|
|
111
|
+
|
|
112
|
+
def update_state_shape(parameters, state)
|
|
113
|
+
if parameters.is_a?(Hash)
|
|
114
|
+
state = {} unless state.is_a?(Hash)
|
|
115
|
+
parameters.each do |key, value|
|
|
116
|
+
state[key] = if state.key?(key)
|
|
117
|
+
update_state_shape(value, state[key])
|
|
118
|
+
else
|
|
119
|
+
empty_state_like(value)
|
|
120
|
+
end
|
|
121
|
+
end
|
|
122
|
+
state
|
|
123
|
+
elsif parameters.is_a?(Array)
|
|
124
|
+
current = state.is_a?(Array) ? state : []
|
|
125
|
+
parameters.each_with_index do |value, idx|
|
|
126
|
+
current[idx] = if idx < current.length
|
|
127
|
+
update_state_shape(value, current[idx])
|
|
128
|
+
else
|
|
129
|
+
empty_state_like(value)
|
|
130
|
+
end
|
|
131
|
+
end
|
|
132
|
+
current
|
|
133
|
+
else
|
|
134
|
+
state
|
|
135
|
+
end
|
|
136
|
+
end
|
|
137
|
+
|
|
138
|
+
def empty_state_like(parameters)
|
|
139
|
+
if parameters.is_a?(Hash)
|
|
140
|
+
parameters.each_with_object({}) do |(key, value), out|
|
|
141
|
+
out[key] = empty_state_like(value)
|
|
142
|
+
end
|
|
143
|
+
elsif parameters.is_a?(Array)
|
|
144
|
+
parameters.map { |value| empty_state_like(value) }
|
|
145
|
+
else
|
|
146
|
+
{}
|
|
147
|
+
end
|
|
148
|
+
end
|
|
149
|
+
|
|
150
|
+
def initialize_parameter_state(parameters, state)
|
|
151
|
+
if parameters.is_a?(Hash)
|
|
152
|
+
parameters.each do |key, value|
|
|
153
|
+
state[key] = initialize_parameter_state(value, state[key])
|
|
154
|
+
end
|
|
155
|
+
state
|
|
156
|
+
elsif parameters.is_a?(Array)
|
|
157
|
+
parameters.each_with_index do |value, idx|
|
|
158
|
+
state[idx] = initialize_parameter_state(value, state[idx])
|
|
159
|
+
end
|
|
160
|
+
state
|
|
161
|
+
else
|
|
162
|
+
state ||= {}
|
|
163
|
+
state = init_single(parameters, state) if state.empty?
|
|
164
|
+
state
|
|
165
|
+
end
|
|
166
|
+
end
|
|
167
|
+
end
|
|
168
|
+
|
|
169
|
+
class MultiOptimizer < Optimizer
|
|
170
|
+
def initialize(optimizers, filters: [])
|
|
171
|
+
super(learning_rate: 0.0)
|
|
172
|
+
@state = {}
|
|
173
|
+
@split_filter_cache = nil
|
|
174
|
+
|
|
175
|
+
if filters.length != optimizers.length - 1
|
|
176
|
+
raise ArgumentError,
|
|
177
|
+
"Given #{filters.length} filters but #{optimizers.length - 1} needed."
|
|
178
|
+
end
|
|
179
|
+
|
|
180
|
+
@optimizers = optimizers
|
|
181
|
+
@filters = filters + [lambda { |*_args, **_kwargs| true }]
|
|
182
|
+
end
|
|
183
|
+
|
|
184
|
+
def init(parameters)
|
|
185
|
+
@optimizers.zip(split_dictionary(parameters)).each do |optimizer, part|
|
|
186
|
+
optimizer.init(part)
|
|
187
|
+
end
|
|
188
|
+
end
|
|
189
|
+
|
|
190
|
+
def apply_gradients(gradients, parameters)
|
|
191
|
+
tree = {}
|
|
192
|
+
@optimizers.zip(split_dictionary(gradients)).each do |optimizer, grads_part|
|
|
193
|
+
tree = MLX::Utils.tree_merge(tree, optimizer.apply_gradients(grads_part, parameters))
|
|
194
|
+
end
|
|
195
|
+
tree
|
|
196
|
+
end
|
|
197
|
+
|
|
198
|
+
def state
|
|
199
|
+
{ "states" => @optimizers.map(&:state) }
|
|
200
|
+
end
|
|
201
|
+
|
|
202
|
+
def state=(state)
|
|
203
|
+
states = if state.is_a?(Hash)
|
|
204
|
+
state["states"] || state[:states]
|
|
205
|
+
end
|
|
206
|
+
if states.nil? || states.length != @optimizers.length
|
|
207
|
+
raise ArgumentError, "Invalid state provided"
|
|
208
|
+
end
|
|
209
|
+
|
|
210
|
+
@optimizers.zip(states).each do |optimizer, optimizer_state|
|
|
211
|
+
optimizer.state = optimizer_state
|
|
212
|
+
end
|
|
213
|
+
end
|
|
214
|
+
|
|
215
|
+
def learning_rate
|
|
216
|
+
@optimizers.first&.learning_rate
|
|
217
|
+
end
|
|
218
|
+
|
|
219
|
+
def learning_rate=(learning_rate)
|
|
220
|
+
@optimizers.each { |optimizer| optimizer.learning_rate = learning_rate }
|
|
221
|
+
end
|
|
222
|
+
|
|
223
|
+
private
|
|
224
|
+
|
|
225
|
+
def split_dictionary(gradients)
|
|
226
|
+
return [gradients] if @optimizers.length == 1
|
|
227
|
+
|
|
228
|
+
parts = Array.new(@optimizers.length) { [] }
|
|
229
|
+
flat_gradients = MLX::Utils.tree_flatten(gradients)
|
|
230
|
+
assignments = split_filter_assignments(flat_gradients)
|
|
231
|
+
|
|
232
|
+
flat_gradients.each_with_index do |(path, grad), idx|
|
|
233
|
+
parts[assignments[idx]] << [path, grad]
|
|
234
|
+
end
|
|
235
|
+
|
|
236
|
+
parts.map do |part|
|
|
237
|
+
part.empty? ? {} : MLX::Utils.tree_unflatten(part)
|
|
238
|
+
end
|
|
239
|
+
end
|
|
240
|
+
|
|
241
|
+
def split_filter_assignments(flat_gradients)
|
|
242
|
+
paths = flat_gradients.map(&:first)
|
|
243
|
+
if @split_filter_cache && @split_filter_cache[:paths] == paths
|
|
244
|
+
return @split_filter_cache[:assignments]
|
|
245
|
+
end
|
|
246
|
+
|
|
247
|
+
fallback = @filters.length - 1
|
|
248
|
+
assignments = flat_gradients.map do |path, grad|
|
|
249
|
+
assigned = fallback
|
|
250
|
+
@filters.each_with_index do |fn, i|
|
|
251
|
+
next unless fn.call(path, grad)
|
|
252
|
+
|
|
253
|
+
assigned = i
|
|
254
|
+
break
|
|
255
|
+
end
|
|
256
|
+
assigned
|
|
257
|
+
end
|
|
258
|
+
|
|
259
|
+
@split_filter_cache = { paths: paths, assignments: assignments }
|
|
260
|
+
assignments
|
|
261
|
+
end
|
|
262
|
+
end
|
|
263
|
+
|
|
264
|
+
class SGD < Optimizer
|
|
265
|
+
attr_reader :momentum, :weight_decay, :dampening, :nesterov
|
|
266
|
+
|
|
267
|
+
def initialize(
|
|
268
|
+
learning_rate: 1e-3,
|
|
269
|
+
momentum: 0.0,
|
|
270
|
+
weight_decay: 0.0,
|
|
271
|
+
dampening: 0.0,
|
|
272
|
+
nesterov: false
|
|
273
|
+
)
|
|
274
|
+
if nesterov && (momentum <= 0 || dampening != 0)
|
|
275
|
+
raise ArgumentError, "Nesterov momentum requires a momentum and zero dampening."
|
|
276
|
+
end
|
|
277
|
+
|
|
278
|
+
super(learning_rate: learning_rate)
|
|
279
|
+
@momentum = momentum
|
|
280
|
+
@weight_decay = weight_decay
|
|
281
|
+
@dampening = dampening
|
|
282
|
+
@nesterov = nesterov
|
|
283
|
+
end
|
|
284
|
+
|
|
285
|
+
def init_single(parameter, state)
|
|
286
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
287
|
+
state
|
|
288
|
+
end
|
|
289
|
+
|
|
290
|
+
def apply_single(gradient, parameter, state)
|
|
291
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
292
|
+
|
|
293
|
+
if weight_decay != 0
|
|
294
|
+
gradient = MLX::Core.add(gradient, MLX::Core.multiply(parameter, weight_decay))
|
|
295
|
+
end
|
|
296
|
+
|
|
297
|
+
if momentum <= 0
|
|
298
|
+
return MLX::Core.subtract(parameter, MLX::Core.multiply(gradient, learning_rate))
|
|
299
|
+
end
|
|
300
|
+
|
|
301
|
+
velocity = MLX::Core.multiply(state.fetch("v"), momentum)
|
|
302
|
+
if dampening > 0
|
|
303
|
+
velocity = MLX::Core.add(velocity, MLX::Core.multiply(gradient, 1 - dampening))
|
|
304
|
+
else
|
|
305
|
+
velocity = MLX::Core.add(velocity, gradient)
|
|
306
|
+
end
|
|
307
|
+
|
|
308
|
+
update = if nesterov
|
|
309
|
+
MLX::Core.add(gradient, MLX::Core.multiply(velocity, momentum))
|
|
310
|
+
else
|
|
311
|
+
velocity
|
|
312
|
+
end
|
|
313
|
+
|
|
314
|
+
state["v"] = velocity
|
|
315
|
+
MLX::Core.subtract(parameter, MLX::Core.multiply(update, learning_rate))
|
|
316
|
+
end
|
|
317
|
+
end
|
|
318
|
+
class RMSprop < Optimizer
|
|
319
|
+
attr_reader :alpha, :eps
|
|
320
|
+
|
|
321
|
+
def initialize(learning_rate: 1e-3, alpha: 0.99, eps: 1e-8)
|
|
322
|
+
super(learning_rate: learning_rate)
|
|
323
|
+
@alpha = alpha
|
|
324
|
+
@eps = eps
|
|
325
|
+
|
|
326
|
+
if @alpha < 0.0
|
|
327
|
+
raise ArgumentError, "RMSprop alpha should be >=0, #{@alpha} was provided instead"
|
|
328
|
+
end
|
|
329
|
+
if @eps < 0.0
|
|
330
|
+
raise ArgumentError, "RMSprop epsilon should be >0, #{@eps} was provided instead"
|
|
331
|
+
end
|
|
332
|
+
end
|
|
333
|
+
|
|
334
|
+
def init_single(parameter, state)
|
|
335
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
336
|
+
state
|
|
337
|
+
end
|
|
338
|
+
|
|
339
|
+
def apply_single(gradient, parameter, state)
|
|
340
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
341
|
+
|
|
342
|
+
velocity = state.fetch("v")
|
|
343
|
+
velocity = MLX::Core.add(
|
|
344
|
+
MLX::Core.multiply(velocity, alpha),
|
|
345
|
+
MLX::Core.multiply(MLX::Core.square(gradient), 1 - alpha)
|
|
346
|
+
)
|
|
347
|
+
state["v"] = velocity
|
|
348
|
+
|
|
349
|
+
denom = MLX::Core.add(MLX::Core.sqrt(velocity), eps)
|
|
350
|
+
step_update = MLX::Core.divide(MLX::Core.multiply(gradient, learning_rate), denom)
|
|
351
|
+
MLX::Core.subtract(parameter, step_update)
|
|
352
|
+
end
|
|
353
|
+
end
|
|
354
|
+
class Adagrad < Optimizer
|
|
355
|
+
attr_reader :eps
|
|
356
|
+
|
|
357
|
+
def initialize(learning_rate: 1e-3, eps: 1e-8)
|
|
358
|
+
super(learning_rate: learning_rate)
|
|
359
|
+
@eps = eps
|
|
360
|
+
if @eps < 0.0
|
|
361
|
+
raise ArgumentError, "Adagrad epsilon should be >0, #{@eps} was provided instead"
|
|
362
|
+
end
|
|
363
|
+
end
|
|
364
|
+
|
|
365
|
+
def init_single(parameter, state)
|
|
366
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
367
|
+
state
|
|
368
|
+
end
|
|
369
|
+
|
|
370
|
+
def apply_single(gradient, parameter, state)
|
|
371
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
372
|
+
|
|
373
|
+
velocity = MLX::Core.add(state.fetch("v"), MLX::Core.square(gradient))
|
|
374
|
+
state["v"] = velocity
|
|
375
|
+
|
|
376
|
+
denom = MLX::Core.add(MLX::Core.sqrt(velocity), eps)
|
|
377
|
+
step_update = MLX::Core.divide(MLX::Core.multiply(gradient, learning_rate), denom)
|
|
378
|
+
MLX::Core.subtract(parameter, step_update)
|
|
379
|
+
end
|
|
380
|
+
end
|
|
381
|
+
|
|
382
|
+
class AdaDelta < Optimizer
|
|
383
|
+
attr_reader :rho, :eps
|
|
384
|
+
|
|
385
|
+
def initialize(learning_rate: 1e-3, rho: 0.9, eps: 1e-6)
|
|
386
|
+
super(learning_rate: learning_rate)
|
|
387
|
+
@rho = rho
|
|
388
|
+
@eps = eps
|
|
389
|
+
|
|
390
|
+
if @rho < 0.0
|
|
391
|
+
raise ArgumentError, "AdaDelta rho should be >=0, #{@rho} was provided instead"
|
|
392
|
+
end
|
|
393
|
+
if @eps < 0.0
|
|
394
|
+
raise ArgumentError, "AdaDelta epsilon should be >0, #{@eps} was provided instead"
|
|
395
|
+
end
|
|
396
|
+
end
|
|
397
|
+
|
|
398
|
+
def init_single(parameter, state)
|
|
399
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
400
|
+
state["u"] = MLX::Core.zeros_like(parameter)
|
|
401
|
+
state
|
|
402
|
+
end
|
|
403
|
+
|
|
404
|
+
def apply_single(gradient, parameter, state)
|
|
405
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
406
|
+
|
|
407
|
+
velocity = state.fetch("v")
|
|
408
|
+
update_acc = state.fetch("u")
|
|
409
|
+
|
|
410
|
+
velocity = MLX::Core.add(
|
|
411
|
+
MLX::Core.multiply(velocity, rho),
|
|
412
|
+
MLX::Core.multiply(MLX::Core.square(gradient), 1 - rho)
|
|
413
|
+
)
|
|
414
|
+
delta = MLX::Core.multiply(
|
|
415
|
+
MLX::Core.divide(
|
|
416
|
+
MLX::Core.sqrt(MLX::Core.add(update_acc, eps)),
|
|
417
|
+
MLX::Core.sqrt(MLX::Core.add(velocity, eps))
|
|
418
|
+
),
|
|
419
|
+
gradient
|
|
420
|
+
)
|
|
421
|
+
update_acc = MLX::Core.add(
|
|
422
|
+
MLX::Core.multiply(update_acc, rho),
|
|
423
|
+
MLX::Core.multiply(MLX::Core.square(delta), 1 - rho)
|
|
424
|
+
)
|
|
425
|
+
|
|
426
|
+
state["v"] = velocity
|
|
427
|
+
state["u"] = update_acc
|
|
428
|
+
|
|
429
|
+
MLX::Core.subtract(parameter, MLX::Core.multiply(delta, learning_rate))
|
|
430
|
+
end
|
|
431
|
+
end
|
|
432
|
+
class Adam < Optimizer
|
|
433
|
+
attr_reader :betas, :eps, :bias_correction
|
|
434
|
+
|
|
435
|
+
def initialize(learning_rate: 1e-3, betas: [0.9, 0.999], eps: 1e-8, bias_correction: false)
|
|
436
|
+
super(learning_rate: learning_rate)
|
|
437
|
+
@betas = betas
|
|
438
|
+
@eps = eps
|
|
439
|
+
@bias_correction = bias_correction
|
|
440
|
+
end
|
|
441
|
+
|
|
442
|
+
def init_single(parameter, state)
|
|
443
|
+
state["m"] = MLX::Core.zeros_like(parameter)
|
|
444
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
445
|
+
state
|
|
446
|
+
end
|
|
447
|
+
|
|
448
|
+
def apply_single(gradient, parameter, state)
|
|
449
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
450
|
+
|
|
451
|
+
b1, b2 = betas
|
|
452
|
+
m = state.fetch("m")
|
|
453
|
+
v = state.fetch("v")
|
|
454
|
+
m = MLX::Core.add(MLX::Core.multiply(m, b1), MLX::Core.multiply(gradient, 1 - b1))
|
|
455
|
+
v = MLX::Core.add(MLX::Core.multiply(v, b2), MLX::Core.multiply(MLX::Core.square(gradient), 1 - b2))
|
|
456
|
+
state["m"] = m
|
|
457
|
+
state["v"] = v
|
|
458
|
+
|
|
459
|
+
if bias_correction
|
|
460
|
+
c1 = learning_rate.to_f / (1 - (b1**step))
|
|
461
|
+
c2 = 1.0 / Math.sqrt(1 - (b2**step))
|
|
462
|
+
numerator = MLX::Core.multiply(m, c1)
|
|
463
|
+
denominator = MLX::Core.add(MLX::Core.multiply(MLX::Core.sqrt(v), c2), eps)
|
|
464
|
+
MLX::Core.subtract(parameter, MLX::Core.divide(numerator, denominator))
|
|
465
|
+
else
|
|
466
|
+
numerator = MLX::Core.multiply(m, learning_rate)
|
|
467
|
+
denominator = MLX::Core.add(MLX::Core.sqrt(v), eps)
|
|
468
|
+
MLX::Core.subtract(parameter, MLX::Core.divide(numerator, denominator))
|
|
469
|
+
end
|
|
470
|
+
end
|
|
471
|
+
end
|
|
472
|
+
class AdamW < Adam
|
|
473
|
+
attr_reader :weight_decay
|
|
474
|
+
|
|
475
|
+
def initialize(
|
|
476
|
+
learning_rate: 1e-3,
|
|
477
|
+
betas: [0.9, 0.999],
|
|
478
|
+
eps: 1e-8,
|
|
479
|
+
weight_decay: 0.01,
|
|
480
|
+
bias_correction: false
|
|
481
|
+
)
|
|
482
|
+
super(
|
|
483
|
+
learning_rate: learning_rate,
|
|
484
|
+
betas: betas,
|
|
485
|
+
eps: eps,
|
|
486
|
+
bias_correction: bias_correction
|
|
487
|
+
)
|
|
488
|
+
@weight_decay = weight_decay
|
|
489
|
+
end
|
|
490
|
+
|
|
491
|
+
def apply_single(gradient, parameter, state)
|
|
492
|
+
lr = learning_rate.to_f
|
|
493
|
+
decayed_parameter = MLX::Core.multiply(parameter, 1 - lr * weight_decay)
|
|
494
|
+
super(gradient, decayed_parameter, state)
|
|
495
|
+
end
|
|
496
|
+
end
|
|
497
|
+
|
|
498
|
+
class Adamax < Adam
|
|
499
|
+
def initialize(learning_rate: 1e-3, betas: [0.9, 0.999], eps: 1e-8)
|
|
500
|
+
super(learning_rate: learning_rate, betas: betas, eps: eps, bias_correction: false)
|
|
501
|
+
if eps < 0.0
|
|
502
|
+
raise ArgumentError, "Epsilon value should be >=0, #{eps} was provided instead"
|
|
503
|
+
end
|
|
504
|
+
end
|
|
505
|
+
|
|
506
|
+
def init_single(parameter, state)
|
|
507
|
+
state["m"] = MLX::Core.zeros_like(parameter)
|
|
508
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
509
|
+
state
|
|
510
|
+
end
|
|
511
|
+
|
|
512
|
+
def apply_single(gradient, parameter, state)
|
|
513
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
514
|
+
|
|
515
|
+
b1, b2 = betas
|
|
516
|
+
m = state.fetch("m")
|
|
517
|
+
v = state.fetch("v")
|
|
518
|
+
|
|
519
|
+
m = MLX::Core.add(MLX::Core.multiply(m, b1), MLX::Core.multiply(gradient, 1 - b1))
|
|
520
|
+
v = MLX::Core.maximum(MLX::Core.multiply(v, b2), MLX::Core.abs(gradient))
|
|
521
|
+
state["m"] = m
|
|
522
|
+
state["v"] = v
|
|
523
|
+
|
|
524
|
+
numerator = MLX::Core.multiply(m, learning_rate)
|
|
525
|
+
denominator = MLX::Core.add(v, eps)
|
|
526
|
+
MLX::Core.subtract(parameter, MLX::Core.divide(numerator, denominator))
|
|
527
|
+
end
|
|
528
|
+
end
|
|
529
|
+
class Lion < Optimizer
|
|
530
|
+
attr_reader :betas, :weight_decay
|
|
531
|
+
|
|
532
|
+
def initialize(learning_rate: 1e-3, betas: [0.9, 0.99], weight_decay: 0.0)
|
|
533
|
+
super(learning_rate: learning_rate)
|
|
534
|
+
@betas = betas
|
|
535
|
+
@weight_decay = weight_decay
|
|
536
|
+
end
|
|
537
|
+
|
|
538
|
+
def init_single(parameter, state)
|
|
539
|
+
state["m"] = MLX::Core.zeros_like(parameter)
|
|
540
|
+
state
|
|
541
|
+
end
|
|
542
|
+
|
|
543
|
+
def apply_single(gradient, parameter, state)
|
|
544
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
545
|
+
|
|
546
|
+
b1, b2 = betas
|
|
547
|
+
momentum = state.fetch("m")
|
|
548
|
+
c = MLX::Core.add(
|
|
549
|
+
MLX::Core.multiply(momentum, b1),
|
|
550
|
+
MLX::Core.multiply(gradient, 1 - b1)
|
|
551
|
+
)
|
|
552
|
+
state["m"] = MLX::Core.add(
|
|
553
|
+
MLX::Core.multiply(momentum, b2),
|
|
554
|
+
MLX::Core.multiply(gradient, 1 - b2)
|
|
555
|
+
)
|
|
556
|
+
|
|
557
|
+
updated_parameter = parameter
|
|
558
|
+
if weight_decay > 0
|
|
559
|
+
updated_parameter = MLX::Core.multiply(updated_parameter, 1 - learning_rate.to_f * weight_decay)
|
|
560
|
+
end
|
|
561
|
+
|
|
562
|
+
MLX::Core.subtract(updated_parameter, MLX::Core.multiply(MLX::Core.sign(c), learning_rate))
|
|
563
|
+
end
|
|
564
|
+
end
|
|
565
|
+
class Adafactor < Optimizer
|
|
566
|
+
attr_reader :eps, :clip_threshold, :decay_rate, :beta_1, :weight_decay, :scale_parameter,
|
|
567
|
+
:relative_step, :warmup_init
|
|
568
|
+
|
|
569
|
+
def initialize(
|
|
570
|
+
learning_rate: nil,
|
|
571
|
+
eps: [1e-30, 1e-3],
|
|
572
|
+
clip_threshold: 1.0,
|
|
573
|
+
decay_rate: -0.8,
|
|
574
|
+
beta_1: nil,
|
|
575
|
+
weight_decay: 0.0,
|
|
576
|
+
scale_parameter: true,
|
|
577
|
+
relative_step: true,
|
|
578
|
+
warmup_init: false
|
|
579
|
+
)
|
|
580
|
+
super(learning_rate: (learning_rate.nil? ? 1e-3 : learning_rate))
|
|
581
|
+
@eps = eps
|
|
582
|
+
@clip_threshold = clip_threshold
|
|
583
|
+
@decay_rate = decay_rate
|
|
584
|
+
@beta_1 = beta_1
|
|
585
|
+
@weight_decay = weight_decay
|
|
586
|
+
@scale_parameter = scale_parameter
|
|
587
|
+
@relative_step = relative_step
|
|
588
|
+
@warmup_init = warmup_init
|
|
589
|
+
end
|
|
590
|
+
|
|
591
|
+
def init_single(parameter, state)
|
|
592
|
+
if parameter.ndim >= 2
|
|
593
|
+
shape = parameter.shape
|
|
594
|
+
dtype = parameter.dtype
|
|
595
|
+
state["exp_avg_sq_row"] = MLX::Core.zeros(shape[0...-1], dtype)
|
|
596
|
+
state["exp_avg_sq_col"] = MLX::Core.zeros(shape[0...-2] + shape[-1..], dtype)
|
|
597
|
+
else
|
|
598
|
+
state["exp_avg_sq"] = MLX::Core.zeros_like(parameter)
|
|
599
|
+
end
|
|
600
|
+
|
|
601
|
+
state["exp_avg"] = MLX::Core.zeros_like(parameter) unless beta_1.nil?
|
|
602
|
+
state
|
|
603
|
+
end
|
|
604
|
+
|
|
605
|
+
def apply_single(gradient, parameter, state)
|
|
606
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
607
|
+
|
|
608
|
+
factored = gradient.ndim >= 2
|
|
609
|
+
current_step = step.to_f
|
|
610
|
+
use_first_moment = !beta_1.nil?
|
|
611
|
+
|
|
612
|
+
parameter_rms = compute_rms(parameter)
|
|
613
|
+
lr = compute_learning_rate(current_step, parameter_rms)
|
|
614
|
+
beta_2 = 1.0 - (current_step**decay_rate)
|
|
615
|
+
update = MLX::Core.add(MLX::Core.square(gradient), eps[0])
|
|
616
|
+
|
|
617
|
+
if factored
|
|
618
|
+
exp_avg_sq_row = state.fetch("exp_avg_sq_row")
|
|
619
|
+
exp_avg_sq_col = state.fetch("exp_avg_sq_col")
|
|
620
|
+
exp_avg_sq_row = MLX::Core.add(
|
|
621
|
+
MLX::Core.multiply(exp_avg_sq_row, beta_2),
|
|
622
|
+
MLX::Core.multiply(MLX::Core.mean(update, -1), 1 - beta_2)
|
|
623
|
+
)
|
|
624
|
+
exp_avg_sq_col = MLX::Core.add(
|
|
625
|
+
MLX::Core.multiply(exp_avg_sq_col, beta_2),
|
|
626
|
+
MLX::Core.multiply(MLX::Core.mean(update, -2), 1 - beta_2)
|
|
627
|
+
)
|
|
628
|
+
state["exp_avg_sq_row"] = exp_avg_sq_row
|
|
629
|
+
state["exp_avg_sq_col"] = exp_avg_sq_col
|
|
630
|
+
update = MLX::Core.multiply(approximate_exp_moving_avg(exp_avg_sq_row, exp_avg_sq_col), gradient)
|
|
631
|
+
else
|
|
632
|
+
exp_avg_sq = state.fetch("exp_avg_sq")
|
|
633
|
+
exp_avg_sq = MLX::Core.add(
|
|
634
|
+
MLX::Core.multiply(exp_avg_sq, beta_2),
|
|
635
|
+
MLX::Core.multiply(update, 1 - beta_2)
|
|
636
|
+
)
|
|
637
|
+
state["exp_avg_sq"] = exp_avg_sq
|
|
638
|
+
update = MLX::Core.multiply(MLX::Core.rsqrt(exp_avg_sq), gradient)
|
|
639
|
+
end
|
|
640
|
+
|
|
641
|
+
rms_update = compute_rms(update)
|
|
642
|
+
one = MLX::Core.array(1.0, update.dtype)
|
|
643
|
+
normalizer = MLX::Core.maximum(one, MLX::Core.divide(rms_update, clip_threshold.to_f))
|
|
644
|
+
update = MLX::Core.divide(update, normalizer)
|
|
645
|
+
update = MLX::Core.multiply(update, lr)
|
|
646
|
+
|
|
647
|
+
if use_first_moment
|
|
648
|
+
exp_avg = state.fetch("exp_avg")
|
|
649
|
+
exp_avg = MLX::Core.add(
|
|
650
|
+
MLX::Core.multiply(exp_avg, beta_1.to_f),
|
|
651
|
+
MLX::Core.multiply(update, 1 - beta_1.to_f)
|
|
652
|
+
)
|
|
653
|
+
state["exp_avg"] = exp_avg
|
|
654
|
+
update = exp_avg
|
|
655
|
+
end
|
|
656
|
+
|
|
657
|
+
if weight_decay != 0
|
|
658
|
+
decay = MLX::Core.multiply(-weight_decay.to_f, lr)
|
|
659
|
+
parameter = MLX::Core.add(parameter, MLX::Core.multiply(parameter, decay))
|
|
660
|
+
end
|
|
661
|
+
|
|
662
|
+
MLX::Core.subtract(parameter, update)
|
|
663
|
+
end
|
|
664
|
+
|
|
665
|
+
private
|
|
666
|
+
|
|
667
|
+
def compute_rms(inputs)
|
|
668
|
+
MLX::Core.sqrt(MLX::Core.mean(MLX::Core.square(inputs)))
|
|
669
|
+
end
|
|
670
|
+
|
|
671
|
+
def compute_learning_rate(current_step, parameter_rms)
|
|
672
|
+
if relative_step
|
|
673
|
+
min_step = warmup_init ? 1e-6 * current_step : 1e-2
|
|
674
|
+
relative_step_size = [min_step, 1.0 / Math.sqrt(current_step)].min
|
|
675
|
+
else
|
|
676
|
+
relative_step_size = learning_rate.to_f
|
|
677
|
+
end
|
|
678
|
+
|
|
679
|
+
parameter_scale = if scale_parameter
|
|
680
|
+
floor = MLX::Core.array(eps[1].to_f, parameter_rms.dtype)
|
|
681
|
+
MLX::Core.maximum(floor, parameter_rms)
|
|
682
|
+
else
|
|
683
|
+
MLX::Core.array(1.0, parameter_rms.dtype)
|
|
684
|
+
end
|
|
685
|
+
MLX::Core.multiply(parameter_scale, relative_step_size)
|
|
686
|
+
end
|
|
687
|
+
|
|
688
|
+
def approximate_exp_moving_avg(exp_avg_sq_row, exp_avg_sq_col)
|
|
689
|
+
mean_row = if exp_avg_sq_row.ndim > 1
|
|
690
|
+
MLX::Core.expand_dims(MLX::Core.mean(exp_avg_sq_row, -1), -1)
|
|
691
|
+
else
|
|
692
|
+
MLX::Core.mean(exp_avg_sq_row)
|
|
693
|
+
end
|
|
694
|
+
r_factor = MLX::Core.rsqrt(MLX::Core.divide(exp_avg_sq_row, mean_row))
|
|
695
|
+
c_factor = MLX::Core.rsqrt(exp_avg_sq_col)
|
|
696
|
+
MLX::Core.matmul(MLX::Core.expand_dims(r_factor, -1), MLX::Core.expand_dims(c_factor, 0))
|
|
697
|
+
end
|
|
698
|
+
|
|
699
|
+
end
|
|
700
|
+
class Muon < Optimizer
|
|
701
|
+
attr_reader :momentum, :weight_decay, :nesterov, :ns_steps
|
|
702
|
+
|
|
703
|
+
def initialize(
|
|
704
|
+
learning_rate: 1e-3,
|
|
705
|
+
momentum: 0.95,
|
|
706
|
+
weight_decay: 0.01,
|
|
707
|
+
nesterov: true,
|
|
708
|
+
ns_steps: 5
|
|
709
|
+
)
|
|
710
|
+
super(learning_rate: learning_rate)
|
|
711
|
+
@momentum = momentum
|
|
712
|
+
@weight_decay = weight_decay
|
|
713
|
+
@nesterov = nesterov
|
|
714
|
+
@ns_steps = ns_steps
|
|
715
|
+
end
|
|
716
|
+
|
|
717
|
+
def init_single(parameter, state)
|
|
718
|
+
state["v"] = MLX::Core.zeros_like(parameter)
|
|
719
|
+
state
|
|
720
|
+
end
|
|
721
|
+
|
|
722
|
+
def apply_single(gradient, parameter, state)
|
|
723
|
+
return parameter unless parameter.is_a?(MLX::Core::Array) && gradient.is_a?(MLX::Core::Array)
|
|
724
|
+
|
|
725
|
+
if weight_decay != 0
|
|
726
|
+
gradient = MLX::Core.add(gradient, MLX::Core.multiply(parameter, weight_decay))
|
|
727
|
+
end
|
|
728
|
+
|
|
729
|
+
velocity = MLX::Core.add(
|
|
730
|
+
MLX::Core.multiply(state.fetch("v"), momentum),
|
|
731
|
+
MLX::Core.multiply(gradient, 1 - momentum)
|
|
732
|
+
)
|
|
733
|
+
state["v"] = velocity
|
|
734
|
+
|
|
735
|
+
update = if nesterov
|
|
736
|
+
MLX::Core.add(
|
|
737
|
+
MLX::Core.multiply(gradient, 1 - momentum),
|
|
738
|
+
MLX::Core.multiply(velocity, momentum)
|
|
739
|
+
)
|
|
740
|
+
else
|
|
741
|
+
velocity
|
|
742
|
+
end
|
|
743
|
+
|
|
744
|
+
lr = learning_rate.to_f
|
|
745
|
+
if update.ndim >= 2
|
|
746
|
+
original_shape = update.shape
|
|
747
|
+
reshape_needed = update.ndim > 2
|
|
748
|
+
|
|
749
|
+
if reshape_needed
|
|
750
|
+
rest = original_shape[1..].reduce(1) { |acc, d| acc * d }
|
|
751
|
+
update = MLX::Core.reshape(update, [original_shape[0], rest])
|
|
752
|
+
end
|
|
753
|
+
|
|
754
|
+
update = zeropower_via_newtonschulz5(update, steps: ns_steps)
|
|
755
|
+
update = MLX::Core.reshape(update, original_shape) if reshape_needed
|
|
756
|
+
|
|
757
|
+
ratio = update.shape[-2].to_f / update.shape[-1].to_f
|
|
758
|
+
lr *= Math.sqrt([1.0, ratio].max)
|
|
759
|
+
end
|
|
760
|
+
|
|
761
|
+
MLX::Core.subtract(parameter, MLX::Core.multiply(update, lr))
|
|
762
|
+
end
|
|
763
|
+
|
|
764
|
+
private
|
|
765
|
+
|
|
766
|
+
def zeropower_via_newtonschulz5(x, steps:)
|
|
767
|
+
unless x.ndim == 2
|
|
768
|
+
raise ArgumentError, "Expected a 2D array for Newton-Schulz iteration, got shape #{x.shape} instead."
|
|
769
|
+
end
|
|
770
|
+
|
|
771
|
+
a, b, c = 3.4445, -4.7750, 2.0315
|
|
772
|
+
transpose_needed = x.shape[-2] > x.shape[-1]
|
|
773
|
+
x = x.T if transpose_needed
|
|
774
|
+
|
|
775
|
+
x = MLX::Core.divide(x, MLX::Core.add(MLX::Core.norm(x), 1e-7))
|
|
776
|
+
steps.to_i.times do
|
|
777
|
+
a_mat = MLX::Core.matmul(x, x.T)
|
|
778
|
+
b_mat = MLX::Core.addmm(MLX::Core.multiply(a_mat, b), a_mat, a_mat, 1.0, c)
|
|
779
|
+
x = MLX::Core.addmm(MLX::Core.multiply(x, a), b_mat, x, 1.0, 1.0)
|
|
780
|
+
end
|
|
781
|
+
|
|
782
|
+
x = x.T if transpose_needed
|
|
783
|
+
x
|
|
784
|
+
end
|
|
785
|
+
end
|
|
786
|
+
|
|
787
|
+
def self.clip_grad_norm(grads, max_norm)
|
|
788
|
+
norm_squared = MLX::Utils.tree_reduce(
|
|
789
|
+
lambda do |acc, grad|
|
|
790
|
+
MLX::Core.add(acc, MLX::Core.sum(MLX::Core.square(grad)))
|
|
791
|
+
end,
|
|
792
|
+
grads,
|
|
793
|
+
MLX::Core.array(0.0, MLX::Core.float32)
|
|
794
|
+
)
|
|
795
|
+
|
|
796
|
+
total_norm = MLX::Core.sqrt(norm_squared)
|
|
797
|
+
max_norm_array = MLX::Core.array(max_norm.to_f, total_norm.dtype)
|
|
798
|
+
one = MLX::Core.array(1.0, total_norm.dtype)
|
|
799
|
+
normalizer = MLX::Core.minimum(
|
|
800
|
+
MLX::Core.divide(max_norm_array, MLX::Core.add(total_norm, 1e-6)),
|
|
801
|
+
one
|
|
802
|
+
)
|
|
803
|
+
|
|
804
|
+
clipped = MLX::Utils.tree_map(lambda { |g| MLX::Core.multiply(g, normalizer) }, grads)
|
|
805
|
+
[clipped, total_norm]
|
|
806
|
+
end
|
|
807
|
+
end
|
|
808
|
+
end
|