mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,1198 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import math
4
+ import unittest
5
+ from itertools import permutations
6
+
7
+ import mlx.core as mx
8
+ import mlx_tests
9
+ import numpy as np
10
+
11
+ try:
12
+ import torch
13
+ import torch.nn.functional as F
14
+
15
+ has_torch = True
16
+ except ImportError as e:
17
+ has_torch = False
18
+
19
+
20
+ class TestConv(mlx_tests.MLXTestCase):
21
+ def test_numpy_conv(self):
22
+ for dtype in (
23
+ "float16",
24
+ "float32",
25
+ ):
26
+ np_dtype = getattr(np, dtype)
27
+ for M, N, mode in (
28
+ (1, 1, "full"),
29
+ (25, 5, "full"),
30
+ (24, 5, "same"),
31
+ (24, 4, "same"),
32
+ (24, 4, "valid"),
33
+ (4, 24, "full"),
34
+ (5, 25, "same"),
35
+ (4, 25, "valid"),
36
+ ):
37
+ with self.subTest(dtype=dtype, M=M, N=N, mode=mode):
38
+ atol = 1e-6 if dtype == "float32" else 1e-5
39
+ a_np = np.random.rand(M).astype(np_dtype)
40
+ v_np = np.random.rand(N).astype(np_dtype)
41
+ a_mx = mx.array(a_np)
42
+ v_mx = mx.array(v_np)
43
+
44
+ c_np = np.convolve(a_np, v_np, mode=mode)
45
+ c_mx = mx.convolve(a_mx, v_mx, mode=mode)
46
+
47
+ self.assertEqual(c_mx.shape, c_np.shape)
48
+ self.assertTrue(np.allclose(c_mx, c_np, atol=atol))
49
+
50
+ def test_conv_1d_groups_flipped(self):
51
+ x = mx.broadcast_to(mx.arange(5).astype(mx.float32), (2, 5)).T
52
+ w = mx.broadcast_to(mx.arange(4).astype(mx.float32), (2, 4))
53
+ out = mx.conv_general(x[None], w[..., None], flip=True, groups=2)
54
+ expected = mx.array([4.0, 4.0, 10.0, 10.0]).reshape(1, 2, 2)
55
+ self.assertTrue(mx.allclose(out, expected))
56
+
57
+ @unittest.skipIf(not has_torch, "requires Torch")
58
+ def test_torch_conv_1D(self):
59
+ def run_conv1D(
60
+ N,
61
+ C,
62
+ O,
63
+ iH,
64
+ kH,
65
+ stride,
66
+ padding,
67
+ dilation=1,
68
+ groups=1,
69
+ dtype="float32",
70
+ atol=1e-5,
71
+ ):
72
+ with self.subTest(
73
+ dtype=dtype,
74
+ N=N,
75
+ C=C,
76
+ O=O,
77
+ iH=iH,
78
+ kH=kH,
79
+ stride=stride,
80
+ padding=padding,
81
+ dilation=dilation,
82
+ groups=groups,
83
+ ):
84
+ np_dtype = getattr(np, dtype)
85
+ np.random.seed(0)
86
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
87
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, int(C / groups))).astype(
88
+ np_dtype
89
+ )
90
+
91
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
92
+ in_pt, wt_pt = map(
93
+ lambda x: torch.from_numpy(x.transpose(0, 2, 1)), (in_np, wt_np)
94
+ )
95
+
96
+ out_mx = mx.conv1d(
97
+ in_mx,
98
+ wt_mx,
99
+ stride=stride,
100
+ padding=padding,
101
+ dilation=dilation,
102
+ groups=groups,
103
+ )
104
+ out_pt = torch.conv1d(
105
+ in_pt,
106
+ wt_pt,
107
+ stride=stride,
108
+ padding=padding,
109
+ dilation=dilation,
110
+ groups=groups,
111
+ )
112
+ out_pt = torch.transpose(out_pt, 2, 1)
113
+
114
+ self.assertEqual(out_pt.shape, out_mx.shape)
115
+ self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
116
+
117
+ for dtype in ("float32",):
118
+ for N, C, O in (
119
+ (1, 1, 1),
120
+ (1, 6, 1),
121
+ (1, 1, 6),
122
+ (4, 32, 64),
123
+ ):
124
+ for iH, kH, stride, padding in (
125
+ (1, 1, 1, 0),
126
+ (3, 3, 1, 0),
127
+ (31, 5, 5, 2),
128
+ ):
129
+ run_conv1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
130
+
131
+ # Groups tests
132
+ N, C, O = (4, 32, 64)
133
+ for iH, kH, stride, padding in (
134
+ (1, 1, 1, 0),
135
+ (3, 3, 1, 0),
136
+ (31, 5, 5, 2),
137
+ ):
138
+ for group in (1, 2, 4, 8, 16, 32):
139
+ run_conv1D(N, C, O, iH, kH, stride, padding, groups=group, dtype=dtype)
140
+
141
+ # Strided inputs tests
142
+ for tpose_in, tpose_wt in (
143
+ ((0, 2, 1), (0, 1, 2)),
144
+ ((0, 2, 1), (0, 2, 1)),
145
+ ):
146
+ with self.subTest(name="strided", tpose_in=tpose_in, tpose_wt=tpose_wt):
147
+ in_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
148
+ wt_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
149
+
150
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
151
+ in_mx_t = mx.transpose(in_mx, tpose_in)
152
+ wt_mx_t = mx.transpose(wt_mx, tpose_wt)
153
+ out_mx = mx.conv1d(in_mx_t, wt_mx_t)
154
+
155
+ in_pt, wt_pt = map(
156
+ lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
157
+ (in_np.transpose(tpose_in), wt_np.transpose(tpose_wt)),
158
+ )
159
+
160
+ out_pt = torch.conv1d(in_pt, wt_pt)
161
+ out_pt = torch.transpose(out_pt, 2, 1)
162
+
163
+ self.assertEqual(out_pt.shape, out_mx.shape)
164
+ self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=1e-5))
165
+
166
+ @unittest.skipIf(not has_torch, "requires Torch")
167
+ def test_torch_conv_1D_grad(self):
168
+ def run_conv1D_grad(
169
+ N,
170
+ C,
171
+ O,
172
+ iH,
173
+ kH,
174
+ stride,
175
+ padding,
176
+ dilation=1,
177
+ groups=1,
178
+ dtype="float32",
179
+ atol=1e-5,
180
+ ):
181
+ with self.subTest(
182
+ dtype=dtype,
183
+ N=N,
184
+ C=C,
185
+ O=O,
186
+ iH=iH,
187
+ kH=kH,
188
+ stride=stride,
189
+ padding=padding,
190
+ dilation=dilation,
191
+ groups=groups,
192
+ ):
193
+ np_dtype = getattr(np, dtype)
194
+ np.random.seed(0)
195
+ oH = 1 + ((iH + 2 * padding - dilation * (kH - 1) - 1) // stride)
196
+
197
+ in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
198
+ wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
199
+ ct_np = np.random.normal(0, 1.0 / C, (N, oH, O)).astype(np_dtype)
200
+
201
+ in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
202
+ in_pt, wt_pt, ct_pt = map(
203
+ lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
204
+ (in_np, wt_np, ct_np),
205
+ )
206
+
207
+ def f(a, b):
208
+ return mx.conv1d(
209
+ a,
210
+ b,
211
+ stride=stride,
212
+ padding=padding,
213
+ dilation=dilation,
214
+ groups=groups,
215
+ )
216
+
217
+ _, outs_mx = mx.vjp(
218
+ f,
219
+ [
220
+ in_mx,
221
+ wt_mx,
222
+ ],
223
+ [
224
+ ct_mx,
225
+ ],
226
+ )
227
+ pt_grad_in = F.grad.conv1d_input(
228
+ in_pt.shape,
229
+ wt_pt,
230
+ ct_pt,
231
+ stride=stride,
232
+ padding=padding,
233
+ dilation=dilation,
234
+ groups=groups,
235
+ )
236
+ pt_grad_wt = F.grad.conv1d_weight(
237
+ in_pt,
238
+ wt_pt.shape,
239
+ ct_pt,
240
+ stride=stride,
241
+ padding=padding,
242
+ dilation=dilation,
243
+ groups=groups,
244
+ )
245
+ pt_grad_in = torch.transpose(pt_grad_in, 2, 1).numpy()
246
+ pt_grad_wt = torch.transpose(pt_grad_wt, 2, 1).numpy()
247
+
248
+ mx_grad_in, mx_grad_wt = outs_mx
249
+
250
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
251
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
252
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
253
+
254
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
255
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
256
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
257
+
258
+ for dtype in ("float32",):
259
+ for N, C, O in (
260
+ (1, 1, 1),
261
+ (1, 6, 1),
262
+ (1, 1, 6),
263
+ (4, 32, 64),
264
+ ):
265
+ for iH, kH, stride, padding in (
266
+ (1, 1, 1, 0),
267
+ (3, 3, 1, 0),
268
+ (31, 5, 5, 2),
269
+ ):
270
+ run_conv1D_grad(N, C, O, iH, kH, stride, padding, dtype=dtype)
271
+
272
+ @unittest.skipIf(not has_torch, "requires Torch")
273
+ def test_torch_conv_2D(self):
274
+ def run_conv2D(
275
+ N,
276
+ C,
277
+ O,
278
+ idim,
279
+ kdim,
280
+ stride,
281
+ padding,
282
+ dilation=(1, 1),
283
+ groups=1,
284
+ dtype="float32",
285
+ ):
286
+ with self.subTest(
287
+ dtype=dtype,
288
+ N=N,
289
+ C=C,
290
+ O=O,
291
+ idim=idim,
292
+ kdim=kdim,
293
+ stride=stride,
294
+ padding=padding,
295
+ dilation=dilation,
296
+ groups=groups,
297
+ ):
298
+ np.random.seed(0)
299
+ iH, iW = idim
300
+ kH, kW = kdim
301
+ scale = 1.0 / math.sqrt(kH * kW * C)
302
+ in_np = np.random.normal(0.0, scale, (N, iH, iW, C))
303
+ wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, int(C / groups)))
304
+
305
+ mx_dtype = getattr(mx, dtype)
306
+ torch_dtype = getattr(torch, dtype)
307
+ in_mx, wt_mx = map(
308
+ lambda x: mx.array(x).astype(mx_dtype), (in_np, wt_np)
309
+ )
310
+ in_pt, wt_pt = map(
311
+ lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2))
312
+ .to("cpu")
313
+ .to(torch_dtype),
314
+ (in_np, wt_np),
315
+ )
316
+
317
+ out_mx = mx.conv2d(
318
+ in_mx,
319
+ wt_mx,
320
+ stride=stride,
321
+ padding=padding,
322
+ dilation=dilation,
323
+ groups=groups,
324
+ ).astype(mx.float32)
325
+ out_pt = torch.conv2d(
326
+ in_pt,
327
+ wt_pt,
328
+ stride=stride,
329
+ padding=padding,
330
+ dilation=dilation,
331
+ groups=groups,
332
+ )
333
+ out_pt = (
334
+ torch.permute(out_pt, (0, 2, 3, 1))
335
+ .to(torch.float32)
336
+ .numpy(force=True)
337
+ )
338
+
339
+ self.assertEqual(out_pt.shape, out_mx.shape)
340
+ if dtype == "bfloat16":
341
+ atol, rtol = 1e-1, 1e-3
342
+ else:
343
+ atol, rtol = 1e-5, 1e-6
344
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
345
+
346
+ for dtype in ("float32", "bfloat16"):
347
+ for N, C, O in (
348
+ (1, 1, 1),
349
+ (1, 6, 1),
350
+ (1, 1, 6),
351
+ (4, 32, 64),
352
+ ):
353
+ for idim, kdim, stride, padding in (
354
+ ((1, 1), (1, 1), (1, 1), (0, 0)),
355
+ ((3, 3), (3, 1), (1, 1), (0, 0)),
356
+ ((31, 31), (5, 5), (5, 5), (2, 2)),
357
+ ):
358
+ run_conv2D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
359
+
360
+ # Groups tests
361
+ N, C, O = (4, 32, 64)
362
+ for idim, kdim, stride, padding in (
363
+ ((1, 1), (1, 1), (1, 1), (0, 0)),
364
+ ((3, 3), (3, 1), (1, 1), (0, 0)),
365
+ ((31, 31), (5, 5), (5, 5), (2, 2)),
366
+ ):
367
+ for group in (1, 2, 4, 8, 16, 32):
368
+ run_conv2D(
369
+ N, C, O, idim, kdim, stride, padding, groups=group, dtype=dtype
370
+ )
371
+
372
+ @unittest.skipIf(not has_torch, "requires Torch")
373
+ def test_torch_conv_2D_grad(self):
374
+ def run_conv2D_grad(
375
+ N,
376
+ C,
377
+ O,
378
+ idim,
379
+ kdim,
380
+ stride,
381
+ padding,
382
+ dilation=(1, 1),
383
+ groups=1,
384
+ dtype="float32",
385
+ atol=1e-5,
386
+ ):
387
+ with self.subTest(
388
+ dtype=dtype,
389
+ N=N,
390
+ C=C,
391
+ O=O,
392
+ idim=idim,
393
+ kdim=kdim,
394
+ stride=stride,
395
+ padding=padding,
396
+ dilation=dilation,
397
+ groups=groups,
398
+ ):
399
+ np_dtype = getattr(np, dtype)
400
+ np.random.seed(0)
401
+ iH, iW = idim
402
+ kH, kW = kdim
403
+ scale = 1.0 / math.sqrt(kH * kW * C)
404
+
405
+ oH = 1 + (
406
+ (iH + 2 * padding[0] - dilation[0] * (kH - 1) - 1) // stride[0]
407
+ )
408
+ oW = 1 + (
409
+ (iW + 2 * padding[1] - dilation[1] * (kW - 1) - 1) // stride[1]
410
+ )
411
+
412
+ in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
413
+ wt_np = np.random.normal(0.0, scale, (O, kH, kW, C)).astype(np_dtype)
414
+ ct_np = np.random.normal(0.0, scale, (N, oH, oW, O)).astype(np_dtype)
415
+
416
+ in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
417
+ in_pt, wt_pt, ct_pt = map(
418
+ lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2)).to("cpu"),
419
+ (in_np, wt_np, ct_np),
420
+ )
421
+
422
+ def f(a, b):
423
+ return mx.conv2d(
424
+ a,
425
+ b,
426
+ stride=stride,
427
+ padding=padding,
428
+ dilation=dilation,
429
+ groups=groups,
430
+ )
431
+
432
+ _, outs_mx = mx.vjp(
433
+ f,
434
+ [in_mx, wt_mx],
435
+ [ct_mx],
436
+ )
437
+ pt_grad_in = F.grad.conv2d_input(
438
+ in_pt.shape,
439
+ wt_pt,
440
+ ct_pt,
441
+ stride=stride,
442
+ padding=padding,
443
+ dilation=dilation,
444
+ groups=groups,
445
+ )
446
+ pt_grad_wt = F.grad.conv2d_weight(
447
+ in_pt,
448
+ wt_pt.shape,
449
+ ct_pt,
450
+ stride=stride,
451
+ padding=padding,
452
+ dilation=dilation,
453
+ groups=groups,
454
+ )
455
+ pt_grad_in = torch.permute(pt_grad_in, (0, 2, 3, 1)).numpy()
456
+ pt_grad_wt = torch.permute(pt_grad_wt, (0, 2, 3, 1)).numpy()
457
+
458
+ mx_grad_in, mx_grad_wt = outs_mx
459
+
460
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
461
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
462
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
463
+
464
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
465
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
466
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
467
+
468
+ for dtype in ("float32",):
469
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 32, 64), (4, 16, 32)):
470
+ for idim, kdim, stride, padding, dilation in (
471
+ ((1, 1), (1, 1), (1, 1), (0, 0), (1, 1)),
472
+ ((3, 3), (3, 1), (1, 1), (0, 0), (1, 1)),
473
+ ((31, 31), (5, 5), (5, 5), (2, 2), (1, 1)),
474
+ ((32, 32), (3, 3), (2, 2), (1, 1), (1, 1)),
475
+ ((31, 31), (5, 5), (5, 5), (2, 2), (3, 2)),
476
+ ((32, 32), (3, 3), (2, 2), (1, 1), (3, 2)),
477
+ ):
478
+ run_conv2D_grad(
479
+ N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
480
+ )
481
+
482
+ @unittest.skipIf(not has_torch, "requires Torch")
483
+ def test_torch_conv_3D(self):
484
+ def run_conv3D(
485
+ N,
486
+ C,
487
+ O,
488
+ idim,
489
+ kdim,
490
+ stride,
491
+ padding,
492
+ dilation=(1, 1, 1),
493
+ groups=1,
494
+ dtype="float32",
495
+ atol=1e-5,
496
+ ):
497
+ with self.subTest(
498
+ dtype=dtype,
499
+ N=N,
500
+ C=C,
501
+ O=O,
502
+ idim=idim,
503
+ kdim=kdim,
504
+ stride=stride,
505
+ padding=padding,
506
+ dilation=dilation,
507
+ groups=groups,
508
+ ):
509
+ np_dtype = getattr(np, dtype)
510
+ np.random.seed(0)
511
+ iD, iH, iW = idim
512
+ kD, kH, kW = kdim
513
+ scale = 1.0 / math.sqrt(kD * kH * kW * C)
514
+ in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
515
+ np_dtype
516
+ )
517
+ wt_np = np.random.normal(0.0, 1.0, (O, kD, kH, kW, C)).astype(np_dtype)
518
+
519
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
520
+ in_pt, wt_pt = map(
521
+ lambda x: torch.from_numpy(x.transpose(0, 4, 1, 2, 3)).to("cpu"),
522
+ (in_np, wt_np),
523
+ )
524
+
525
+ out_mx = mx.conv3d(
526
+ in_mx,
527
+ wt_mx,
528
+ stride=stride,
529
+ padding=padding,
530
+ dilation=dilation,
531
+ groups=groups,
532
+ )
533
+ out_pt = torch.conv3d(
534
+ in_pt,
535
+ wt_pt,
536
+ stride=stride,
537
+ padding=padding,
538
+ dilation=dilation,
539
+ groups=groups,
540
+ )
541
+ out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
542
+
543
+ self.assertEqual(out_pt.shape, out_mx.shape)
544
+ self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
545
+
546
+ for dtype in ("float32",):
547
+ for N, C, O in (
548
+ (1, 1, 1),
549
+ (1, 6, 1),
550
+ (1, 1, 6),
551
+ (4, 16, 32),
552
+ ):
553
+ continue
554
+ for idim, kdim, stride, padding in (
555
+ ((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0)),
556
+ ((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0)),
557
+ ((31, 31, 31), (5, 5, 5), (5, 5, 5), (2, 2, 2)),
558
+ ):
559
+ run_conv3D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
560
+
561
+ N, C, O = (2, 4, 4)
562
+ idim, kdim, stride, padding = (6, 6, 6), (3, 1, 1), (1, 1, 1), (0, 0, 0)
563
+ run_conv3D(
564
+ N, C, O, idim, kdim, stride, padding, dilation=(2, 2, 2), dtype=dtype
565
+ )
566
+
567
+ @unittest.skipIf(not has_torch, "requires Torch")
568
+ def test_torch_conv_3D_grad(self):
569
+ def run_conv3D_grad(
570
+ N,
571
+ C,
572
+ O,
573
+ idim,
574
+ kdim,
575
+ stride,
576
+ padding,
577
+ dilation=(1, 1, 1),
578
+ groups=1,
579
+ dtype="float32",
580
+ atol=1e-5,
581
+ ):
582
+ with self.subTest(
583
+ dtype=dtype,
584
+ N=N,
585
+ C=C,
586
+ O=O,
587
+ idim=idim,
588
+ kdim=kdim,
589
+ stride=stride,
590
+ padding=padding,
591
+ dilation=dilation,
592
+ groups=groups,
593
+ ):
594
+ np_dtype = getattr(np, dtype)
595
+ np.random.seed(0)
596
+ iD, iH, iW = idim
597
+ kD, kH, kW = kdim
598
+ scale = 1.0 / math.sqrt(kD * kH * kW * C)
599
+
600
+ oD = 1 + (
601
+ (iD + 2 * padding[0] - dilation[0] * (kD - 1) - 1) // stride[0]
602
+ )
603
+ oH = 1 + (
604
+ (iH + 2 * padding[1] - dilation[1] * (kH - 1) - 1) // stride[1]
605
+ )
606
+ oW = 1 + (
607
+ (iW + 2 * padding[2] - dilation[2] * (kW - 1) - 1) // stride[2]
608
+ )
609
+
610
+ in_np = np.random.normal(0.0, scale, (N, iD, iH, iW, C)).astype(
611
+ np_dtype
612
+ )
613
+ wt_np = np.random.normal(0.0, scale, (O, kD, kH, kW, C)).astype(
614
+ np_dtype
615
+ )
616
+ ct_np = np.random.normal(0.0, scale, (N, oD, oH, oW, O)).astype(
617
+ np_dtype
618
+ )
619
+
620
+ in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
621
+ in_pt, wt_pt, ct_pt = map(
622
+ lambda x: torch.from_numpy(x.transpose(0, 4, 1, 2, 3)).to("cpu"),
623
+ (in_np, wt_np, ct_np),
624
+ )
625
+
626
+ def f(a, b):
627
+ return mx.conv3d(
628
+ a,
629
+ b,
630
+ stride=stride,
631
+ padding=padding,
632
+ dilation=dilation,
633
+ groups=groups,
634
+ )
635
+
636
+ _, outs_mx = mx.vjp(
637
+ f,
638
+ [in_mx, wt_mx],
639
+ [ct_mx],
640
+ )
641
+ pt_grad_in = F.grad.conv3d_input(
642
+ in_pt.shape,
643
+ wt_pt,
644
+ ct_pt,
645
+ stride=stride,
646
+ padding=padding,
647
+ dilation=dilation,
648
+ groups=groups,
649
+ )
650
+ pt_grad_wt = F.grad.conv3d_weight(
651
+ in_pt,
652
+ wt_pt.shape,
653
+ ct_pt,
654
+ stride=stride,
655
+ padding=padding,
656
+ dilation=dilation,
657
+ groups=groups,
658
+ )
659
+ pt_grad_in = torch.permute(pt_grad_in, (0, 2, 3, 4, 1)).numpy()
660
+ pt_grad_wt = torch.permute(pt_grad_wt, (0, 2, 3, 4, 1)).numpy()
661
+
662
+ mx_grad_in, mx_grad_wt = outs_mx
663
+
664
+ self.assertEqual(pt_grad_in.shape, mx_grad_in.shape)
665
+ self.assertEqual(in_mx.shape, mx_grad_in.shape)
666
+ self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
667
+
668
+ self.assertEqual(pt_grad_wt.shape, mx_grad_wt.shape)
669
+ self.assertEqual(wt_mx.shape, mx_grad_wt.shape)
670
+ self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
671
+
672
+ for dtype in ("float32",):
673
+ for N, C, O in ((1, 1, 1), (1, 6, 1), (1, 1, 6), (4, 16, 32), (4, 8, 16)):
674
+ for idim, kdim, stride, padding, dilation in (
675
+ ((1, 1, 1), (1, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
676
+ ((3, 3, 3), (3, 1, 1), (1, 1, 1), (0, 0, 0), (1, 1, 1)),
677
+ ((15, 15, 15), (5, 5, 5), (5, 5, 5), (2, 2, 2), (1, 1, 1)),
678
+ ((16, 16, 16), (3, 3, 3), (2, 2, 2), (1, 1, 1), (1, 1, 1)),
679
+ ((15, 15, 15), (5, 5, 5), (5, 5, 5), (2, 2, 2), (3, 2, 2)),
680
+ ((16, 16, 16), (3, 3, 3), (2, 2, 2), (1, 1, 1), (3, 2, 2)),
681
+ ):
682
+ run_conv3D_grad(
683
+ N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
684
+ )
685
+
686
+ def __conv_general_test(
687
+ self,
688
+ in_shape,
689
+ wt_shape,
690
+ stride=1,
691
+ padding=0,
692
+ kernel_dilation=1,
693
+ input_dilation=1,
694
+ groups=1,
695
+ flip=False,
696
+ np_dtype=np.float32,
697
+ atol=1e-5,
698
+ ):
699
+ with self.subTest(
700
+ in_shape=in_shape,
701
+ wt_shape=wt_shape,
702
+ stride=stride,
703
+ padding=padding,
704
+ kernel_dilation=kernel_dilation,
705
+ input_dilation=input_dilation,
706
+ groups=groups,
707
+ flip=flip,
708
+ np_dtype=np_dtype,
709
+ ):
710
+ np.random.seed(0)
711
+ scale = 1.0 / math.sqrt(np.prod(wt_shape[1:]))
712
+ scale = min(0.3, scale)
713
+ in_np = np.random.normal(0, scale, in_shape).astype(np_dtype)
714
+ wt_np = np.random.normal(0, scale, wt_shape).astype(np_dtype)
715
+
716
+ in_mx, wt_mx = map(mx.array, (in_np, wt_np))
717
+
718
+ in_pt, wt_pt = map(
719
+ lambda x: torch.from_numpy(np.moveaxis(x, -1, 1)).to("cpu"),
720
+ (in_np, wt_np),
721
+ )
722
+
723
+ out_mx = mx.conv_general(
724
+ in_mx,
725
+ wt_mx,
726
+ stride=stride,
727
+ padding=padding,
728
+ kernel_dilation=kernel_dilation,
729
+ input_dilation=input_dilation,
730
+ groups=groups,
731
+ flip=flip,
732
+ )
733
+
734
+ def conv_general_pt(
735
+ inp, wt, stride, padding, kernel_dilation, input_dilation, groups, flip
736
+ ):
737
+ C = inp.size()[1]
738
+ ndim = inp.ndim - 2
739
+ map_ints = lambda x: [x] * ndim if isinstance(x, int) else x
740
+
741
+ stride, padding, kernel_dilation, input_dilation = map(
742
+ map_ints, (stride, padding, kernel_dilation, input_dilation)
743
+ )
744
+
745
+ torch_convt_list = (
746
+ F.conv_transpose1d,
747
+ F.conv_transpose2d,
748
+ F.conv_transpose3d,
749
+ )
750
+ torch_conv_list = (F.conv1d, F.conv2d, F.conv3d)
751
+
752
+ conv_f = torch_conv_list[ndim - 1]
753
+ convt_f = torch_convt_list[ndim - 1]
754
+
755
+ if flip:
756
+ wt = torch.flip(wt, tuple(np.arange(2, wt.ndim)))
757
+
758
+ if not np.all(input_dilation == 1):
759
+ ones = torch.ones(
760
+ [C]
761
+ + [
762
+ 1,
763
+ ]
764
+ * (ndim + 1)
765
+ ).to(inp.dtype)
766
+ inp = convt_f(inp, ones, stride=input_dilation, groups=C)
767
+
768
+ return conv_f(
769
+ inp,
770
+ wt,
771
+ stride=stride,
772
+ padding=padding,
773
+ dilation=kernel_dilation,
774
+ groups=groups,
775
+ )
776
+
777
+ out_pt = conv_general_pt(
778
+ in_pt,
779
+ wt_pt,
780
+ stride=stride,
781
+ padding=padding,
782
+ kernel_dilation=kernel_dilation,
783
+ input_dilation=input_dilation,
784
+ groups=groups,
785
+ flip=flip,
786
+ )
787
+
788
+ out_pt = np.moveaxis(out_pt.numpy(), 1, -1)
789
+
790
+ self.assertEqual(out_mx.shape, out_pt.shape)
791
+ self.assertTrue(np.allclose(out_mx, out_pt, atol=atol))
792
+
793
+ @unittest.skipIf(not has_torch, "requires Torch")
794
+ def test_torch_conv_general(self):
795
+ in_shape = (2, 32, 32, 16)
796
+ wt_shape = (32, 5, 5, 16)
797
+ stride = (1, 1)
798
+ padding = (2, 2)
799
+ kernel_dilation = (2, 3)
800
+ input_dilation = (1, 1)
801
+ flip = False
802
+
803
+ self.__conv_general_test(
804
+ in_shape,
805
+ wt_shape,
806
+ stride,
807
+ padding,
808
+ kernel_dilation,
809
+ input_dilation,
810
+ flip=flip,
811
+ )
812
+
813
+ in_shape = (2, 32, 32, 16)
814
+ wt_shape = (32, 5, 10, 16)
815
+ stride = (2, 3)
816
+ padding = (0, 0)
817
+ kernel_dilation = (3, 2)
818
+ input_dilation = (2, 4)
819
+ flip = False
820
+
821
+ self.__conv_general_test(
822
+ in_shape,
823
+ wt_shape,
824
+ stride,
825
+ padding,
826
+ kernel_dilation,
827
+ input_dilation,
828
+ flip=flip,
829
+ )
830
+
831
+ in_shape = (2, 32, 32, 16)
832
+ wt_shape = (32, 5, 10, 16)
833
+ stride = (2, 2)
834
+ padding = (3, 2)
835
+ kernel_dilation = (3, 2)
836
+ input_dilation = (2, 4)
837
+ flip = False
838
+
839
+ self.__conv_general_test(
840
+ in_shape,
841
+ wt_shape,
842
+ stride,
843
+ padding,
844
+ kernel_dilation,
845
+ input_dilation,
846
+ flip=flip,
847
+ )
848
+
849
+ in_shape = (2, 32, 32, 16)
850
+ wt_shape = (32, 5, 10, 16)
851
+ stride = (2, 3)
852
+ padding = (3, 2)
853
+ kernel_dilation = (3, 2)
854
+ input_dilation = (2, 5)
855
+ flip = False
856
+
857
+ self.__conv_general_test(
858
+ in_shape,
859
+ wt_shape,
860
+ stride,
861
+ padding,
862
+ kernel_dilation,
863
+ input_dilation,
864
+ flip=flip,
865
+ )
866
+
867
+ in_shape = (2, 32, 32, 16)
868
+ wt_shape = (32, 5, 5, 16)
869
+ stride = (2, 3)
870
+ padding = (0, 0)
871
+ kernel_dilation = (3, 1)
872
+ input_dilation = (2, 5)
873
+ flip = True
874
+
875
+ self.__conv_general_test(
876
+ in_shape,
877
+ wt_shape,
878
+ stride,
879
+ padding,
880
+ kernel_dilation,
881
+ input_dilation,
882
+ flip=flip,
883
+ )
884
+
885
+ def test_conv_general_flip_grad(self):
886
+ for s in (1, 2):
887
+ w = mx.random.normal(shape=(1, 2, 2, 1))
888
+ x = mx.random.normal(shape=(1, 2, 2, 1))
889
+
890
+ def conv_t(w):
891
+ return mx.conv_general(
892
+ x,
893
+ w,
894
+ stride=1,
895
+ padding=(1, 1),
896
+ kernel_dilation=1,
897
+ input_dilation=s,
898
+ flip=True,
899
+ )
900
+
901
+ cotan = mx.random.normal(shape=(1, 2 + s, 2 + s, 1))
902
+
903
+ dw = mx.vjp(conv_t, (w,), (cotan,))[1][0]
904
+
905
+ x = x.squeeze()
906
+ cotan = cotan.squeeze()
907
+ dw = dw.squeeze()
908
+
909
+ dw00 = (cotan[:-1:s, :-1:s] * x).sum()
910
+ dw01 = (cotan[:-1:s, 1::s] * x).sum()
911
+ dw10 = (cotan[1::s, :-1:s] * x).sum()
912
+ dw11 = (cotan[1::s, 1::s] * x).sum()
913
+ expected = mx.array([[dw00, dw01], [dw10, dw11]])
914
+ self.assertTrue(mx.allclose(dw, expected, rtol=1e-5, atol=1e-5))
915
+
916
+ # Test with input dilation
917
+ inputs = mx.random.normal((1, 14, 14, 2))
918
+ kernel = mx.random.normal((2, 7, 7, 2))
919
+
920
+ def conv_flip(kernel):
921
+ return mx.conv_general(
922
+ inputs,
923
+ kernel,
924
+ stride=1,
925
+ padding=([6, 6], [15, 15]),
926
+ kernel_dilation=(1, 1),
927
+ input_dilation=(16, 16),
928
+ groups=1,
929
+ flip=True,
930
+ ).sum()
931
+
932
+ def reverse_sequence(xs, axis=0):
933
+ indices = mx.arange(xs.shape[axis] - 1, -1, -1)
934
+ return mx.take(xs, indices, axis=axis)
935
+
936
+ def conv_manual_flip(kernel):
937
+ for ax in range(1, kernel.ndim - 1):
938
+ kernel = reverse_sequence(kernel, axis=ax)
939
+ return mx.conv_general(
940
+ inputs,
941
+ kernel,
942
+ stride=1,
943
+ padding=([6, 6], [15, 15]),
944
+ kernel_dilation=(1, 1),
945
+ input_dilation=(16, 16),
946
+ groups=1,
947
+ flip=False,
948
+ ).sum()
949
+
950
+ grad = mx.grad(conv_flip)(kernel)
951
+ expected_grad = mx.grad(conv_manual_flip)(kernel)
952
+ self.assertTrue(mx.allclose(grad, expected_grad))
953
+
954
+ def test_conv_groups_grad(self):
955
+ def fn(x, w):
956
+ num_groups = x.shape[-1] // w.shape[-1]
957
+ return mx.conv1d(x, w, groups=num_groups)
958
+
959
+ def fn_gt(x, w):
960
+ num_groups = x.shape[-1] // w.shape[-1]
961
+ group_size = w.shape[-1]
962
+ ws = w.reshape(num_groups, -1, *w.shape[1:]).split(num_groups)
963
+ xs = x.reshape(*x.shape[:-1], num_groups, -1).split(num_groups, axis=-2)
964
+ return mx.concatenate(
965
+ [mx.conv_general(x.squeeze(-2), w.squeeze(0)) for x, w in zip(xs, ws)],
966
+ axis=-1,
967
+ )
968
+
969
+ mx.random.seed(3)
970
+
971
+ w = mx.random.normal(shape=(2, 3, 1))
972
+ x = mx.random.normal(shape=(1, 5, 2))
973
+ cotans = (mx.ones(shape=(1, 3, 2)),)
974
+ grads = mx.vjp(fn, (x, w), cotans)[1]
975
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
976
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
977
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
978
+
979
+ w = mx.random.normal(shape=(2, 3, 2))
980
+ x = mx.random.normal(shape=(1, 5, 4))
981
+ cotans = (mx.ones(shape=(1, 3, 2)),)
982
+ grads = mx.vjp(fn, (x, w), cotans)[1]
983
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
984
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
985
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
986
+
987
+ w = mx.random.normal(shape=(6, 3, 2))
988
+ x = mx.random.normal(shape=(1, 5, 4))
989
+ cotans = (mx.ones(shape=(1, 3, 6)),)
990
+ grads = mx.vjp(fn, (x, w), cotans)[1]
991
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
992
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
993
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
994
+
995
+ # Test 2D
996
+ w = mx.random.normal(shape=(2, 3, 3, 1))
997
+ x = mx.random.normal(shape=(1, 5, 5, 2))
998
+ cotans = (mx.ones(shape=(1, 3, 3, 2)),)
999
+ grads = mx.vjp(fn, (x, w), cotans)[1]
1000
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
1001
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
1002
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
1003
+
1004
+ # Test with flip
1005
+ def fn(x, w):
1006
+ num_groups = x.shape[-1] // w.shape[-1]
1007
+ return mx.conv_general(x, w, groups=num_groups, flip=True)
1008
+
1009
+ def fn_gt(x, w):
1010
+ num_groups = x.shape[-1] // w.shape[-1]
1011
+ group_size = w.shape[-1]
1012
+ ws = w.reshape(num_groups, -1, *w.shape[1:]).split(num_groups)
1013
+ xs = x.reshape(*x.shape[:-1], num_groups, -1).split(num_groups, axis=-2)
1014
+ return mx.concatenate(
1015
+ [
1016
+ mx.conv_general(x.squeeze(-2), w.squeeze(0), flip=True)
1017
+ for x, w in zip(xs, ws)
1018
+ ],
1019
+ axis=-1,
1020
+ )
1021
+
1022
+ w = mx.random.normal(shape=(2, 3, 1))
1023
+ x = mx.random.normal(shape=(1, 5, 2))
1024
+ cotans = (mx.ones(shape=(1, 3, 2)),)
1025
+ grads = mx.vjp(fn, (x, w), cotans)[1]
1026
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
1027
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
1028
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
1029
+
1030
+ w = mx.random.normal(shape=(2, 3, 2))
1031
+ x = mx.random.normal(shape=(1, 5, 4))
1032
+ cotans = (mx.ones(shape=(1, 3, 2)),)
1033
+ grads = mx.vjp(fn, (x, w), cotans)[1]
1034
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
1035
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
1036
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
1037
+
1038
+ # Test 2D
1039
+ w = mx.random.normal(shape=(2, 3, 3, 1))
1040
+ x = mx.random.normal(shape=(1, 5, 5, 2))
1041
+ cotans = (mx.ones(shape=(1, 3, 3, 2)),)
1042
+ grads = mx.vjp(fn, (x, w), cotans)[1]
1043
+ expected = mx.vjp(fn_gt, (x, w), cotans)[1]
1044
+ self.assertTrue(mx.allclose(expected[0], grads[0]))
1045
+ self.assertTrue(mx.allclose(expected[1], grads[1]))
1046
+
1047
+ def test_repeated_conv(self):
1048
+ x = mx.random.normal((1, 3, 3, 320))
1049
+ w = mx.random.normal((320, 3, 3, 320))
1050
+ for i in range(8):
1051
+ y1 = mx.conv2d(x, w, (1, 1), (1, 1), (1, 1), 1)
1052
+ y2 = mx.conv2d(x, w, (1, 1), (1, 1), (1, 1), 1)
1053
+ self.assertTrue(mx.allclose(y1, y2))
1054
+
1055
+ @unittest.skipIf(not has_torch, "requires Torch")
1056
+ def test_torch_conv_depthwise(self):
1057
+
1058
+ # fmt: off
1059
+ shapes = (
1060
+ # N, H, W, C kH, kW, O, strides, padding, groups
1061
+ ( 2, 16, 16, 32, 1, 1, 32, (2, 2), (1, 1), 32),
1062
+ ( 1, 16, 16, 32, 3, 3, 32, (2, 2), (1, 1), 32),
1063
+ ( 1, 32, 32, 32, 7, 7, 32, (1, 1), (3, 3), 32),
1064
+ ( 3, 32, 32, 32, 5, 5, 32, (1, 2), (0, 0), 32),
1065
+ ( 1, 32, 32, 32, 7, 7, 32, (2, 1), (1, 3), 32),
1066
+ )
1067
+ # fmt: on
1068
+
1069
+ dtypes = [np.float32]
1070
+ if mx.default_device() == mx.gpu:
1071
+ dtypes += [np.float16]
1072
+
1073
+ for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
1074
+ for dtype in dtypes:
1075
+ for flip in [False, True]:
1076
+ Cw = C // groups
1077
+
1078
+ self.__conv_general_test(
1079
+ (N, H, W, C),
1080
+ (O, kH, kW, Cw),
1081
+ strides,
1082
+ padding,
1083
+ kernel_dilation=1,
1084
+ input_dilation=1,
1085
+ groups=groups,
1086
+ flip=flip,
1087
+ np_dtype=dtype,
1088
+ atol=2e-5 if dtype == np.float32 else 5e-4,
1089
+ )
1090
+
1091
+ @unittest.skipIf(not has_torch, "requires Torch")
1092
+ def test_asymmetric_padding(self):
1093
+ inputs = np.random.normal(size=(2, 8, 8, 8, 3)).astype(np.float32)
1094
+ kernel = np.random.normal(size=(2, 3, 3, 3, 3)).astype(np.float32)
1095
+ strides = (2, 2, 2)
1096
+
1097
+ pt_out = torch.conv3d(
1098
+ torch.permute(torch.tensor(inputs), (0, 4, 1, 2, 3)),
1099
+ torch.permute(torch.tensor(kernel), (0, 4, 1, 2, 3)),
1100
+ stride=strides,
1101
+ padding=2,
1102
+ )
1103
+ pt_out = torch.permute(pt_out, (0, 2, 3, 4, 1))[:, 1:, 1:, 1:, :].numpy()
1104
+
1105
+ mx_out = mx.conv_general(
1106
+ mx.array(inputs),
1107
+ mx.array(kernel),
1108
+ stride=strides,
1109
+ padding=([0, 0, 0], [1, 1, 1]),
1110
+ )
1111
+
1112
+ self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
1113
+
1114
+ inputs = np.random.normal(size=(2, 10, 10, 3)).astype(np.float32)
1115
+ kernel = np.random.normal(size=(2, 2, 2, 3)).astype(np.float32)
1116
+
1117
+ pt_out = torch.conv2d(
1118
+ torch.permute(torch.tensor(inputs), (0, 3, 1, 2)),
1119
+ torch.permute(torch.tensor(kernel), (0, 3, 1, 2)),
1120
+ stride=1,
1121
+ padding=(1, 0),
1122
+ )
1123
+ pt_out = torch.permute(pt_out, (0, 2, 3, 1))[:, 1:].numpy()
1124
+
1125
+ mx_out = mx.conv_general(
1126
+ mx.array(inputs),
1127
+ mx.array(kernel),
1128
+ stride=1,
1129
+ padding=([0, 0], [1, 0]),
1130
+ )
1131
+ self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
1132
+
1133
+ def test_basic_grad_shapes(self):
1134
+ def loss_fn(kernel, inputs, strides, groups):
1135
+ return mx.sum(
1136
+ mx.conv_general(
1137
+ inputs,
1138
+ kernel,
1139
+ stride=strides,
1140
+ groups=groups,
1141
+ )
1142
+ )
1143
+
1144
+ for in_shape, k_shape, strides, groups in [
1145
+ ((3, 5, 4), (6, 2, 2), (2,), 2),
1146
+ ((3, 5, 4), (24, 2, 1), (2,), 4),
1147
+ ((3, 5, 5, 4), (6, 2, 2, 2), (2, 1), 2),
1148
+ ((3, 5, 5, 4), (24, 2, 2, 1), (2, 2), 4),
1149
+ ]:
1150
+ grads = mx.grad(loss_fn)(
1151
+ mx.zeros(k_shape), mx.zeros(in_shape), strides, groups
1152
+ )
1153
+ self.assertEqual(grads.shape, k_shape)
1154
+
1155
+ def test_1d_conv_with_2d(self):
1156
+ x = mx.random.uniform(shape=(2, 10, 16))
1157
+ y = mx.random.normal(shape=(16, 3, 16))
1158
+
1159
+ out = mx.conv1d(x, y, padding=1)
1160
+ out_2d = mx.conv2d(
1161
+ mx.expand_dims(x, axis=2), mx.expand_dims(y, axis=2), padding=(1, 0)
1162
+ )
1163
+
1164
+ self.assertTrue(mx.allclose(out, out_2d.squeeze(2)))
1165
+
1166
+ x = mx.random.uniform(shape=(2, 10, 4))
1167
+ y = mx.random.normal(shape=(4, 3, 4))
1168
+
1169
+ out = mx.conv1d(x, y, padding=1)
1170
+ out_2d = mx.conv2d(
1171
+ mx.expand_dims(x, axis=2), mx.expand_dims(y, axis=2), padding=(1, 0)
1172
+ )
1173
+
1174
+ self.assertTrue(mx.allclose(out, out_2d.squeeze(2)))
1175
+
1176
+ def test_conv2d_unaligned_channels(self):
1177
+ x = mx.random.uniform(shape=(2, 16, 16, 21))
1178
+ w = mx.random.uniform(shape=(32, 3, 3, 21))
1179
+ y = mx.conv2d(x, w, stream=mx.cpu)
1180
+ y_hat = mx.conv2d(x, w)
1181
+ self.assertTrue(mx.allclose(y, y_hat))
1182
+
1183
+ x = mx.random.uniform(shape=(2, 16, 16, 21))
1184
+ w = mx.random.uniform(shape=(21, 3, 3, 21))
1185
+ y = mx.conv2d(x, w, stream=mx.cpu)
1186
+ y_hat = mx.conv2d(x, w)
1187
+ self.assertTrue(mx.allclose(y, y_hat))
1188
+
1189
+ def test_conv2d_large_filter_small_channels(self):
1190
+ x = mx.random.normal(shape=(1, 181, 181, 1))
1191
+ w = mx.random.normal(shape=(1, 182, 182, 1))
1192
+ y = mx.conv2d(x, w, (1, 1), (1, 1), stream=mx.cpu)
1193
+ y_hat = mx.conv2d(x, w, (1, 1), (1, 1))
1194
+ self.assertTrue(mx.allclose(y, y_hat, rtol=1e-3, atol=1e-3))
1195
+
1196
+
1197
+ if __name__ == "__main__":
1198
+ mlx_tests.MLXTestRunner()