mlx 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlx might be problematic. Click here for more details.

Files changed (914) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/CMakeLists.txt +7 -0
  3. data/ext/mlx/Makefile +273 -0
  4. data/ext/mlx/extconf.rb +94 -0
  5. data/ext/mlx/mkmf.log +44 -0
  6. data/ext/mlx/native.bundle +0 -0
  7. data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
  8. data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
  9. data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
  10. data/ext/mlx/native.cpp +8027 -0
  11. data/ext/mlx/native.o +0 -0
  12. data/lib/mlx/core.rb +1678 -0
  13. data/lib/mlx/distributed_utils/common.rb +116 -0
  14. data/lib/mlx/distributed_utils/config.rb +600 -0
  15. data/lib/mlx/distributed_utils/launch.rb +490 -0
  16. data/lib/mlx/extension.rb +24 -0
  17. data/lib/mlx/nn/base.rb +388 -0
  18. data/lib/mlx/nn/init.rb +140 -0
  19. data/lib/mlx/nn/layers/activations.rb +336 -0
  20. data/lib/mlx/nn/layers/base.rb +6 -0
  21. data/lib/mlx/nn/layers/containers.rb +20 -0
  22. data/lib/mlx/nn/layers/convolution.rb +120 -0
  23. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  24. data/lib/mlx/nn/layers/distributed.rb +309 -0
  25. data/lib/mlx/nn/layers/dropout.rb +75 -0
  26. data/lib/mlx/nn/layers/embedding.rb +28 -0
  27. data/lib/mlx/nn/layers/linear.rb +79 -0
  28. data/lib/mlx/nn/layers/normalization.rb +216 -0
  29. data/lib/mlx/nn/layers/pooling.rb +167 -0
  30. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  31. data/lib/mlx/nn/layers/quantized.rb +215 -0
  32. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  33. data/lib/mlx/nn/layers/transformer.rb +330 -0
  34. data/lib/mlx/nn/layers/upsample.rb +97 -0
  35. data/lib/mlx/nn/layers.rb +18 -0
  36. data/lib/mlx/nn/losses.rb +251 -0
  37. data/lib/mlx/nn/utils.rb +167 -0
  38. data/lib/mlx/nn.rb +12 -0
  39. data/lib/mlx/optimizers/optimizers.rb +808 -0
  40. data/lib/mlx/optimizers/schedulers.rb +62 -0
  41. data/lib/mlx/optimizers.rb +9 -0
  42. data/lib/mlx/utils.rb +171 -0
  43. data/lib/mlx/version +1 -0
  44. data/lib/mlx/version.rb +5 -0
  45. data/lib/mlx.rb +64 -0
  46. data/mlx/.clang-format +87 -0
  47. data/mlx/.git +1 -0
  48. data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
  49. data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
  50. data/mlx/.github/actions/build-docs/action.yml +38 -0
  51. data/mlx/.github/actions/build-linux/action.yml +38 -0
  52. data/mlx/.github/actions/build-linux-release/action.yml +42 -0
  53. data/mlx/.github/actions/build-macos/action.yml +80 -0
  54. data/mlx/.github/actions/build-macos-release/action.yml +36 -0
  55. data/mlx/.github/actions/build-windows/action.yml +26 -0
  56. data/mlx/.github/actions/setup-linux/action.yml +93 -0
  57. data/mlx/.github/actions/setup-macos/action.yml +24 -0
  58. data/mlx/.github/actions/setup-windows/action.yml +42 -0
  59. data/mlx/.github/actions/test-linux/action.yml +69 -0
  60. data/mlx/.github/actions/test-windows/action.yml +20 -0
  61. data/mlx/.github/dependabot.yml +6 -0
  62. data/mlx/.github/pull_request_template.md +12 -0
  63. data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
  64. data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
  65. data/mlx/.github/workflows/build_and_test.yml +152 -0
  66. data/mlx/.github/workflows/documentation.yml +28 -0
  67. data/mlx/.github/workflows/nightly.yml +104 -0
  68. data/mlx/.github/workflows/release.yml +256 -0
  69. data/mlx/.gitignore +81 -0
  70. data/mlx/.pre-commit-config.yaml +27 -0
  71. data/mlx/ACKNOWLEDGMENTS.md +268 -0
  72. data/mlx/CITATION.cff +24 -0
  73. data/mlx/CMakeLists.txt +437 -0
  74. data/mlx/CODE_OF_CONDUCT.md +132 -0
  75. data/mlx/CONTRIBUTING.md +38 -0
  76. data/mlx/LICENSE +21 -0
  77. data/mlx/MANIFEST.in +6 -0
  78. data/mlx/README.md +121 -0
  79. data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
  80. data/mlx/benchmarks/cpp/autograd.cpp +39 -0
  81. data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
  82. data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
  83. data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
  84. data/mlx/benchmarks/cpp/time_utils.h +39 -0
  85. data/mlx/benchmarks/numpy/single_ops.py +39 -0
  86. data/mlx/benchmarks/numpy/time_utils.py +20 -0
  87. data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
  88. data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
  89. data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
  90. data/mlx/benchmarks/python/comparative/README.md +15 -0
  91. data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
  92. data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
  93. data/mlx/benchmarks/python/comparative/compare.py +284 -0
  94. data/mlx/benchmarks/python/compile_bench.py +107 -0
  95. data/mlx/benchmarks/python/conv1d_bench.py +123 -0
  96. data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
  97. data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
  98. data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
  99. data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
  100. data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
  101. data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
  102. data/mlx/benchmarks/python/conv_bench.py +135 -0
  103. data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
  104. data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
  105. data/mlx/benchmarks/python/distributed_bench.py +66 -0
  106. data/mlx/benchmarks/python/einsum_bench.py +84 -0
  107. data/mlx/benchmarks/python/fft_bench.py +118 -0
  108. data/mlx/benchmarks/python/gather_bench.py +52 -0
  109. data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
  110. data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
  111. data/mlx/benchmarks/python/hadamard_bench.py +70 -0
  112. data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
  113. data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
  114. data/mlx/benchmarks/python/masked_scatter.py +212 -0
  115. data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
  116. data/mlx/benchmarks/python/rope_bench.py +35 -0
  117. data/mlx/benchmarks/python/scatter_bench.py +96 -0
  118. data/mlx/benchmarks/python/sdpa_bench.py +223 -0
  119. data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
  120. data/mlx/benchmarks/python/single_ops.py +132 -0
  121. data/mlx/benchmarks/python/synchronize_bench.py +55 -0
  122. data/mlx/benchmarks/python/time_utils.py +38 -0
  123. data/mlx/cmake/FindCUDNN.cmake +177 -0
  124. data/mlx/cmake/FindNCCL.cmake +54 -0
  125. data/mlx/cmake/Findnvpl.cmake +3 -0
  126. data/mlx/cmake/extension.cmake +50 -0
  127. data/mlx/docs/.clang-format +2 -0
  128. data/mlx/docs/.gitignore +3 -0
  129. data/mlx/docs/.nojekyll +0 -0
  130. data/mlx/docs/Doxyfile +51 -0
  131. data/mlx/docs/Makefile +18 -0
  132. data/mlx/docs/README.md +54 -0
  133. data/mlx/docs/index.html +1 -0
  134. data/mlx/docs/requirements.txt +5 -0
  135. data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
  136. data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
  137. data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
  138. data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
  139. data/mlx/docs/src/_static/mlx_logo.png +0 -0
  140. data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
  141. data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
  142. data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
  143. data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
  144. data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
  145. data/mlx/docs/src/_templates/module-base-class.rst +33 -0
  146. data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
  147. data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
  148. data/mlx/docs/src/conf.py +99 -0
  149. data/mlx/docs/src/cpp/ops.rst +7 -0
  150. data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
  151. data/mlx/docs/src/dev/extensions.rst +811 -0
  152. data/mlx/docs/src/dev/metal_debugger.rst +68 -0
  153. data/mlx/docs/src/dev/metal_logging.rst +40 -0
  154. data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
  155. data/mlx/docs/src/examples/data_parallelism.rst +91 -0
  156. data/mlx/docs/src/examples/linear_regression.rst +77 -0
  157. data/mlx/docs/src/examples/llama-inference.rst +382 -0
  158. data/mlx/docs/src/examples/mlp.rst +134 -0
  159. data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
  160. data/mlx/docs/src/index.rst +96 -0
  161. data/mlx/docs/src/install.rst +340 -0
  162. data/mlx/docs/src/python/array.rst +65 -0
  163. data/mlx/docs/src/python/cuda.rst +9 -0
  164. data/mlx/docs/src/python/data_types.rst +78 -0
  165. data/mlx/docs/src/python/devices_and_streams.rst +21 -0
  166. data/mlx/docs/src/python/distributed.rst +22 -0
  167. data/mlx/docs/src/python/export.rst +14 -0
  168. data/mlx/docs/src/python/fast.rst +16 -0
  169. data/mlx/docs/src/python/fft.rst +24 -0
  170. data/mlx/docs/src/python/linalg.rst +27 -0
  171. data/mlx/docs/src/python/memory_management.rst +16 -0
  172. data/mlx/docs/src/python/metal.rst +12 -0
  173. data/mlx/docs/src/python/nn/distributed.rst +30 -0
  174. data/mlx/docs/src/python/nn/functions.rst +40 -0
  175. data/mlx/docs/src/python/nn/init.rst +45 -0
  176. data/mlx/docs/src/python/nn/layers.rst +74 -0
  177. data/mlx/docs/src/python/nn/losses.rst +25 -0
  178. data/mlx/docs/src/python/nn/module.rst +38 -0
  179. data/mlx/docs/src/python/nn.rst +186 -0
  180. data/mlx/docs/src/python/ops.rst +184 -0
  181. data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
  182. data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
  183. data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
  184. data/mlx/docs/src/python/optimizers.rst +78 -0
  185. data/mlx/docs/src/python/random.rst +48 -0
  186. data/mlx/docs/src/python/transforms.rst +22 -0
  187. data/mlx/docs/src/python/tree_utils.rst +23 -0
  188. data/mlx/docs/src/usage/compile.rst +516 -0
  189. data/mlx/docs/src/usage/distributed.rst +572 -0
  190. data/mlx/docs/src/usage/export.rst +288 -0
  191. data/mlx/docs/src/usage/function_transforms.rst +191 -0
  192. data/mlx/docs/src/usage/indexing.rst +194 -0
  193. data/mlx/docs/src/usage/launching_distributed.rst +234 -0
  194. data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
  195. data/mlx/docs/src/usage/numpy.rst +124 -0
  196. data/mlx/docs/src/usage/quick_start.rst +67 -0
  197. data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
  198. data/mlx/docs/src/usage/unified_memory.rst +78 -0
  199. data/mlx/docs/src/usage/using_streams.rst +18 -0
  200. data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
  201. data/mlx/examples/cmake_project/README.md +26 -0
  202. data/mlx/examples/cmake_project/example.cpp +14 -0
  203. data/mlx/examples/cpp/CMakeLists.txt +12 -0
  204. data/mlx/examples/cpp/distributed.cpp +22 -0
  205. data/mlx/examples/cpp/linear_regression.cpp +54 -0
  206. data/mlx/examples/cpp/logistic_regression.cpp +54 -0
  207. data/mlx/examples/cpp/metal_capture.cpp +31 -0
  208. data/mlx/examples/cpp/timer.h +20 -0
  209. data/mlx/examples/cpp/tutorial.cpp +99 -0
  210. data/mlx/examples/export/CMakeLists.txt +22 -0
  211. data/mlx/examples/export/README.md +49 -0
  212. data/mlx/examples/export/eval_mlp.cpp +25 -0
  213. data/mlx/examples/export/eval_mlp.py +52 -0
  214. data/mlx/examples/export/train_mlp.cpp +35 -0
  215. data/mlx/examples/export/train_mlp.py +76 -0
  216. data/mlx/examples/extensions/CMakeLists.txt +78 -0
  217. data/mlx/examples/extensions/README.md +24 -0
  218. data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
  219. data/mlx/examples/extensions/axpby/axpby.h +90 -0
  220. data/mlx/examples/extensions/axpby/axpby.metal +47 -0
  221. data/mlx/examples/extensions/bindings.cpp +39 -0
  222. data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
  223. data/mlx/examples/extensions/pyproject.toml +8 -0
  224. data/mlx/examples/extensions/requirements.txt +4 -0
  225. data/mlx/examples/extensions/setup.py +18 -0
  226. data/mlx/examples/extensions/test.py +12 -0
  227. data/mlx/examples/python/linear_regression.py +46 -0
  228. data/mlx/examples/python/logistic_regression.py +49 -0
  229. data/mlx/examples/python/qqmm.py +117 -0
  230. data/mlx/mlx/3rdparty/.clang-format +2 -0
  231. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  232. data/mlx/mlx/CMakeLists.txt +107 -0
  233. data/mlx/mlx/allocator.h +75 -0
  234. data/mlx/mlx/api.h +29 -0
  235. data/mlx/mlx/array.cpp +354 -0
  236. data/mlx/mlx/array.h +647 -0
  237. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  238. data/mlx/mlx/backend/common/binary.h +97 -0
  239. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  240. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  241. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  242. data/mlx/mlx/backend/common/common.cpp +305 -0
  243. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  244. data/mlx/mlx/backend/common/compiled.h +77 -0
  245. data/mlx/mlx/backend/common/copy.h +50 -0
  246. data/mlx/mlx/backend/common/hadamard.h +109 -0
  247. data/mlx/mlx/backend/common/load.cpp +57 -0
  248. data/mlx/mlx/backend/common/matmul.h +67 -0
  249. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  250. data/mlx/mlx/backend/common/reduce.h +59 -0
  251. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  252. data/mlx/mlx/backend/common/slicing.h +20 -0
  253. data/mlx/mlx/backend/common/ternary.h +85 -0
  254. data/mlx/mlx/backend/common/unary.h +29 -0
  255. data/mlx/mlx/backend/common/utils.cpp +231 -0
  256. data/mlx/mlx/backend/common/utils.h +205 -0
  257. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  258. data/mlx/mlx/backend/cpu/arange.h +28 -0
  259. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  260. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  261. data/mlx/mlx/backend/cpu/binary.h +517 -0
  262. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  263. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  264. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  265. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  266. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  267. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  268. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  269. data/mlx/mlx/backend/cpu/copy.h +36 -0
  270. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  271. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  272. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  273. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  274. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  275. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  276. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  277. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  278. data/mlx/mlx/backend/cpu/eval.h +12 -0
  279. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  280. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  281. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  282. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  283. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  284. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  285. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  286. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  287. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  288. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  289. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  290. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  291. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  292. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  293. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  294. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  295. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  296. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  297. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  298. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  299. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  300. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  301. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  302. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  303. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  304. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  305. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  306. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  307. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  308. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  309. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  310. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  311. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  312. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  313. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  314. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  315. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  316. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  317. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  318. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  319. data/mlx/mlx/backend/cpu/unary.h +281 -0
  320. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  321. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  322. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  323. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  324. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  325. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  326. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  327. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  328. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  329. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  330. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  331. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  332. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  333. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  334. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  335. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  336. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  337. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  338. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  339. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  340. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  341. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  342. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  343. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  344. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  345. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  346. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  347. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  348. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  349. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  350. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  351. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  352. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  353. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  354. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  355. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  356. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  357. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  358. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  359. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  360. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  361. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  362. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  363. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  364. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  365. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  366. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  367. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  368. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  369. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  370. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  371. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  372. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  373. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  374. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  375. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  376. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  377. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  378. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  379. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  380. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  381. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  382. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  383. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  384. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  385. data/mlx/mlx/backend/cuda/device.h +195 -0
  386. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  387. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  388. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  389. data/mlx/mlx/backend/cuda/event.cu +415 -0
  390. data/mlx/mlx/backend/cuda/event.h +79 -0
  391. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  392. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  393. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  394. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  395. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  396. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  397. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  398. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  399. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  400. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  401. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  402. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  403. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  404. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  405. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  406. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  407. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  408. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  409. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  410. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  411. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  412. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  413. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  414. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  415. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  416. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  417. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  418. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  419. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  420. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  421. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  422. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  423. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  424. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  425. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  426. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  427. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  428. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  429. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  430. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  431. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  432. data/mlx/mlx/backend/cuda/random.cu +202 -0
  433. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  434. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  435. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  436. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  437. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  438. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  439. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  440. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  441. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  442. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  443. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  444. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  445. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  446. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  447. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  448. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  449. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  450. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  451. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  452. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  453. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  454. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  455. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  456. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  457. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  458. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  459. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  460. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  461. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  462. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  463. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  464. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  465. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  466. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  467. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  468. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  469. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  470. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  471. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  472. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  473. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  474. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  475. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  476. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  477. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  478. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  479. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  480. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  481. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  482. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  483. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  484. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  485. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  486. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  487. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  488. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  489. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  490. data/mlx/mlx/backend/cuda/utils.h +49 -0
  491. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  492. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  493. data/mlx/mlx/backend/cuda/worker.h +55 -0
  494. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  495. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  496. data/mlx/mlx/backend/gpu/copy.h +57 -0
  497. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  498. data/mlx/mlx/backend/gpu/eval.h +18 -0
  499. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  500. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  501. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  502. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  503. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  504. data/mlx/mlx/backend/metal/allocator.h +79 -0
  505. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  506. data/mlx/mlx/backend/metal/binary.h +33 -0
  507. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  508. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  509. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  510. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  511. data/mlx/mlx/backend/metal/device.cpp +816 -0
  512. data/mlx/mlx/backend/metal/device.h +289 -0
  513. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  514. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  515. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  516. data/mlx/mlx/backend/metal/event.cpp +62 -0
  517. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  518. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  519. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  520. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  521. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  522. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  523. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  524. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  525. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  526. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  527. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  528. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  529. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  530. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  531. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  532. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  533. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  534. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  535. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  536. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  537. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  538. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  539. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  540. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  541. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  542. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  543. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  544. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  545. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  546. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  547. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  548. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  549. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  550. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  551. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  552. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  553. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  554. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  555. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  556. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  557. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  558. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  559. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  560. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  561. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  562. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  563. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  564. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  565. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  566. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  567. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  568. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  569. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  570. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  571. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  572. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  573. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  574. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  575. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  576. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  577. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  578. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  579. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  580. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  581. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  582. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  583. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  584. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  585. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  586. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  587. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  588. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  589. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  590. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  591. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  592. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  593. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  594. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  595. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  596. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  597. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  598. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  599. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  600. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  601. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  602. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  603. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  604. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  605. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  606. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  607. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  608. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  609. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  610. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  611. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  612. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  613. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  614. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  615. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  616. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  617. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  618. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  619. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  620. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  621. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  622. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  623. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  624. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  625. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  626. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  627. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  628. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  629. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  630. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  631. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  632. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  633. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  634. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  635. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  636. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  637. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  638. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  639. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  640. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  641. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  642. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  643. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  644. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  645. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  646. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  647. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  648. data/mlx/mlx/backend/metal/kernels.h +375 -0
  649. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  650. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  651. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  652. data/mlx/mlx/backend/metal/matmul.h +144 -0
  653. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  654. data/mlx/mlx/backend/metal/metal.h +25 -0
  655. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  656. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  657. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  658. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  659. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  660. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  661. data/mlx/mlx/backend/metal/reduce.h +41 -0
  662. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  663. data/mlx/mlx/backend/metal/resident.h +32 -0
  664. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  665. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  666. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  667. data/mlx/mlx/backend/metal/scan.h +17 -0
  668. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  669. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  670. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  671. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  672. data/mlx/mlx/backend/metal/ternary.h +21 -0
  673. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  674. data/mlx/mlx/backend/metal/unary.h +21 -0
  675. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  676. data/mlx/mlx/backend/metal/utils.h +99 -0
  677. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  678. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  679. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  680. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  681. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  682. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  683. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  684. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  685. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  686. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  687. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  688. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  689. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  690. data/mlx/mlx/compile.cpp +1243 -0
  691. data/mlx/mlx/compile.h +45 -0
  692. data/mlx/mlx/compile_impl.h +70 -0
  693. data/mlx/mlx/device.cpp +72 -0
  694. data/mlx/mlx/device.h +56 -0
  695. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  696. data/mlx/mlx/distributed/distributed.cpp +197 -0
  697. data/mlx/mlx/distributed/distributed.h +61 -0
  698. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  699. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  700. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  701. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  702. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  703. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  704. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  705. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  706. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  707. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  708. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  709. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  710. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  711. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  712. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  713. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  714. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  715. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  716. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  717. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  718. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  719. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  720. data/mlx/mlx/distributed/ops.cpp +186 -0
  721. data/mlx/mlx/distributed/ops.h +57 -0
  722. data/mlx/mlx/distributed/primitives.cpp +95 -0
  723. data/mlx/mlx/distributed/primitives.h +156 -0
  724. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  725. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  726. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  727. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  728. data/mlx/mlx/distributed/ring/ring.h +12 -0
  729. data/mlx/mlx/distributed/utils.cpp +206 -0
  730. data/mlx/mlx/distributed/utils.h +67 -0
  731. data/mlx/mlx/dtype.cpp +197 -0
  732. data/mlx/mlx/dtype.h +116 -0
  733. data/mlx/mlx/dtype_utils.cpp +42 -0
  734. data/mlx/mlx/dtype_utils.h +119 -0
  735. data/mlx/mlx/einsum.cpp +941 -0
  736. data/mlx/mlx/einsum.h +23 -0
  737. data/mlx/mlx/event.h +58 -0
  738. data/mlx/mlx/export.cpp +1130 -0
  739. data/mlx/mlx/export.h +137 -0
  740. data/mlx/mlx/export_impl.h +99 -0
  741. data/mlx/mlx/fast.cpp +941 -0
  742. data/mlx/mlx/fast.h +103 -0
  743. data/mlx/mlx/fast_primitives.h +427 -0
  744. data/mlx/mlx/fence.h +39 -0
  745. data/mlx/mlx/fft.cpp +262 -0
  746. data/mlx/mlx/fft.h +159 -0
  747. data/mlx/mlx/graph_utils.cpp +175 -0
  748. data/mlx/mlx/graph_utils.h +67 -0
  749. data/mlx/mlx/io/CMakeLists.txt +25 -0
  750. data/mlx/mlx/io/gguf.cpp +470 -0
  751. data/mlx/mlx/io/gguf.h +20 -0
  752. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  753. data/mlx/mlx/io/load.cpp +397 -0
  754. data/mlx/mlx/io/load.h +175 -0
  755. data/mlx/mlx/io/no_gguf.cpp +20 -0
  756. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  757. data/mlx/mlx/io/safetensors.cpp +234 -0
  758. data/mlx/mlx/io.h +61 -0
  759. data/mlx/mlx/linalg.cpp +708 -0
  760. data/mlx/mlx/linalg.h +115 -0
  761. data/mlx/mlx/memory.h +80 -0
  762. data/mlx/mlx/mlx.h +25 -0
  763. data/mlx/mlx/ops.cpp +6094 -0
  764. data/mlx/mlx/ops.h +1610 -0
  765. data/mlx/mlx/primitives.cpp +5850 -0
  766. data/mlx/mlx/primitives.h +2525 -0
  767. data/mlx/mlx/random.cpp +492 -0
  768. data/mlx/mlx/random.h +283 -0
  769. data/mlx/mlx/scheduler.cpp +73 -0
  770. data/mlx/mlx/scheduler.h +189 -0
  771. data/mlx/mlx/small_vector.h +540 -0
  772. data/mlx/mlx/stream.h +42 -0
  773. data/mlx/mlx/threadpool.h +133 -0
  774. data/mlx/mlx/transforms.cpp +1065 -0
  775. data/mlx/mlx/transforms.h +231 -0
  776. data/mlx/mlx/transforms_impl.h +88 -0
  777. data/mlx/mlx/types/bf16.h +187 -0
  778. data/mlx/mlx/types/complex.h +113 -0
  779. data/mlx/mlx/types/fp16.h +234 -0
  780. data/mlx/mlx/types/half_types.h +58 -0
  781. data/mlx/mlx/types/limits.h +70 -0
  782. data/mlx/mlx/utils.cpp +302 -0
  783. data/mlx/mlx/utils.h +174 -0
  784. data/mlx/mlx/version.cpp +11 -0
  785. data/mlx/mlx/version.h +22 -0
  786. data/mlx/mlx.pc.in +52 -0
  787. data/mlx/pyproject.toml +7 -0
  788. data/mlx/python/mlx/__main__.py +27 -0
  789. data/mlx/python/mlx/_distributed_utils/common.py +135 -0
  790. data/mlx/python/mlx/_distributed_utils/config.py +631 -0
  791. data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
  792. data/mlx/python/mlx/_reprlib_fix.py +16 -0
  793. data/mlx/python/mlx/_stub_patterns.txt +36 -0
  794. data/mlx/python/mlx/extension.py +88 -0
  795. data/mlx/python/mlx/nn/__init__.py +5 -0
  796. data/mlx/python/mlx/nn/init.py +441 -0
  797. data/mlx/python/mlx/nn/layers/__init__.py +105 -0
  798. data/mlx/python/mlx/nn/layers/activations.py +661 -0
  799. data/mlx/python/mlx/nn/layers/base.py +675 -0
  800. data/mlx/python/mlx/nn/layers/containers.py +24 -0
  801. data/mlx/python/mlx/nn/layers/convolution.py +232 -0
  802. data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
  803. data/mlx/python/mlx/nn/layers/distributed.py +601 -0
  804. data/mlx/python/mlx/nn/layers/dropout.py +137 -0
  805. data/mlx/python/mlx/nn/layers/embedding.py +53 -0
  806. data/mlx/python/mlx/nn/layers/linear.py +180 -0
  807. data/mlx/python/mlx/nn/layers/normalization.py +363 -0
  808. data/mlx/python/mlx/nn/layers/pooling.py +398 -0
  809. data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
  810. data/mlx/python/mlx/nn/layers/quantized.py +426 -0
  811. data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
  812. data/mlx/python/mlx/nn/layers/transformer.py +354 -0
  813. data/mlx/python/mlx/nn/layers/upsample.py +277 -0
  814. data/mlx/python/mlx/nn/losses.py +610 -0
  815. data/mlx/python/mlx/nn/utils.py +165 -0
  816. data/mlx/python/mlx/optimizers/__init__.py +4 -0
  817. data/mlx/python/mlx/optimizers/optimizers.py +976 -0
  818. data/mlx/python/mlx/optimizers/schedulers.py +158 -0
  819. data/mlx/python/mlx/py.typed +1 -0
  820. data/mlx/python/mlx/utils.py +325 -0
  821. data/mlx/python/src/CMakeLists.txt +96 -0
  822. data/mlx/python/src/array.cpp +1525 -0
  823. data/mlx/python/src/buffer.h +124 -0
  824. data/mlx/python/src/constants.cpp +15 -0
  825. data/mlx/python/src/convert.cpp +504 -0
  826. data/mlx/python/src/convert.h +50 -0
  827. data/mlx/python/src/cuda.cpp +19 -0
  828. data/mlx/python/src/device.cpp +98 -0
  829. data/mlx/python/src/distributed.cpp +352 -0
  830. data/mlx/python/src/export.cpp +356 -0
  831. data/mlx/python/src/fast.cpp +627 -0
  832. data/mlx/python/src/fft.cpp +514 -0
  833. data/mlx/python/src/indexing.cpp +1016 -0
  834. data/mlx/python/src/indexing.h +41 -0
  835. data/mlx/python/src/linalg.cpp +663 -0
  836. data/mlx/python/src/load.cpp +531 -0
  837. data/mlx/python/src/load.h +51 -0
  838. data/mlx/python/src/memory.cpp +125 -0
  839. data/mlx/python/src/metal.cpp +98 -0
  840. data/mlx/python/src/mlx.cpp +51 -0
  841. data/mlx/python/src/mlx_func.cpp +116 -0
  842. data/mlx/python/src/mlx_func.h +31 -0
  843. data/mlx/python/src/ops.cpp +5545 -0
  844. data/mlx/python/src/random.cpp +516 -0
  845. data/mlx/python/src/small_vector.h +76 -0
  846. data/mlx/python/src/stream.cpp +147 -0
  847. data/mlx/python/src/transforms.cpp +1542 -0
  848. data/mlx/python/src/trees.cpp +311 -0
  849. data/mlx/python/src/trees.h +62 -0
  850. data/mlx/python/src/utils.cpp +98 -0
  851. data/mlx/python/src/utils.h +78 -0
  852. data/mlx/python/tests/__main__.py +5 -0
  853. data/mlx/python/tests/cuda_skip.py +62 -0
  854. data/mlx/python/tests/mlx_distributed_tests.py +314 -0
  855. data/mlx/python/tests/mlx_tests.py +116 -0
  856. data/mlx/python/tests/mpi_test_distributed.py +142 -0
  857. data/mlx/python/tests/nccl_test_distributed.py +52 -0
  858. data/mlx/python/tests/ring_test_distributed.py +131 -0
  859. data/mlx/python/tests/test_array.py +2139 -0
  860. data/mlx/python/tests/test_autograd.py +880 -0
  861. data/mlx/python/tests/test_bf16.py +196 -0
  862. data/mlx/python/tests/test_blas.py +1429 -0
  863. data/mlx/python/tests/test_compile.py +1277 -0
  864. data/mlx/python/tests/test_constants.py +41 -0
  865. data/mlx/python/tests/test_conv.py +1198 -0
  866. data/mlx/python/tests/test_conv_transpose.py +810 -0
  867. data/mlx/python/tests/test_device.py +150 -0
  868. data/mlx/python/tests/test_double.py +306 -0
  869. data/mlx/python/tests/test_einsum.py +363 -0
  870. data/mlx/python/tests/test_eval.py +200 -0
  871. data/mlx/python/tests/test_export_import.py +614 -0
  872. data/mlx/python/tests/test_fast.py +923 -0
  873. data/mlx/python/tests/test_fast_sdpa.py +647 -0
  874. data/mlx/python/tests/test_fft.py +323 -0
  875. data/mlx/python/tests/test_graph.py +37 -0
  876. data/mlx/python/tests/test_init.py +139 -0
  877. data/mlx/python/tests/test_linalg.py +621 -0
  878. data/mlx/python/tests/test_load.py +447 -0
  879. data/mlx/python/tests/test_losses.py +427 -0
  880. data/mlx/python/tests/test_memory.py +77 -0
  881. data/mlx/python/tests/test_nn.py +1986 -0
  882. data/mlx/python/tests/test_ops.py +3261 -0
  883. data/mlx/python/tests/test_optimizers.py +584 -0
  884. data/mlx/python/tests/test_quantized.py +1160 -0
  885. data/mlx/python/tests/test_random.py +392 -0
  886. data/mlx/python/tests/test_reduce.py +223 -0
  887. data/mlx/python/tests/test_tree.py +96 -0
  888. data/mlx/python/tests/test_upsample.py +100 -0
  889. data/mlx/python/tests/test_vmap.py +860 -0
  890. data/mlx/setup.py +315 -0
  891. data/mlx/tests/CMakeLists.txt +44 -0
  892. data/mlx/tests/allocator_tests.cpp +41 -0
  893. data/mlx/tests/arg_reduce_tests.cpp +204 -0
  894. data/mlx/tests/array_tests.cpp +663 -0
  895. data/mlx/tests/autograd_tests.cpp +1399 -0
  896. data/mlx/tests/blas_tests.cpp +110 -0
  897. data/mlx/tests/compile_tests.cpp +818 -0
  898. data/mlx/tests/creations_tests.cpp +239 -0
  899. data/mlx/tests/custom_vjp_tests.cpp +55 -0
  900. data/mlx/tests/device_tests.cpp +35 -0
  901. data/mlx/tests/einsum_tests.cpp +85 -0
  902. data/mlx/tests/eval_tests.cpp +93 -0
  903. data/mlx/tests/export_import_tests.cpp +164 -0
  904. data/mlx/tests/fft_tests.cpp +366 -0
  905. data/mlx/tests/gpu_tests.cpp +523 -0
  906. data/mlx/tests/linalg_tests.cpp +639 -0
  907. data/mlx/tests/load_tests.cpp +270 -0
  908. data/mlx/tests/ops_tests.cpp +4159 -0
  909. data/mlx/tests/random_tests.cpp +716 -0
  910. data/mlx/tests/scheduler_tests.cpp +121 -0
  911. data/mlx/tests/tests.cpp +26 -0
  912. data/mlx/tests/utils_tests.cpp +67 -0
  913. data/mlx/tests/vmap_tests.cpp +547 -0
  914. metadata +958 -0
@@ -0,0 +1,2139 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import gc
4
+ import operator
5
+ import os
6
+ import pickle
7
+ import platform
8
+ import sys
9
+ import unittest
10
+ import weakref
11
+ from copy import copy, deepcopy
12
+ from itertools import permutations
13
+
14
+ if platform.system() == "Windows":
15
+ import psutil
16
+ else:
17
+ import resource
18
+
19
+ import mlx.core as mx
20
+ import mlx_tests
21
+ import numpy as np
22
+
23
+ try:
24
+ import tensorflow as tf
25
+
26
+ has_tf = True
27
+ except ImportError as e:
28
+ has_tf = False
29
+
30
+
31
+ class TestVersion(mlx_tests.MLXTestCase):
32
+ def test_version(self):
33
+ v = mx.__version__
34
+ vnums = v.split(".")
35
+ self.assertGreaterEqual(len(vnums), 3)
36
+ v = ".".join(str(int(vn)) for vn in vnums[:3])
37
+ self.assertEqual(v, mx.__version__[: len(v)])
38
+
39
+
40
+ class TestDtypes(mlx_tests.MLXTestCase):
41
+ def test_dtypes(self):
42
+ self.assertEqual(mx.bool_.size, 1)
43
+ self.assertEqual(mx.uint8.size, 1)
44
+ self.assertEqual(mx.uint16.size, 2)
45
+ self.assertEqual(mx.uint32.size, 4)
46
+ self.assertEqual(mx.uint64.size, 8)
47
+ self.assertEqual(mx.int8.size, 1)
48
+ self.assertEqual(mx.int16.size, 2)
49
+ self.assertEqual(mx.int32.size, 4)
50
+ self.assertEqual(mx.int64.size, 8)
51
+ self.assertEqual(mx.float16.size, 2)
52
+ self.assertEqual(mx.float32.size, 4)
53
+ self.assertEqual(mx.bfloat16.size, 2)
54
+ self.assertEqual(mx.complex64.size, 8)
55
+
56
+ self.assertEqual(str(mx.bool_), "mlx.core.bool")
57
+ self.assertEqual(str(mx.uint8), "mlx.core.uint8")
58
+ self.assertEqual(str(mx.uint16), "mlx.core.uint16")
59
+ self.assertEqual(str(mx.uint32), "mlx.core.uint32")
60
+ self.assertEqual(str(mx.uint64), "mlx.core.uint64")
61
+ self.assertEqual(str(mx.int8), "mlx.core.int8")
62
+ self.assertEqual(str(mx.int16), "mlx.core.int16")
63
+ self.assertEqual(str(mx.int32), "mlx.core.int32")
64
+ self.assertEqual(str(mx.int64), "mlx.core.int64")
65
+ self.assertEqual(str(mx.float16), "mlx.core.float16")
66
+ self.assertEqual(str(mx.float32), "mlx.core.float32")
67
+ self.assertEqual(str(mx.bfloat16), "mlx.core.bfloat16")
68
+ self.assertEqual(str(mx.complex64), "mlx.core.complex64")
69
+
70
+ def test_scalar_conversion(self):
71
+ dtypes = [
72
+ "uint8",
73
+ "uint16",
74
+ "uint32",
75
+ "uint64",
76
+ "int8",
77
+ "int16",
78
+ "int32",
79
+ "int64",
80
+ "float16",
81
+ "float32",
82
+ "complex64",
83
+ ]
84
+
85
+ for dtype in dtypes:
86
+ with self.subTest(dtype=dtype):
87
+ x = np.array(2, dtype=getattr(np, dtype))
88
+ y = np.min(x)
89
+
90
+ self.assertEqual(x.dtype, y.dtype)
91
+ self.assertTupleEqual(x.shape, y.shape)
92
+
93
+ z = mx.array(y)
94
+ self.assertEqual(np.array(z), x)
95
+ self.assertEqual(np.array(z), y)
96
+ self.assertEqual(z.dtype, getattr(mx, dtype))
97
+ self.assertListEqual(list(z.shape), list(x.shape))
98
+ self.assertListEqual(list(z.shape), list(y.shape))
99
+
100
+ def test_finfo(self):
101
+ with self.assertRaises(ValueError):
102
+ mx.finfo(mx.int32)
103
+
104
+ self.assertEqual(mx.finfo(mx.float32).min, np.finfo(np.float32).min)
105
+ self.assertEqual(mx.finfo(mx.float32).max, np.finfo(np.float32).max)
106
+ self.assertEqual(mx.finfo(mx.float32).eps, np.finfo(np.float32).eps)
107
+ self.assertEqual(mx.finfo(mx.float32).dtype, mx.float32)
108
+
109
+ self.assertEqual(mx.finfo(mx.float16).min, np.finfo(np.float16).min)
110
+ self.assertEqual(mx.finfo(mx.float16).max, np.finfo(np.float16).max)
111
+ self.assertEqual(mx.finfo(mx.float16).eps, np.finfo(np.float16).eps)
112
+ self.assertEqual(mx.finfo(mx.float16).dtype, mx.float16)
113
+
114
+ def test_iinfo(self):
115
+ with self.assertRaises(ValueError):
116
+ mx.iinfo(mx.float32)
117
+
118
+ self.assertEqual(mx.iinfo(mx.int32).min, np.iinfo(np.int32).min)
119
+ self.assertEqual(mx.iinfo(mx.int32).max, np.iinfo(np.int32).max)
120
+ self.assertEqual(mx.iinfo(mx.int32).dtype, mx.int32)
121
+
122
+ self.assertEqual(mx.iinfo(mx.uint32).min, np.iinfo(np.uint32).min)
123
+ self.assertEqual(mx.iinfo(mx.uint32).max, np.iinfo(np.uint32).max)
124
+ self.assertEqual(mx.iinfo(mx.int8).dtype, mx.int8)
125
+
126
+
127
+ class TestEquality(mlx_tests.MLXTestCase):
128
+ def test_array_eq_array(self):
129
+ a = mx.array([1, 2, 3])
130
+ b = mx.array([1, 2, 3])
131
+ c = mx.array([1, 2, 4])
132
+ self.assertTrue(mx.all(a == b))
133
+ self.assertFalse(mx.all(a == c))
134
+
135
+ def test_array_eq_scalar(self):
136
+ a = mx.array([1, 2, 3])
137
+ b = 1
138
+ c = 4
139
+ d = 2.5
140
+ e = mx.array([1, 2.5, 3.25])
141
+ self.assertTrue(mx.any(a == b))
142
+ self.assertFalse(mx.all(a == c))
143
+ self.assertFalse(mx.all(a == d))
144
+ self.assertTrue(mx.any(a == e))
145
+
146
+ def test_list_equals_array(self):
147
+ a = mx.array([1, 2, 3])
148
+ b = [1, 2, 3]
149
+ c = [1, 2, 4]
150
+
151
+ # mlx array equality returns false if is compared with any kind of
152
+ # object which is not an mlx array
153
+ self.assertFalse(a == b)
154
+ self.assertFalse(a == c)
155
+
156
+ def test_tuple_equals_array(self):
157
+ a = mx.array([1, 2, 3])
158
+ b = (1, 2, 3)
159
+ c = (1, 2, 4)
160
+
161
+ # mlx array equality returns false if is compared with any kind of
162
+ # object which is not an mlx array
163
+ self.assertFalse(a == b)
164
+ self.assertFalse(a == c)
165
+
166
+
167
+ class TestInequality(mlx_tests.MLXTestCase):
168
+ def test_array_ne_array(self):
169
+ a = mx.array([1, 2, 3])
170
+ b = mx.array([1, 2, 3])
171
+ c = mx.array([1, 2, 4])
172
+ self.assertFalse(mx.any(a != b))
173
+ self.assertTrue(mx.any(a != c))
174
+
175
+ def test_array_ne_scalar(self):
176
+ a = mx.array([1, 2, 3])
177
+ b = 1
178
+ c = 4
179
+ d = 1.5
180
+ e = 2.5
181
+ f = mx.array([1, 2.5, 3.25])
182
+ self.assertFalse(mx.all(a != b))
183
+ self.assertTrue(mx.any(a != c))
184
+ self.assertTrue(mx.any(a != d))
185
+ self.assertTrue(mx.any(a != e))
186
+ self.assertFalse(mx.all(a != f))
187
+
188
+ def test_list_not_equals_array(self):
189
+ a = mx.array([1, 2, 3])
190
+ b = [1, 2, 3]
191
+ c = [1, 2, 4]
192
+
193
+ # mlx array inequality returns true if is compared with any kind of
194
+ # object which is not an mlx array
195
+ self.assertTrue(a != b)
196
+ self.assertTrue(a != c)
197
+
198
+ def test_dlx_device_type(self):
199
+ a = mx.array([1, 2, 3])
200
+ device_type, device_id = a.__dlpack_device__()
201
+ self.assertIn(device_type, [1, 8, 13])
202
+ self.assertEqual(device_id, 0)
203
+
204
+ if device_type == 8:
205
+ # Additional check if Metal is supposed to be available
206
+ self.assertTrue(mx.metal.is_available())
207
+ elif device_type == 1:
208
+ # Additional check if CPU is the fallback
209
+ self.assertFalse(mx.metal.is_available())
210
+
211
+ def test_tuple_not_equals_array(self):
212
+ a = mx.array([1, 2, 3])
213
+ b = (1, 2, 3)
214
+ c = (1, 2, 4)
215
+
216
+ # mlx array inequality returns true if is compared with any kind of
217
+ # object which is not an mlx array
218
+ self.assertTrue(a != b)
219
+ self.assertTrue(a != c)
220
+
221
+ def test_obj_inequality_array(self):
222
+ str_ = "hello"
223
+ a = mx.array([1, 2, 3])
224
+ lst_ = [1, 2, 3]
225
+ tpl_ = (1, 2, 3)
226
+
227
+ # check if object comparison(</>/<=/>=) with mlx array should throw an exception
228
+ # if not, the tests will fail
229
+ with self.assertRaises(ValueError):
230
+ a < str_
231
+ with self.assertRaises(ValueError):
232
+ a > str_
233
+ with self.assertRaises(ValueError):
234
+ a <= str_
235
+ with self.assertRaises(ValueError):
236
+ a >= str_
237
+ with self.assertRaises(ValueError):
238
+ a < lst_
239
+ with self.assertRaises(ValueError):
240
+ a > lst_
241
+ with self.assertRaises(ValueError):
242
+ a <= lst_
243
+ with self.assertRaises(ValueError):
244
+ a >= lst_
245
+ with self.assertRaises(ValueError):
246
+ a < tpl_
247
+ with self.assertRaises(ValueError):
248
+ a > tpl_
249
+ with self.assertRaises(ValueError):
250
+ a <= tpl_
251
+ with self.assertRaises(ValueError):
252
+ a >= tpl_
253
+
254
+ def test_invalid_op_on_array(self):
255
+ str_ = "hello"
256
+ a = mx.array([1, 2.5, 3.25])
257
+ lst_ = [1, 2.1, 3.25]
258
+ tpl_ = (1, 2.5, 3.25)
259
+
260
+ with self.assertRaises(ValueError):
261
+ a * str_
262
+ with self.assertRaises(ValueError):
263
+ a *= str_
264
+ with self.assertRaises(ValueError):
265
+ a /= lst_
266
+ with self.assertRaises(ValueError):
267
+ a // lst_
268
+ with self.assertRaises(ValueError):
269
+ a % lst_
270
+ with self.assertRaises(ValueError):
271
+ a**tpl_
272
+ with self.assertRaises(ValueError):
273
+ a & tpl_
274
+ with self.assertRaises(ValueError):
275
+ a | str_
276
+
277
+
278
+ class TestArray(mlx_tests.MLXTestCase):
279
+ def test_array_basics(self):
280
+ x = mx.array(1)
281
+ self.assertEqual(x.size, 1)
282
+ self.assertEqual(x.ndim, 0)
283
+ self.assertEqual(x.itemsize, 4)
284
+ self.assertEqual(x.nbytes, 4)
285
+ self.assertEqual(x.shape, ())
286
+ self.assertEqual(x.dtype, mx.int32)
287
+ self.assertEqual(x.item(), 1)
288
+ self.assertTrue(isinstance(x.item(), int))
289
+
290
+ with self.assertRaises(TypeError):
291
+ len(x)
292
+
293
+ x = mx.array(1, mx.uint32)
294
+ self.assertEqual(x.item(), 1)
295
+ self.assertTrue(isinstance(x.item(), int))
296
+
297
+ x = mx.array(1, mx.int64)
298
+ self.assertEqual(x.item(), 1)
299
+ self.assertTrue(isinstance(x.item(), int))
300
+
301
+ x = mx.array(1, mx.bfloat16)
302
+ self.assertEqual(x.item(), 1.0)
303
+
304
+ x = mx.array(1.0)
305
+ self.assertEqual(x.size, 1)
306
+ self.assertEqual(x.ndim, 0)
307
+ self.assertEqual(x.shape, ())
308
+ self.assertEqual(x.dtype, mx.float32)
309
+ self.assertEqual(x.item(), 1.0)
310
+ self.assertTrue(isinstance(x.item(), float))
311
+
312
+ x = mx.array(False)
313
+ self.assertEqual(x.size, 1)
314
+ self.assertEqual(x.ndim, 0)
315
+ self.assertEqual(x.shape, ())
316
+ self.assertEqual(x.dtype, mx.bool_)
317
+ self.assertEqual(x.item(), False)
318
+ self.assertTrue(isinstance(x.item(), bool))
319
+
320
+ x = mx.array(complex(1, 1))
321
+ self.assertEqual(x.ndim, 0)
322
+ self.assertEqual(x.shape, ())
323
+ self.assertEqual(x.dtype, mx.complex64)
324
+ self.assertEqual(x.item(), complex(1, 1))
325
+ self.assertTrue(isinstance(x.item(), complex))
326
+
327
+ x = mx.array([True, False, True])
328
+ self.assertEqual(x.dtype, mx.bool_)
329
+ self.assertEqual(x.ndim, 1)
330
+ self.assertEqual(x.shape, (3,))
331
+ self.assertEqual(len(x), 3)
332
+
333
+ x = mx.array([True, False, True], mx.float32)
334
+ self.assertEqual(x.dtype, mx.float32)
335
+
336
+ x = mx.array([0, 1, 2])
337
+ self.assertEqual(x.dtype, mx.int32)
338
+ self.assertEqual(x.ndim, 1)
339
+ self.assertEqual(x.shape, (3,))
340
+
341
+ x = mx.array([0, 1, 2], mx.float32)
342
+ self.assertEqual(x.dtype, mx.float32)
343
+
344
+ x = mx.array([0.0, 1.0, 2.0])
345
+ self.assertEqual(x.dtype, mx.float32)
346
+ self.assertEqual(x.ndim, 1)
347
+ self.assertEqual(x.shape, (3,))
348
+
349
+ x = mx.array([1j, 1 + 0j])
350
+ self.assertEqual(x.dtype, mx.complex64)
351
+ self.assertEqual(x.ndim, 1)
352
+ self.assertEqual(x.shape, (2,))
353
+
354
+ # From tuple
355
+ x = mx.array((1, 2, 3), mx.int32)
356
+ self.assertEqual(x.dtype, mx.int32)
357
+ self.assertEqual(x.tolist(), [1, 2, 3])
358
+
359
+ def test_bool_conversion(self):
360
+ x = mx.array(True)
361
+ self.assertTrue(x)
362
+ x = mx.array(False)
363
+ self.assertFalse(x)
364
+ x = mx.array(1.0)
365
+ self.assertTrue(x)
366
+ x = mx.array(0.0)
367
+ self.assertFalse(x)
368
+
369
+ def test_int_type(self):
370
+ x = mx.array(1)
371
+ self.assertTrue(x.dtype == mx.int32)
372
+ x = mx.array(2**32 - 1)
373
+ self.assertTrue(x.dtype == mx.int64)
374
+ x = mx.array(2**40)
375
+ self.assertTrue(x.dtype == mx.int64)
376
+ x = mx.array(2**32 - 1, dtype=mx.uint32)
377
+ self.assertTrue(x.dtype == mx.uint32)
378
+ x = mx.array([1, 2], dtype=mx.int64) + 0x80000000
379
+ self.assertTrue(x.dtype == mx.int64)
380
+
381
+ def test_construction_from_lists(self):
382
+ x = mx.array([])
383
+ self.assertEqual(x.size, 0)
384
+ self.assertEqual(x.shape, (0,))
385
+ self.assertEqual(x.dtype, mx.float32)
386
+
387
+ x = mx.array([[], [], []])
388
+ self.assertEqual(x.size, 0)
389
+ self.assertEqual(x.shape, (3, 0))
390
+ self.assertEqual(x.dtype, mx.float32)
391
+
392
+ x = mx.array([[[], []], [[], []], [[], []]])
393
+ self.assertEqual(x.size, 0)
394
+ self.assertEqual(x.shape, (3, 2, 0))
395
+ self.assertEqual(x.dtype, mx.float32)
396
+
397
+ # Check failure cases
398
+ with self.assertRaises(ValueError):
399
+ x = mx.array([[[], []], [[]], [[], []]])
400
+
401
+ with self.assertRaises(ValueError):
402
+ x = mx.array([[[], []], [[1.0, 2.0], []], [[], []]])
403
+
404
+ with self.assertRaises(ValueError):
405
+ x = mx.array([[0, 1], [[0, 1], 1]])
406
+
407
+ with self.assertRaises(ValueError):
408
+ x = mx.array([[0, 1], ["hello", 1]])
409
+
410
+ x = mx.array([True, False, 3])
411
+ self.assertEqual(x.dtype, mx.int32)
412
+
413
+ x = mx.array([True, False, 3, 4.0])
414
+ self.assertEqual(x.dtype, mx.float32)
415
+
416
+ x = mx.array([[True, False], [1, 3], [2, 4.0]])
417
+ self.assertEqual(x.dtype, mx.float32)
418
+
419
+ x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.bool_)
420
+ self.assertEqual(x.dtype, mx.bool_)
421
+ self.assertTrue(mx.array_equal(x, mx.array([[True, True], [False, True]])))
422
+
423
+ x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.int32)
424
+ self.assertTrue(mx.array_equal(x, mx.array([[1, 2], [0, 3]])))
425
+
426
+ x = mx.array([1 + 0j, 2j, True, 0], mx.complex64)
427
+ self.assertEqual(x.tolist(), [1 + 0j, 2j, 1 + 0j, 0j])
428
+
429
+ xnp = np.array([0, 4294967295], dtype=np.uint32)
430
+ x = mx.array([0, 4294967295], dtype=mx.uint32)
431
+ self.assertTrue(np.array_equal(x, xnp))
432
+
433
+ xnp = np.array([0, 4294967295], dtype=np.float32)
434
+ x = mx.array([0, 4294967295], dtype=mx.float32)
435
+ self.assertTrue(np.array_equal(x, xnp))
436
+
437
+ def test_double_keeps_precision(self):
438
+ x = 39.14223403241
439
+ out = mx.array(x, dtype=mx.float64).item()
440
+ self.assertEqual(out, x)
441
+
442
+ out = mx.array([x], dtype=mx.float64).item()
443
+ self.assertEqual(out, x)
444
+
445
+ def test_construction_from_lists_of_mlx_arrays(self):
446
+ dtypes = [
447
+ mx.bool_,
448
+ mx.uint8,
449
+ mx.uint16,
450
+ mx.uint32,
451
+ mx.uint64,
452
+ mx.int8,
453
+ mx.int16,
454
+ mx.int32,
455
+ mx.int64,
456
+ mx.float16,
457
+ mx.float32,
458
+ mx.bfloat16,
459
+ mx.complex64,
460
+ ]
461
+ for x_t, y_t in permutations(dtypes, 2):
462
+ # check type promotion and numeric correctness
463
+ x, y = mx.array([1.0], x_t), mx.array([2.0], y_t)
464
+ z = mx.array([x, y])
465
+ expected = mx.stack([x, y], axis=0)
466
+ self.assertEqualArray(z, expected)
467
+
468
+ # check heterogeneous construction with mlx arrays and python primitive types
469
+ x, y = mx.array([True], x_t), mx.array([False], y_t)
470
+ z = mx.array([[x, [2.0]], [[3.0], y]])
471
+ expected = mx.array([[[x.item()], [2.0]], [[3.0], [y.item()]]], z.dtype)
472
+ self.assertEqualArray(z, expected)
473
+
474
+ # check when create from an array which does not contain memory to the raw data
475
+ x = mx.array([1.0]).astype(mx.bfloat16) # x does not hold raw data
476
+ for y_t in dtypes:
477
+ y = mx.array([2.0], y_t)
478
+ z = mx.array([x, y])
479
+ expected = mx.stack([x, y], axis=0)
480
+ self.assertEqualArray(z, expected)
481
+
482
+ # shape check from `stack()`
483
+ with self.assertRaises(ValueError) as e:
484
+ mx.array([x, 1.0])
485
+ self.assertEqual(
486
+ str(e.exception), "Initialization encountered non-uniform length."
487
+ )
488
+
489
+ # shape check from `validate_shape`
490
+ with self.assertRaises(ValueError) as e:
491
+ mx.array([1.0, x])
492
+ self.assertEqual(
493
+ str(e.exception), "Initialization encountered non-uniform length."
494
+ )
495
+
496
+ # check that `[mx.array, ...]` retains the `mx.array` in the graph
497
+ def f(x):
498
+ y = mx.array([x, mx.array([2.0])])
499
+ return (2 * y).sum()
500
+
501
+ x = mx.array([1.0])
502
+ dfdx = mx.grad(f)
503
+ self.assertEqual(dfdx(x).item(), 2.0)
504
+
505
+ def test_init_from_array(self):
506
+ x = mx.array(3.0)
507
+ y = mx.array(x)
508
+
509
+ self.assertTrue(mx.array_equal(x, y))
510
+
511
+ y = mx.array(x, mx.int32)
512
+ self.assertEqual(y.dtype, mx.int32)
513
+ self.assertEqual(y.item(), 3)
514
+
515
+ y = mx.array(x, mx.bool_)
516
+ self.assertEqual(y.dtype, mx.bool_)
517
+ self.assertEqual(y.item(), True)
518
+
519
+ y = mx.array(x, mx.complex64)
520
+ self.assertEqual(y.dtype, mx.complex64)
521
+ self.assertEqual(y.item(), 3.0 + 0j)
522
+
523
+ def test_array_repr(self):
524
+ x = mx.array(True)
525
+ self.assertEqual(str(x), "array(True, dtype=bool)")
526
+ x = mx.array(1)
527
+ self.assertEqual(str(x), "array(1, dtype=int32)")
528
+ x = mx.array(1.0)
529
+ self.assertEqual(str(x), "array(1, dtype=float32)")
530
+
531
+ x = mx.array([1, 0, 1])
532
+ self.assertEqual(str(x), "array([1, 0, 1], dtype=int32)")
533
+
534
+ x = mx.array([1] * 6)
535
+ expected = "array([1, 1, 1, 1, 1, 1], dtype=int32)"
536
+ self.assertEqual(str(x), expected)
537
+
538
+ x = mx.array([1] * 7)
539
+ expected = "array([1, 1, 1, ..., 1, 1, 1], dtype=int32)"
540
+ self.assertEqual(str(x), expected)
541
+
542
+ x = mx.array([[1, 2], [1, 2], [1, 2]])
543
+ expected = "array([[1, 2],\n [1, 2],\n [1, 2]], dtype=int32)"
544
+ self.assertEqual(str(x), expected)
545
+
546
+ x = mx.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]])
547
+ expected = (
548
+ "array([[[1, 2],\n"
549
+ " [1, 2]],\n"
550
+ " [[1, 2],\n"
551
+ " [1, 2]]], dtype=int32)"
552
+ )
553
+ self.assertEqual(str(x), expected)
554
+
555
+ x = mx.array([[1, 2]] * 6)
556
+ expected = (
557
+ "array([[1, 2],\n"
558
+ " [1, 2],\n"
559
+ " [1, 2],\n"
560
+ " [1, 2],\n"
561
+ " [1, 2],\n"
562
+ " [1, 2]], dtype=int32)"
563
+ )
564
+ self.assertEqual(str(x), expected)
565
+ x = mx.array([[1, 2]] * 7)
566
+ expected = (
567
+ "array([[1, 2],\n"
568
+ " [1, 2],\n"
569
+ " [1, 2],\n"
570
+ " ...,\n"
571
+ " [1, 2],\n"
572
+ " [1, 2],\n"
573
+ " [1, 2]], dtype=int32)"
574
+ )
575
+ self.assertEqual(str(x), expected)
576
+
577
+ x = mx.array([1], dtype=mx.int8)
578
+ expected = "array([1], dtype=int8)"
579
+ self.assertEqual(str(x), expected)
580
+ x = mx.array([1], dtype=mx.int16)
581
+ expected = "array([1], dtype=int16)"
582
+ self.assertEqual(str(x), expected)
583
+ x = mx.array([1], dtype=mx.uint8)
584
+ expected = "array([1], dtype=uint8)"
585
+ self.assertEqual(str(x), expected)
586
+
587
+ # Fp16 is not supported in all platforms
588
+ x = mx.array([1.2], dtype=mx.float16)
589
+ expected = "array([1.2002], dtype=float16)"
590
+ self.assertEqual(str(x), expected)
591
+
592
+ x = mx.array([1 + 1j], dtype=mx.complex64)
593
+ expected = "array([1+1j], dtype=complex64)"
594
+ self.assertEqual(str(x), expected)
595
+ x = mx.array([1 - 1j], dtype=mx.complex64)
596
+ expected = "array([1-1j], dtype=complex64)"
597
+
598
+ x = mx.array([1 + 1j], dtype=mx.complex64)
599
+ expected = "array([1+1j], dtype=complex64)"
600
+ self.assertEqual(str(x), expected)
601
+ x = mx.array([1 - 1j], dtype=mx.complex64)
602
+ expected = "array([1-1j], dtype=complex64)"
603
+
604
+ def test_array_to_list(self):
605
+ types = [mx.bool_, mx.uint32, mx.int32, mx.int64, mx.float32]
606
+ for t in types:
607
+ x = mx.array(1, t)
608
+ self.assertEqual(x.tolist(), 1)
609
+
610
+ vals = [1, 2, 3, 4]
611
+ x = mx.array(vals)
612
+ self.assertEqual(x.tolist(), vals)
613
+
614
+ vals = [[1, 2], [3, 4]]
615
+ x = mx.array(vals)
616
+ self.assertEqual(x.tolist(), vals)
617
+
618
+ vals = [[1, 0], [0, 1]]
619
+ x = mx.array(vals, mx.bool_)
620
+ self.assertEqual(x.tolist(), vals)
621
+
622
+ vals = [[1.5, 2.5], [3.5, 4.5]]
623
+ x = mx.array(vals)
624
+ self.assertEqual(x.tolist(), vals)
625
+
626
+ vals = [[[0.5, 1.5], [2.5, 3.5]], [[4.5, 5.5], [6.5, 7.5]]]
627
+ x = mx.array(vals)
628
+ self.assertEqual(x.tolist(), vals)
629
+
630
+ # Empty arrays
631
+ vals = []
632
+ x = mx.array(vals)
633
+ self.assertEqual(x.tolist(), vals)
634
+
635
+ vals = [[], []]
636
+ x = mx.array(vals)
637
+ self.assertEqual(x.tolist(), vals)
638
+
639
+ # Complex arrays
640
+ vals = [0.5 + 0j, 1.5 + 1j, 2.5 + 0j, 3.5 + 1j]
641
+ x = mx.array(vals)
642
+ self.assertEqual(x.tolist(), vals)
643
+
644
+ # Half types
645
+ vals = [1.0, 2.0, 3.0, 4.0, 5.0]
646
+ x = mx.array(vals, dtype=mx.float16)
647
+ self.assertEqual(x.tolist(), vals)
648
+
649
+ x = mx.array(vals, dtype=mx.bfloat16)
650
+ self.assertEqual(x.tolist(), vals)
651
+
652
+ def test_array_np_conversion(self):
653
+ # Shape test
654
+ a = np.array([])
655
+ x = mx.array(a)
656
+ self.assertEqual(x.size, 0)
657
+ self.assertEqual(x.shape, (0,))
658
+ self.assertEqual(x.dtype, mx.float32)
659
+
660
+ a = np.array([[], [], []])
661
+ x = mx.array(a)
662
+ self.assertEqual(x.size, 0)
663
+ self.assertEqual(x.shape, (3, 0))
664
+ self.assertEqual(x.dtype, mx.float32)
665
+
666
+ a = np.array([[[], []], [[], []], [[], []]])
667
+ x = mx.array(a)
668
+ self.assertEqual(x.size, 0)
669
+ self.assertEqual(x.shape, (3, 2, 0))
670
+ self.assertEqual(x.dtype, mx.float32)
671
+
672
+ # Content test
673
+ a = 2.0 * np.ones((3, 5, 4))
674
+ x = mx.array(a)
675
+ self.assertEqual(x.dtype, mx.float32)
676
+ self.assertEqual(x.ndim, 3)
677
+ self.assertEqual(x.shape, (3, 5, 4))
678
+
679
+ y = np.asarray(x)
680
+ self.assertTrue(np.allclose(a, y))
681
+
682
+ a = np.array(3, dtype=np.int32)
683
+ x = mx.array(a)
684
+ self.assertEqual(x.dtype, mx.int32)
685
+ self.assertEqual(x.ndim, 0)
686
+ self.assertEqual(x.shape, ())
687
+ self.assertEqual(x.item(), 3)
688
+
689
+ # mlx to numpy test
690
+ x = mx.array([True, False, True])
691
+ y = np.asarray(x)
692
+ self.assertEqual(y.dtype, np.bool_)
693
+ self.assertEqual(y.ndim, 1)
694
+ self.assertEqual(y.shape, (3,))
695
+ self.assertEqual(y[0], True)
696
+ self.assertEqual(y[1], False)
697
+ self.assertEqual(y[2], True)
698
+
699
+ # complex64 mx <-> np
700
+ cvals = [0j, 1, 1 + 1j]
701
+ x = np.array(cvals)
702
+ y = mx.array(x)
703
+ self.assertEqual(y.dtype, mx.complex64)
704
+ self.assertEqual(y.shape, (3,))
705
+ self.assertEqual(y.tolist(), cvals)
706
+
707
+ y = mx.array([0j, 1, 1 + 1j])
708
+ x = np.asarray(y)
709
+ self.assertEqual(x.dtype, np.complex64)
710
+ self.assertEqual(x.shape, (3,))
711
+ self.assertEqual(x.tolist(), cvals)
712
+
713
+ def test_array_np_dtype_conversion(self):
714
+ dtypes_list = [
715
+ (mx.bool_, np.bool_),
716
+ (mx.uint8, np.uint8),
717
+ (mx.uint16, np.uint16),
718
+ (mx.uint32, np.uint32),
719
+ (mx.uint64, np.uint64),
720
+ (mx.int8, np.int8),
721
+ (mx.int16, np.int16),
722
+ (mx.int32, np.int32),
723
+ (mx.int64, np.int64),
724
+ (mx.float16, np.float16),
725
+ (mx.float32, np.float32),
726
+ (mx.complex64, np.complex64),
727
+ ]
728
+
729
+ for mlx_dtype, np_dtype in dtypes_list:
730
+ a_npy = np.random.uniform(low=0, high=100, size=(32,)).astype(np_dtype)
731
+ a_mlx = mx.array(a_npy)
732
+
733
+ self.assertEqual(a_mlx.dtype, mlx_dtype)
734
+ self.assertTrue(np.allclose(a_mlx, a_npy))
735
+
736
+ b_mlx = mx.random.uniform(
737
+ low=0,
738
+ high=10,
739
+ shape=(32,),
740
+ ).astype(mlx_dtype)
741
+ b_npy = np.array(b_mlx)
742
+
743
+ self.assertEqual(b_npy.dtype, np_dtype)
744
+
745
+ def test_array_from_noncontiguous_np(self):
746
+ for t in [np.int8, np.int32, np.float16, np.float32, np.complex64]:
747
+ np_arr = np.random.uniform(size=(10, 10)).astype(np.complex64)
748
+ np_arr = np_arr.T
749
+ mx_arr = mx.array(np_arr)
750
+ self.assertTrue(mx.array_equal(np_arr, mx_arr))
751
+
752
+ def test_array_np_shape_dim_check(self):
753
+ a_npy = np.empty(2**31, dtype=np.bool_)
754
+ with self.assertRaises(ValueError) as e:
755
+ mx.array(a_npy)
756
+ self.assertEqual(
757
+ str(e.exception), "Shape dimension falls outside supported `int` range."
758
+ )
759
+
760
+ def test_dtype_promotion(self):
761
+ dtypes_list = [
762
+ (mx.bool_, np.bool_),
763
+ (mx.uint8, np.uint8),
764
+ (mx.uint16, np.uint16),
765
+ (mx.uint32, np.uint32),
766
+ (mx.uint64, np.uint64),
767
+ (mx.int8, np.int8),
768
+ (mx.int16, np.int16),
769
+ (mx.int32, np.int32),
770
+ (mx.int64, np.int64),
771
+ (mx.float32, np.float32),
772
+ ]
773
+
774
+ promotion_pairs = permutations(dtypes_list, 2)
775
+
776
+ for (mlx_dt_1, np_dt_1), (mlx_dt_2, np_dt_2) in promotion_pairs:
777
+ with self.subTest(dtype1=np_dt_1, dtype2=np_dt_2):
778
+ a_npy = np.ones((3,), dtype=np_dt_1)
779
+ b_npy = np.ones((3,), dtype=np_dt_2)
780
+
781
+ c_npy = a_npy + b_npy
782
+
783
+ a_mlx = mx.ones((3,), dtype=mlx_dt_1)
784
+ b_mlx = mx.ones((3,), dtype=mlx_dt_2)
785
+
786
+ c_mlx = a_mlx + b_mlx
787
+
788
+ self.assertEqual(c_mlx.dtype, mx.array(c_npy).dtype)
789
+
790
+ a_mlx = mx.ones((3,), dtype=mx.float16)
791
+ b_mlx = mx.ones((3,), dtype=mx.float32)
792
+ c_mlx = a_mlx + b_mlx
793
+
794
+ self.assertEqual(c_mlx.dtype, mx.float32)
795
+
796
+ b_mlx = mx.ones((3,), dtype=mx.int32)
797
+ c_mlx = a_mlx + b_mlx
798
+
799
+ self.assertEqual(c_mlx.dtype, mx.float16)
800
+
801
+ def test_dtype_python_scalar_promotion(self):
802
+ tests = [
803
+ (mx.bool_, operator.mul, False, mx.bool_),
804
+ (mx.bool_, operator.mul, 0, mx.int32),
805
+ (mx.bool_, operator.mul, 1.0, mx.float32),
806
+ (mx.int8, operator.mul, False, mx.int8),
807
+ (mx.int8, operator.mul, 0, mx.int8),
808
+ (mx.int8, operator.mul, 1.0, mx.float32),
809
+ (mx.int16, operator.mul, False, mx.int16),
810
+ (mx.int16, operator.mul, 0, mx.int16),
811
+ (mx.int16, operator.mul, 1.0, mx.float32),
812
+ (mx.int32, operator.mul, False, mx.int32),
813
+ (mx.int32, operator.mul, 0, mx.int32),
814
+ (mx.int32, operator.mul, 1.0, mx.float32),
815
+ (mx.int64, operator.mul, False, mx.int64),
816
+ (mx.int64, operator.mul, 0, mx.int64),
817
+ (mx.int64, operator.mul, 1.0, mx.float32),
818
+ (mx.uint8, operator.mul, False, mx.uint8),
819
+ (mx.uint8, operator.mul, 0, mx.uint8),
820
+ (mx.uint8, operator.mul, 1.0, mx.float32),
821
+ (mx.uint16, operator.mul, False, mx.uint16),
822
+ (mx.uint16, operator.mul, 0, mx.uint16),
823
+ (mx.uint16, operator.mul, 1.0, mx.float32),
824
+ (mx.uint32, operator.mul, False, mx.uint32),
825
+ (mx.uint32, operator.mul, 0, mx.uint32),
826
+ (mx.uint32, operator.mul, 1.0, mx.float32),
827
+ (mx.uint64, operator.mul, False, mx.uint64),
828
+ (mx.uint64, operator.mul, 0, mx.uint64),
829
+ (mx.uint64, operator.mul, 1.0, mx.float32),
830
+ (mx.float32, operator.mul, False, mx.float32),
831
+ (mx.float32, operator.mul, 0, mx.float32),
832
+ (mx.float32, operator.mul, 1.0, mx.float32),
833
+ (mx.float16, operator.mul, False, mx.float16),
834
+ (mx.float16, operator.mul, 0, mx.float16),
835
+ (mx.float16, operator.mul, 1.0, mx.float16),
836
+ ]
837
+
838
+ for dtype_in, f, v, dtype_out in tests:
839
+ x = mx.array(0, dtype_in)
840
+ y = f(x, v)
841
+ self.assertEqual(y.dtype, dtype_out)
842
+
843
+ def test_array_comparison(self):
844
+ a = mx.array([0.0, 1.0, 5.0])
845
+ b = mx.array([-1.0, 2.0, 5.0])
846
+
847
+ self.assertEqual((a < b).tolist(), [False, True, False])
848
+ self.assertEqual((a <= b).tolist(), [False, True, True])
849
+ self.assertEqual((a > b).tolist(), [True, False, False])
850
+ self.assertEqual((a >= b).tolist(), [True, False, True])
851
+
852
+ self.assertEqual((a < 5).tolist(), [True, True, False])
853
+ self.assertEqual((5 < a).tolist(), [False, False, False])
854
+ self.assertEqual((5 <= a).tolist(), [False, False, True])
855
+ self.assertEqual((a > 1).tolist(), [False, False, True])
856
+ self.assertEqual((a >= 1).tolist(), [False, True, True])
857
+
858
+ def test_array_neg(self):
859
+ a = mx.array([-1.0, 4.0, 0.0])
860
+
861
+ self.assertEqual((-a).tolist(), [1.0, -4.0, 0.0])
862
+
863
+ def test_array_type_cast(self):
864
+ a = mx.array([0.1, 2.3, -1.3])
865
+ b = [0, 2, -1]
866
+
867
+ self.assertEqual(a.astype(mx.int32).tolist(), b)
868
+ self.assertEqual(a.astype(mx.int32).dtype, mx.int32)
869
+
870
+ b = mx.array(b).astype(mx.float32)
871
+ self.assertEqual(b.dtype, mx.float32)
872
+
873
+ def test_array_iteration(self):
874
+ a = mx.array([0, 1, 2])
875
+
876
+ for i, x in enumerate(a):
877
+ self.assertEqual(x.item(), i)
878
+
879
+ a = mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
880
+ x, y, z = a
881
+ self.assertEqual(x.tolist(), [1.0, 2.0])
882
+ self.assertEqual(y.tolist(), [3.0, 4.0])
883
+ self.assertEqual(z.tolist(), [5.0, 6.0])
884
+
885
+ def test_array_pickle(self):
886
+ dtypes = [
887
+ mx.int8,
888
+ mx.int16,
889
+ mx.int32,
890
+ mx.int64,
891
+ mx.uint8,
892
+ mx.uint16,
893
+ mx.uint32,
894
+ mx.uint64,
895
+ mx.float16,
896
+ mx.float32,
897
+ mx.bfloat16,
898
+ mx.complex64,
899
+ ]
900
+
901
+ for dtype in dtypes:
902
+ x = mx.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype)
903
+ state = pickle.dumps(x)
904
+ y = pickle.loads(state)
905
+ self.assertEqualArray(y, x)
906
+
907
+ def test_array_copy(self):
908
+ dtypes = [
909
+ mx.int8,
910
+ mx.int16,
911
+ mx.int32,
912
+ mx.int64,
913
+ mx.uint8,
914
+ mx.uint16,
915
+ mx.uint32,
916
+ mx.uint64,
917
+ mx.float16,
918
+ mx.float32,
919
+ mx.bfloat16,
920
+ mx.complex64,
921
+ ]
922
+
923
+ for copy_function in [copy, deepcopy]:
924
+ for dtype in dtypes:
925
+ x = mx.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype)
926
+ y = copy_function(x)
927
+ self.assertEqualArray(y, x)
928
+
929
+ y -= 1
930
+ self.assertEqualArray(y, x - 1)
931
+
932
+ def test_indexing(self):
933
+ # Only ellipsis is a no-op
934
+ a_mlx = mx.array([1])[...]
935
+ self.assertEqual(a_mlx.shape, (1,))
936
+ self.assertEqual(a_mlx.item(), 1)
937
+
938
+ # Basic content check, slice indexing
939
+ a_npy = np.arange(64, dtype=np.float32)
940
+ a_mlx = mx.array(a_npy)
941
+ a_sliced_mlx = a_mlx[2:50:4]
942
+ a_sliced_npy = np.asarray(a_sliced_mlx)
943
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:50:4]))
944
+
945
+ # Basic content check, mlx array indexing
946
+ a_npy = np.arange(64, dtype=np.int32)
947
+ a_npy = a_npy.reshape((8, 8))
948
+ a_mlx = mx.array(a_npy)
949
+ idx_npy = np.array([0, 1, 2, 7, 5], dtype=np.uint32)
950
+ idx_mlx = mx.array(idx_npy)
951
+ a_sliced_mlx = a_mlx[idx_mlx]
952
+ a_sliced_npy = np.asarray(a_sliced_mlx)
953
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy]))
954
+
955
+ # Basic content check, int indexing
956
+ a_sliced_mlx = a_mlx[5]
957
+ a_sliced_npy = np.asarray(a_sliced_mlx)
958
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[5]))
959
+ self.assertEqual(len(a_sliced_npy.shape), len(a_npy[5].shape))
960
+ self.assertEqual(len(a_sliced_npy.shape), 1)
961
+ self.assertEqual(a_sliced_npy.shape[0], a_npy[5].shape[0])
962
+
963
+ # Basic content check, negative indexing
964
+ a_sliced_mlx = a_mlx[-1]
965
+ self.assertTrue(np.array_equal(a_sliced_mlx, a_npy[-1]))
966
+
967
+ # Basic content check, empty index
968
+ a_sliced_mlx = a_mlx[()]
969
+ a_sliced_npy = np.asarray(a_sliced_mlx)
970
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[()]))
971
+
972
+ # Basic content check, new axis
973
+ a_sliced_mlx = a_mlx[None]
974
+ a_sliced_npy = np.asarray(a_sliced_mlx)
975
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[None]))
976
+
977
+ a_sliced_mlx = a_mlx[:, None]
978
+ a_sliced_npy = np.asarray(a_sliced_mlx)
979
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, None]))
980
+
981
+ # Multi dim indexing, all ints
982
+ self.assertEqual(a_mlx[0, 0].item(), 0)
983
+ self.assertEqual(a_mlx[0, 0].ndim, 0)
984
+
985
+ # Multi dim indexing, all slices
986
+ a_sliced_mlx = a_mlx[2:4, 5:]
987
+ a_sliced_npy = np.asarray(a_sliced_mlx)
988
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:4, 5:]))
989
+
990
+ a_sliced_mlx = a_mlx[:, 0:5]
991
+ a_sliced_npy = np.asarray(a_sliced_mlx)
992
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, 0:5]))
993
+
994
+ # Slicing, strides
995
+ a_sliced_mlx = a_mlx[:, ::2]
996
+ a_sliced_npy = np.asarray(a_sliced_mlx)
997
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, ::2]))
998
+
999
+ # Slicing, -ve index
1000
+ a_sliced_mlx = a_mlx[-2:, :-1]
1001
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1002
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[-2:, :-1]))
1003
+
1004
+ # Slicing, start > end
1005
+ a_sliced_mlx = a_mlx[8:3]
1006
+ self.assertEqual(a_sliced_mlx.size, 0)
1007
+
1008
+ # Slicing, Clipping past the end
1009
+ a_sliced_mlx = a_mlx[7:10]
1010
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1011
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[7:10]))
1012
+
1013
+ # Multi dim indexing, int and slices
1014
+ a_sliced_mlx = a_mlx[0, :5]
1015
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1016
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[0, :5]))
1017
+
1018
+ a_sliced_mlx = a_mlx[:, -1]
1019
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1020
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, -1]))
1021
+
1022
+ # Multi dim indexing, int and array
1023
+ a_sliced_mlx = a_mlx[idx_mlx, 0]
1024
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1025
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, 0]))
1026
+
1027
+ # Multi dim indexing, array and slices
1028
+ a_sliced_mlx = a_mlx[idx_mlx, :5]
1029
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1030
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, :5]))
1031
+
1032
+ a_sliced_mlx = a_mlx[:, idx_mlx]
1033
+ a_sliced_npy = np.asarray(a_sliced_mlx)
1034
+ self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, idx_npy]))
1035
+
1036
+ # Multi dim indexing with multiple arrays
1037
+ def check_slices(arr_np, *idx_np):
1038
+ arr_mlx = mx.array(arr_np)
1039
+ idx_mlx = [
1040
+ mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
1041
+ ]
1042
+ slice_mlx = arr_mlx[tuple(idx_mlx)]
1043
+ self.assertTrue(
1044
+ np.array_equal(arr_np[tuple(idx_np)], arr_mlx[tuple(idx_mlx)])
1045
+ )
1046
+
1047
+ a_np = np.arange(16).reshape(4, 4)
1048
+ check_slices(a_np, np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3]))
1049
+ check_slices(a_np, np.array([0, 1, 2, 3]), np.array([1, 0, 3, 3]))
1050
+ check_slices(a_np, np.array([[0, 1]]), np.array([[0], [1], [3]]))
1051
+
1052
+ a_np = np.arange(64).reshape(2, 4, 2, 4)
1053
+ check_slices(a_np, 0, np.array([0, 1, 2]))
1054
+ check_slices(a_np, slice(0, 1), np.array([0, 1, 2]))
1055
+ check_slices(
1056
+ a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), slice(0, 4, 2)
1057
+ )
1058
+ check_slices(
1059
+ a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), np.array([1, 2, 0])
1060
+ )
1061
+ check_slices(a_np, slice(0, 1), np.array([0, 1, 2]), 1, np.array([1, 2, 0]))
1062
+ check_slices(
1063
+ a_np, slice(0, 1), np.array([0, 1, 2]), np.array([1, 0, 0]), slice(0, 1)
1064
+ )
1065
+ check_slices(
1066
+ a_np,
1067
+ slice(0, 1),
1068
+ np.array([[0], [1], [2]]),
1069
+ np.array([[1, 0, 0]]),
1070
+ slice(0, 1),
1071
+ )
1072
+ check_slices(
1073
+ a_np,
1074
+ slice(0, 2),
1075
+ np.array([[0], [1], [2]]),
1076
+ slice(0, 2),
1077
+ np.array([[1, 0, 0]]),
1078
+ )
1079
+ for p in permutations([slice(None), slice(None), 0, np.array([1, 0])]):
1080
+ check_slices(a_np, *p)
1081
+ for p in permutations(
1082
+ [slice(None), slice(None), 0, np.array([1, 0]), None, None]
1083
+ ):
1084
+ check_slices(a_np, *p)
1085
+ for p in permutations([0, np.array([1, 0]), None, Ellipsis, slice(None)]):
1086
+ check_slices(a_np, *p)
1087
+
1088
+ # Non-contiguous arrays in slicing
1089
+ a_mlx = mx.reshape(mx.arange(128), (16, 8))
1090
+ a_mlx = a_mlx[::2, :]
1091
+ a_np = np.array(a_mlx)
1092
+ idx_np = np.arange(8)[::2]
1093
+ idx_mlx = mx.arange(8)[::2]
1094
+ self.assertTrue(
1095
+ np.array_equal(a_np[idx_np, idx_np], np.array(a_mlx[idx_mlx, idx_mlx]))
1096
+ )
1097
+
1098
+ # Slicing with negative indices and integer
1099
+ a_np = np.arange(10).reshape(5, 2)
1100
+ a_mlx = mx.array(a_np)
1101
+ self.assertTrue(np.array_equal(a_np[2:-1, 0], np.array(a_mlx[2:-1, 0])))
1102
+
1103
+ def test_indexing_grad(self):
1104
+ x = mx.array([[1, 2], [3, 4]]).astype(mx.float32)
1105
+ ind = mx.array([0, 1, 0]).astype(mx.float32)
1106
+
1107
+ def index_fn(x, ind):
1108
+ return x[ind.astype(mx.int32)].sum()
1109
+
1110
+ grad_x, grad_ind = mx.grad(index_fn, argnums=(0, 1))(x, ind)
1111
+ expected = mx.array([[2, 2], [1, 1]])
1112
+
1113
+ self.assertTrue(mx.array_equal(grad_x, expected))
1114
+ self.assertTrue(mx.array_equal(grad_ind, mx.zeros(ind.shape)))
1115
+
1116
+ def test_setitem(self):
1117
+ a = mx.array(0)
1118
+ a[None] = 1
1119
+ self.assertEqual(a.item(), 1)
1120
+
1121
+ a = mx.array([1, 2, 3])
1122
+ a[0] = 2
1123
+ self.assertEqual(a.tolist(), [2, 2, 3])
1124
+
1125
+ a[-1] = 2
1126
+ self.assertEqual(a.tolist(), [2, 2, 2])
1127
+
1128
+ a[0] = mx.array([[[1]]])
1129
+ self.assertEqual(a.tolist(), [1, 2, 2])
1130
+
1131
+ a[:] = 0
1132
+ self.assertEqual(a.tolist(), [0, 0, 0])
1133
+
1134
+ a[None] = 1
1135
+ self.assertEqual(a.tolist(), [1, 1, 1])
1136
+
1137
+ a[0:1] = 2
1138
+ self.assertEqual(a.tolist(), [2, 1, 1])
1139
+
1140
+ a[0:2] = 3
1141
+ self.assertEqual(a.tolist(), [3, 3, 1])
1142
+
1143
+ a[0:3] = 4
1144
+ self.assertEqual(a.tolist(), [4, 4, 4])
1145
+
1146
+ a[0:1] = mx.array(0)
1147
+ self.assertEqual(a.tolist(), [0, 4, 4])
1148
+
1149
+ a[0:1] = mx.array([1])
1150
+ self.assertEqual(a.tolist(), [1, 4, 4])
1151
+
1152
+ with self.assertRaises(ValueError):
1153
+ a[0:1] = mx.array([2, 3])
1154
+
1155
+ a[0:2] = mx.array([2, 2])
1156
+ self.assertEqual(a.tolist(), [2, 2, 4])
1157
+
1158
+ a[:] = mx.array([[[[1, 1, 1]]]])
1159
+ self.assertEqual(a.tolist(), [1, 1, 1])
1160
+
1161
+ # Array slices
1162
+ def check_slices(arr_np, update_np, *idx_np):
1163
+ arr_mlx = mx.array(arr_np)
1164
+ update_mlx = mx.array(update_np)
1165
+ idx_mlx = [
1166
+ mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
1167
+ ]
1168
+ if len(idx_np) > 1:
1169
+ idx_np = tuple(idx_np)
1170
+ idx_mlx = tuple(idx_mlx)
1171
+ else:
1172
+ idx_np = idx_np[0]
1173
+ idx_mlx = idx_mlx[0]
1174
+ arr_np[idx_np] = update_np
1175
+ arr_mlx[idx_mlx] = update_mlx
1176
+ self.assertTrue(np.array_equal(arr_np, arr_mlx))
1177
+
1178
+ check_slices(np.zeros((3, 3)), 1, 0)
1179
+ check_slices(np.zeros((3, 3)), 1, -1)
1180
+ check_slices(np.zeros((3, 3)), 1, slice(0, 2))
1181
+ check_slices(np.zeros((3, 3)), np.array([[0, 1, 2], [3, 4, 5]]), slice(0, 2))
1182
+
1183
+ with self.assertRaises(ValueError):
1184
+ a = mx.array(0)
1185
+ a[0] = mx.array(1)
1186
+
1187
+ check_slices(np.zeros((3, 3)), 1, np.array([0, 1, 2]))
1188
+ check_slices(np.zeros((3, 3)), np.array(3), np.array([0, 1, 2]))
1189
+ check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1, 2]))
1190
+ check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1]))
1191
+ check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
1192
+ check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
1193
+ check_slices(
1194
+ np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 2, 1])
1195
+ )
1196
+
1197
+ # Multiple slices
1198
+ a = mx.array(0)
1199
+ a[None, None] = 1
1200
+ self.assertEqual(a.item(), 1)
1201
+
1202
+ a[None, None] = mx.array(2)
1203
+ self.assertEqual(a.item(), 2)
1204
+
1205
+ a[None, None] = mx.array([[[3]]])
1206
+ self.assertEqual(a.item(), 3)
1207
+
1208
+ a[()] = 4
1209
+ self.assertEqual(a.item(), 4)
1210
+
1211
+ a_np = np.zeros((2, 3, 4, 5))
1212
+ check_slices(a_np, 1, np.array([0, 0]), slice(0, 2), slice(0, 3), 4)
1213
+ check_slices(
1214
+ a_np,
1215
+ np.arange(10).reshape(2, 5),
1216
+ np.array([0, 0]),
1217
+ np.array([0, 1]),
1218
+ np.array([2, 3]),
1219
+ )
1220
+ check_slices(
1221
+ a_np,
1222
+ np.array([[3], [4]]),
1223
+ np.array([0, 0]),
1224
+ np.array([0, 1]),
1225
+ np.array([2, 3]),
1226
+ )
1227
+ check_slices(
1228
+ a_np, np.arange(5), np.array([0, 0]), np.array([0, 1]), np.array([2, 3])
1229
+ )
1230
+ check_slices(np.zeros(5), np.arange(2), None, None, np.array([2, 3]))
1231
+ check_slices(
1232
+ np.zeros((4, 3, 4)),
1233
+ np.arange(3),
1234
+ np.array([2, 3]),
1235
+ slice(0, 3),
1236
+ np.array([2, 3]),
1237
+ )
1238
+
1239
+ with self.assertRaises(ValueError):
1240
+ a = mx.zeros((4, 3, 4))
1241
+ a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(2)
1242
+
1243
+ with self.assertRaises(ValueError):
1244
+ a = mx.zeros((4, 3, 4))
1245
+ a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(3)
1246
+
1247
+ check_slices(np.zeros((4, 3, 4)), 1, np.array([2, 3]), None, np.array([2, 1]))
1248
+ check_slices(
1249
+ np.zeros((4, 3, 4)), np.arange(4), np.array([2, 3]), None, np.array([2, 1])
1250
+ )
1251
+ check_slices(
1252
+ np.zeros((4, 3, 4)),
1253
+ np.arange(2 * 4).reshape(2, 1, 4),
1254
+ np.array([2, 3]),
1255
+ None,
1256
+ np.array([2, 1]),
1257
+ )
1258
+
1259
+ check_slices(np.zeros((4, 4)), 1, slice(0, 2), slice(0, 2))
1260
+ check_slices(np.zeros((4, 4)), np.arange(2), slice(0, 2), slice(0, 2))
1261
+ check_slices(
1262
+ np.zeros((4, 4)), np.arange(2).reshape(2, 1), slice(0, 2), slice(0, 2)
1263
+ )
1264
+ check_slices(
1265
+ np.zeros((4, 4)), np.arange(4).reshape(2, 2), slice(0, 2), slice(0, 2)
1266
+ )
1267
+
1268
+ with self.assertRaises(ValueError):
1269
+ a = mx.zeros((2, 2, 2))
1270
+ a[..., ...] = 1
1271
+
1272
+ with self.assertRaises(ValueError):
1273
+ a = mx.zeros((2, 2, 2, 2, 2))
1274
+ a[0, ..., 0, ..., 0] = 1
1275
+
1276
+ with self.assertRaises(ValueError):
1277
+ a = mx.zeros((2, 2))
1278
+ a[0, 0, 0] = 1
1279
+
1280
+ with self.assertRaises(ValueError):
1281
+ a = mx.zeros((5, 4, 3))
1282
+ a[:, 0] = mx.ones((5, 1, 3))
1283
+
1284
+ check_slices(np.zeros((2, 2, 2, 2)), 1, None, Ellipsis, None)
1285
+ check_slices(
1286
+ np.zeros((2, 2, 2, 2)), 1, np.array([0, 1]), Ellipsis, np.array([0, 1])
1287
+ )
1288
+ check_slices(
1289
+ np.zeros((2, 2, 2, 2)),
1290
+ np.arange(2 * 2 * 2).reshape(2, 2, 2),
1291
+ np.array([0, 1]),
1292
+ Ellipsis,
1293
+ np.array([0, 1]),
1294
+ )
1295
+
1296
+ # Check slice assign with negative indices works
1297
+ a = mx.zeros((5, 5), mx.int32)
1298
+ a[2:-2, 2:-2] = 4
1299
+ self.assertEqual(a[2, 2].item(), 4)
1300
+
1301
+ # Check slice array slice
1302
+ check_slices(
1303
+ np.zeros((5, 4, 4)),
1304
+ np.arange(4 * 2 * 3).reshape(4, 2, 3),
1305
+ slice(0, 4),
1306
+ np.array([1, 3]),
1307
+ slice(None, -1),
1308
+ )
1309
+ check_slices(
1310
+ np.zeros((5, 4, 4)),
1311
+ np.arange(4 * 2 * 2).reshape(4, 2, 2),
1312
+ slice(0, 4),
1313
+ np.array([1, 3]),
1314
+ slice(0, 4, 2),
1315
+ )
1316
+
1317
+ check_slices(
1318
+ np.zeros((1, 10, 4)),
1319
+ np.arange(2 * 4).reshape(1, 2, 4),
1320
+ slice(None, None, None),
1321
+ np.array([1, 3]),
1322
+ )
1323
+
1324
+ check_slices(
1325
+ np.zeros((3, 4, 5, 3)),
1326
+ np.arange(2 * 4 * 3 * 3).reshape(2, 4, 3, 3),
1327
+ np.array([2, 1]),
1328
+ slice(None, None, None),
1329
+ slice(None, None, 2),
1330
+ slice(None, None, None),
1331
+ )
1332
+
1333
+ check_slices(
1334
+ np.zeros((3, 4, 5, 3)),
1335
+ np.arange(2 * 4 * 3 * 3).reshape(2, 4, 3, 3),
1336
+ np.array([2, 1]),
1337
+ slice(None, None, None),
1338
+ slice(None, None, 2),
1339
+ )
1340
+
1341
+ check_slices(np.zeros((5, 4, 3)), np.ones((5, 3)), slice(None), 0)
1342
+
1343
+ check_slices(np.zeros((5, 4, 3)), np.ones((5, 1, 3)), slice(None), slice(0, 1))
1344
+ check_slices(
1345
+ np.ones((3, 4, 4, 4)), np.zeros((4, 4)), 0, slice(0, 4), 3, slice(0, 4)
1346
+ )
1347
+
1348
+ x = mx.zeros((2, 3, 4, 5, 3))
1349
+ x[..., 0] = 1.0
1350
+ self.assertTrue(mx.array_equal(x[..., 0], mx.ones((2, 3, 4, 5))))
1351
+
1352
+ x = mx.zeros((2, 3, 4, 5, 3))
1353
+ x[:, 0] = 1.0
1354
+ self.assertTrue(mx.array_equal(x[:, 0], mx.ones((2, 4, 5, 3))))
1355
+
1356
+ x = mx.zeros((2, 2, 2, 2, 2, 2))
1357
+ x[0, 0] = 1
1358
+ self.assertTrue(mx.array_equal(x[0, 0], mx.ones((2, 2, 2, 2))))
1359
+
1360
+ a = mx.zeros((2, 2, 2))
1361
+ with self.assertRaises(ValueError):
1362
+ a[:, None, :] = mx.ones((2, 2, 2))
1363
+
1364
+ # Ok, doesn't throw
1365
+ a[:, None, :] = mx.ones((2, 1, 2, 2))
1366
+ a[:, None, :] = mx.ones((2, 2))
1367
+ a[:, None, 0] = mx.ones((2,))
1368
+ a[:, None, 0] = mx.ones((1, 2))
1369
+
1370
+ def test_array_at(self):
1371
+ a = mx.array(1)
1372
+ with self.assertRaises(ValueError):
1373
+ a.at.add(1)
1374
+
1375
+ a = a.at[None].add(1)
1376
+ self.assertEqual(a.item(), 2)
1377
+
1378
+ a = mx.array([0, 1, 2])
1379
+ a = a.at[1].add(2)
1380
+ self.assertEqual(a.tolist(), [0, 3, 2])
1381
+
1382
+ a = a.at[mx.array([0, 0, 0, 0])].add(1)
1383
+ self.assertEqual(a.tolist(), [4, 3, 2])
1384
+
1385
+ a = mx.zeros((10, 10))
1386
+ a = a.at[0].add(mx.arange(10))
1387
+ self.assertEqual(a[0].tolist(), list(range(10)))
1388
+
1389
+ a = mx.zeros((10, 10))
1390
+ index_x = mx.array([0, 2, 3, 7])
1391
+ index_y = mx.array([3, 3, 1, 2])
1392
+ u = mx.random.uniform(shape=(4,))
1393
+ a = a.at[index_x, index_y].add(u)
1394
+ self.assertTrue(mx.allclose(a.sum(), u.sum()))
1395
+ self.assertEqualArray(a.sum(), u.sum(), atol=1e-6, rtol=1e-5)
1396
+ self.assertEqual(a[index_x, index_y].tolist(), u.tolist())
1397
+
1398
+ # Test all array.at ops
1399
+ a = mx.random.uniform(shape=(10, 5, 2))
1400
+ idx_x = mx.array([0, 4])
1401
+ update = mx.ones((2, 5))
1402
+ a[idx_x, :, 0] = 0
1403
+ a = a.at[idx_x, :, 0].add(update)
1404
+ self.assertEqualArray(a[idx_x, :, 0], update)
1405
+ a = a.at[idx_x, :, 0].subtract(update)
1406
+ self.assertEqualArray(a[idx_x, :, 0], mx.zeros_like(update))
1407
+ a = a.at[idx_x, :, 0].add(2 * update)
1408
+ self.assertEqualArray(a[idx_x, :, 0], 2 * update)
1409
+ a = a.at[idx_x, :, 0].multiply(2 * update)
1410
+ self.assertEqualArray(a[idx_x, :, 0], 4 * update)
1411
+ a = a.at[idx_x, :, 0].divide(3 * update)
1412
+ self.assertEqualArray(a[idx_x, :, 0], (4 / 3) * update)
1413
+ a[idx_x, :, 0] = 5
1414
+ update = mx.arange(10).reshape(2, 5)
1415
+ a = a.at[idx_x, :, 0].maximum(update)
1416
+ self.assertEqualArray(a[idx_x, :, 0], mx.maximum(a[idx_x, :, 0], update))
1417
+ a[idx_x, :, 0] = 5
1418
+ a = a.at[idx_x, :, 0].minimum(update)
1419
+ self.assertEqualArray(a[idx_x, :, 0], mx.minimum(a[idx_x, :, 0], update))
1420
+
1421
+ update = mx.array([1.0, 2.0])[None, None, None]
1422
+ src = mx.array([1.0, 2.0])[None, :]
1423
+ src = src.at[0:1].add(update)
1424
+ self.assertTrue(mx.array_equal(src, mx.array([[2.0, 4.0]])))
1425
+
1426
+ def test_slice_negative_step(self):
1427
+ a_np = np.arange(20)
1428
+ a_mx = mx.array(a_np)
1429
+
1430
+ # Basic negative slice
1431
+ b_np = a_np[::-1]
1432
+ b_mx = a_mx[::-1]
1433
+ self.assertTrue(np.array_equal(b_np, b_mx))
1434
+
1435
+ # Bounds negative slice
1436
+ b_np = a_np[-3:3:-1]
1437
+ b_mx = a_mx[-3:3:-1]
1438
+ self.assertTrue(np.array_equal(b_np, b_mx))
1439
+
1440
+ # Bounds negative slice
1441
+ b_np = a_np[25:-50:-1]
1442
+ b_mx = a_mx[25:-50:-1]
1443
+ self.assertTrue(np.array_equal(b_np, b_mx))
1444
+
1445
+ # Jumping negative slice
1446
+ b_np = a_np[::-3]
1447
+ b_mx = a_mx[::-3]
1448
+ self.assertTrue(np.array_equal(b_np, b_mx))
1449
+
1450
+ # Bounds and negative slice
1451
+ b_np = a_np[-3:3:-3]
1452
+ b_mx = a_mx[-3:3:-3]
1453
+ self.assertTrue(np.array_equal(b_np, b_mx))
1454
+
1455
+ # Bounds and negative slice
1456
+ b_np = a_np[25:-50:-3]
1457
+ b_mx = a_mx[25:-50:-3]
1458
+ self.assertTrue(np.array_equal(b_np, b_mx))
1459
+
1460
+ # Negative slice and ascending bounds
1461
+ b_np = a_np[0:20:-3]
1462
+ b_mx = a_mx[0:20:-3]
1463
+ self.assertTrue(np.array_equal(b_np, b_mx))
1464
+
1465
+ # Multi-dim negative slices
1466
+ a_np = np.arange(3 * 6 * 4).reshape(3, 6, 4)
1467
+ a_mx = mx.array(a_np)
1468
+
1469
+ # Flip each dim
1470
+ b_np = a_np[..., ::-1]
1471
+ b_mx = a_mx[..., ::-1]
1472
+ self.assertTrue(np.array_equal(b_np, b_mx))
1473
+
1474
+ b_np = a_np[:, ::-1, :]
1475
+ b_mx = a_mx[:, ::-1, :]
1476
+ self.assertTrue(np.array_equal(b_np, b_mx))
1477
+
1478
+ b_np = a_np[::-1, ...]
1479
+ b_mx = a_mx[::-1, ...]
1480
+ self.assertTrue(np.array_equal(b_np, b_mx))
1481
+
1482
+ # Flip pairs of dims
1483
+ b_np = a_np[::-1, 1:5:2, ::-2]
1484
+ b_mx = a_mx[::-1, 1:5:2, ::-2]
1485
+ self.assertTrue(np.array_equal(b_np, b_mx))
1486
+
1487
+ b_np = a_np[::-1, ::-2, 1:5:2]
1488
+ b_mx = a_mx[::-1, ::-2, 1:5:2]
1489
+ self.assertTrue(np.array_equal(b_np, b_mx))
1490
+
1491
+ # Flip all dims
1492
+ b_np = a_np[::-1, ::-3, ::-2]
1493
+ b_mx = a_mx[::-1, ::-3, ::-2]
1494
+ self.assertTrue(np.array_equal(b_np, b_mx))
1495
+
1496
+ def test_api(self):
1497
+ x = mx.array(np.random.rand(10, 10, 10))
1498
+ ops = [
1499
+ ("reshape", (100, -1)),
1500
+ "square",
1501
+ "sqrt",
1502
+ "rsqrt",
1503
+ "reciprocal",
1504
+ "exp",
1505
+ "log",
1506
+ "sin",
1507
+ "cos",
1508
+ "log1p",
1509
+ "abs",
1510
+ "log10",
1511
+ "log2",
1512
+ "conj",
1513
+ ("all", 1),
1514
+ ("any", 1),
1515
+ ("transpose", (0, 2, 1)),
1516
+ ("sum", 1),
1517
+ ("prod", 1),
1518
+ ("min", 1),
1519
+ ("max", 1),
1520
+ ("logcumsumexp", 1),
1521
+ ("logsumexp", 1),
1522
+ ("mean", 1),
1523
+ ("var", 1),
1524
+ ("argmin", 1),
1525
+ ("argmax", 1),
1526
+ ("cummax", 1),
1527
+ ("cummin", 1),
1528
+ ("cumprod", 1),
1529
+ ("cumsum", 1),
1530
+ ("diagonal", 0, 0, 1),
1531
+ ("flatten", 0, -1),
1532
+ ("moveaxis", 1, 2),
1533
+ ("round", 2),
1534
+ ("std", 1, True, 0),
1535
+ ("swapaxes", 1, 2),
1536
+ ]
1537
+ for op in ops:
1538
+ if isinstance(op, tuple):
1539
+ op, *args = op
1540
+ else:
1541
+ args = tuple()
1542
+ y1 = getattr(mx, op)(x, *args)
1543
+ y2 = getattr(x, op)(*args)
1544
+ self.assertEqual(y1.dtype, y2.dtype)
1545
+ self.assertEqual(y1.shape, y2.shape)
1546
+ self.assertTrue(mx.array_equal(y1, y2))
1547
+
1548
+ y1 = mx.split(x, 2)
1549
+ y2 = x.split(2)
1550
+ self.assertEqual(len(y1), 2)
1551
+ self.assertEqual(len(y1), len(y2))
1552
+ self.assertTrue(mx.array_equal(y1[0], y2[0]))
1553
+ self.assertTrue(mx.array_equal(y1[1], y2[1]))
1554
+ x = mx.array(np.random.rand(10, 10, 1))
1555
+ y1 = mx.squeeze(x, axis=2)
1556
+ y2 = x.squeeze(axis=2)
1557
+ self.assertEqual(y1.shape, y2.shape)
1558
+ self.assertTrue(mx.array_equal(y1, y2))
1559
+
1560
+ def test_memoryless_copy(self):
1561
+ a_mx = mx.ones((2, 2))
1562
+ b_mx = mx.broadcast_to(a_mx, (5, 2, 2))
1563
+
1564
+ # Make np arrays without copy
1565
+ a_np = np.array(a_mx, copy=False)
1566
+ b_np = np.array(b_mx, copy=False)
1567
+
1568
+ # Check that we get read-only array that does not own the underlying data
1569
+ self.assertFalse(a_np.flags.owndata)
1570
+ self.assertTrue(a_np.flags.writeable)
1571
+
1572
+ # Check contents
1573
+ self.assertTrue(np.array_equal(np.ones((2, 2), dtype=np.float32), a_np))
1574
+ self.assertTrue(np.array_equal(np.ones((5, 2, 2), dtype=np.float32), b_np))
1575
+
1576
+ # Check strides
1577
+ self.assertSequenceEqual(b_np.strides, (0, 8, 4))
1578
+
1579
+ def test_np_array_conversion_copies_by_default(self):
1580
+ a_mx = mx.ones((2, 2))
1581
+ a_np = np.array(a_mx)
1582
+ self.assertTrue(a_np.flags.owndata)
1583
+ self.assertTrue(a_np.flags.writeable)
1584
+
1585
+ def test_buffer_protocol(self):
1586
+ dtypes_list = [
1587
+ (mx.bool_, np.bool_, None),
1588
+ (mx.uint8, np.uint8, np.iinfo),
1589
+ (mx.uint16, np.uint16, np.iinfo),
1590
+ (mx.uint32, np.uint32, np.iinfo),
1591
+ (mx.uint64, np.uint64, np.iinfo),
1592
+ (mx.int8, np.int8, np.iinfo),
1593
+ (mx.int16, np.int16, np.iinfo),
1594
+ (mx.int32, np.int32, np.iinfo),
1595
+ (mx.int64, np.int64, np.iinfo),
1596
+ (mx.float16, np.float16, np.finfo),
1597
+ (mx.float32, np.float32, np.finfo),
1598
+ (mx.complex64, np.complex64, np.finfo),
1599
+ ]
1600
+
1601
+ for mlx_dtype, np_dtype, info_fn in dtypes_list:
1602
+ a_np = np.random.uniform(low=0, high=100, size=(3, 4)).astype(np_dtype)
1603
+ if info_fn is not None:
1604
+ info = info_fn(np_dtype)
1605
+ a_np[0, 0] = info.min
1606
+ a_np[0, 1] = info.max
1607
+ a_mx = mx.array(a_np)
1608
+ for f in [lambda x: x, lambda x: x.T]:
1609
+ mv_mx = memoryview(f(a_mx))
1610
+ mv_np = memoryview(f(a_np))
1611
+ self.assertEqual(mv_mx.strides, mv_np.strides, f"{mlx_dtype}{np_dtype}")
1612
+ self.assertEqual(mv_mx.shape, mv_np.shape, f"{mlx_dtype}{np_dtype}")
1613
+ # correct buffer format for 8 byte (unsigned) 'long long' is Q/q, see
1614
+ # https://docs.python.org/3.10/library/struct.html#format-characters
1615
+ # numpy returns L/l, as 'long' is equivalent to 'long long' on 64bit machines, so q and l are equivalent
1616
+ # see https://github.com/pybind/pybind11/issues/1908
1617
+ if np_dtype == np.uint64:
1618
+ self.assertEqual(mv_mx.format, "Q", f"{mlx_dtype}{np_dtype}")
1619
+ elif np_dtype == np.int64:
1620
+ self.assertEqual(mv_mx.format, "q", f"{mlx_dtype}{np_dtype}")
1621
+ # for windows long is 32bit and numpy returns L/l.
1622
+ elif np_dtype == np.uint32 and platform.system() == "Windows":
1623
+ self.assertEqual(mv_mx.format, "I", f"{mlx_dtype}{np_dtype}")
1624
+ elif np_dtype == np.int32 and platform.system() == "Windows":
1625
+ self.assertEqual(mv_mx.format, "i", f"{mlx_dtype}{np_dtype}")
1626
+ else:
1627
+ self.assertEqual(
1628
+ mv_mx.format, mv_np.format, f"{mlx_dtype}{np_dtype}"
1629
+ )
1630
+ self.assertFalse(mv_mx.readonly)
1631
+ back_to_npy = np.array(mv_mx, copy=False)
1632
+ self.assertEqualArray(
1633
+ back_to_npy,
1634
+ f(a_np),
1635
+ atol=0,
1636
+ rtol=0,
1637
+ )
1638
+
1639
+ # extra test for bfloat16, which is not numpy convertible
1640
+ a_mx = mx.random.uniform(low=0, high=100, shape=(3, 4), dtype=mx.bfloat16)
1641
+ mv_mx = memoryview(a_mx)
1642
+ self.assertEqual(mv_mx.strides, (8, 2))
1643
+ self.assertEqual(mv_mx.shape, (3, 4))
1644
+ self.assertEqual(mv_mx.format, "B")
1645
+ with self.assertRaises(RuntimeError) as cm:
1646
+ np.array(a_mx)
1647
+ e = cm.exception
1648
+ self.assertTrue("Item size 2 for PEP 3118 buffer format string" in str(e))
1649
+
1650
+ # Test buffer protocol with non-arrays ie bytes
1651
+ a = ord("a") * 257 + mx.arange(10).astype(mx.int16)
1652
+ ab = bytes(a)
1653
+ self.assertEqual(len(ab), 20)
1654
+ if sys.byteorder == "little":
1655
+ self.assertEqual(b"aaaaaaaaaa", ab[1::2])
1656
+ self.assertEqual(b"abcdefghij", ab[::2])
1657
+ else:
1658
+ self.assertEqual(b"aaaaaaaaaa", ab[::2])
1659
+ self.assertEqual(b"abcdefghij", ab[1::2])
1660
+
1661
+ def test_buffer_protocol_ref_counting(self):
1662
+ a = mx.arange(3)
1663
+ wr = weakref.ref(a)
1664
+ self.assertIsNotNone(wr())
1665
+ mv = memoryview(a)
1666
+ a = None
1667
+ self.assertIsNotNone(wr())
1668
+ mv = None
1669
+ self.assertIsNone(wr())
1670
+
1671
+ def test_array_view_ref_counting(self):
1672
+ a = mx.arange(3)
1673
+ wr = weakref.ref(a)
1674
+ self.assertIsNotNone(wr())
1675
+ a_np = np.array(a, copy=False)
1676
+ a = None
1677
+ self.assertIsNotNone(wr())
1678
+ a_np = None
1679
+ self.assertIsNone(wr())
1680
+
1681
+ @unittest.skipIf(not has_tf, "requires TensorFlow")
1682
+ def test_buffer_protocol_tf(self):
1683
+ dtypes_list = [
1684
+ (
1685
+ mx.bool_,
1686
+ tf.bool,
1687
+ np.bool_,
1688
+ ),
1689
+ (
1690
+ mx.uint8,
1691
+ tf.uint8,
1692
+ np.uint8,
1693
+ ),
1694
+ (
1695
+ mx.uint16,
1696
+ tf.uint16,
1697
+ np.uint16,
1698
+ ),
1699
+ (
1700
+ mx.uint32,
1701
+ tf.uint32,
1702
+ np.uint32,
1703
+ ),
1704
+ (mx.uint64, tf.uint64, np.uint64),
1705
+ (mx.int8, tf.int8, np.int8),
1706
+ (mx.int16, tf.int16, np.int16),
1707
+ (mx.int32, tf.int32, np.int32),
1708
+ (mx.int64, tf.int64, np.int64),
1709
+ (mx.float16, tf.float16, np.float16),
1710
+ (mx.float32, tf.float32, np.float32),
1711
+ (
1712
+ mx.complex64,
1713
+ tf.complex64,
1714
+ np.complex64,
1715
+ ),
1716
+ ]
1717
+
1718
+ for mlx_dtype, tf_dtype, np_dtype in dtypes_list:
1719
+ a_np = np.random.uniform(low=0, high=100, size=(3, 4)).astype(np_dtype)
1720
+ a_tf = tf.constant(a_np, dtype=tf_dtype)
1721
+ a_mx = mx.array(np.array(a_tf))
1722
+ for f in [
1723
+ lambda x: x,
1724
+ lambda x: tf.transpose(x) if isinstance(x, tf.Tensor) else x.T,
1725
+ ]:
1726
+ mv_mx = memoryview(f(a_mx))
1727
+ mv_tf = memoryview(f(a_tf))
1728
+ if (mv_mx.c_contiguous and mv_tf.c_contiguous) or (
1729
+ mv_mx.f_contiguous and mv_tf.f_contiguous
1730
+ ):
1731
+ self.assertEqual(
1732
+ mv_mx.strides, mv_tf.strides, f"{mlx_dtype}{tf_dtype}"
1733
+ )
1734
+ self.assertEqual(mv_mx.shape, mv_tf.shape, f"{mlx_dtype}{tf_dtype}")
1735
+ self.assertFalse(mv_mx.readonly)
1736
+ back_to_npy = np.array(mv_mx)
1737
+ self.assertEqualArray(
1738
+ back_to_npy,
1739
+ f(a_tf),
1740
+ atol=0,
1741
+ rtol=0,
1742
+ )
1743
+
1744
+ def test_logical_overloads(self):
1745
+ with self.assertRaises(ValueError):
1746
+ mx.array(1.0) & mx.array(1)
1747
+ with self.assertRaises(ValueError):
1748
+ mx.array(1.0) | mx.array(1)
1749
+
1750
+ self.assertEqual((mx.array(True) & True).item(), True)
1751
+ self.assertEqual((mx.array(True) & False).item(), False)
1752
+ self.assertEqual((mx.array(True) | False).item(), True)
1753
+ self.assertEqual((mx.array(False) | False).item(), False)
1754
+ self.assertEqual((~mx.array(False)).item(), True)
1755
+ self.assertEqual((mx.array(False) ^ True).item(), True)
1756
+
1757
+ def test_inplace(self):
1758
+ iops = [
1759
+ "__iadd__",
1760
+ "__isub__",
1761
+ "__imul__",
1762
+ "__ifloordiv__",
1763
+ "__imod__",
1764
+ "__ipow__",
1765
+ "__ixor__",
1766
+ ]
1767
+
1768
+ for op in iops:
1769
+ a = mx.array([1, 2, 3])
1770
+ a_np = np.array(a)
1771
+ b = a
1772
+ b = getattr(a, op)(3)
1773
+ self.assertTrue(mx.array_equal(a, b))
1774
+ out_np = getattr(a_np, op)(3)
1775
+ self.assertTrue(np.array_equal(out_np, a))
1776
+
1777
+ with self.assertRaises(ValueError):
1778
+ a = mx.array([1])
1779
+ a /= 1
1780
+
1781
+ a = mx.array([2.0])
1782
+ b = a
1783
+ b /= 2
1784
+ self.assertEqual(b.item(), 1.0)
1785
+ self.assertEqual(b.item(), a.item())
1786
+
1787
+ a = mx.array(True)
1788
+ b = a
1789
+ b &= False
1790
+ self.assertEqual(b.item(), False)
1791
+ self.assertEqual(b.item(), a.item())
1792
+
1793
+ a = mx.array(False)
1794
+ b = a
1795
+ b |= True
1796
+ self.assertEqual(b.item(), True)
1797
+ self.assertEqual(b.item(), a.item())
1798
+
1799
+ # In-place matmul on its own
1800
+ a = mx.array([[1.0, 2.0], [3.0, 4.0]])
1801
+ b = a
1802
+ b @= a
1803
+ self.assertTrue(mx.array_equal(a, b))
1804
+
1805
+ a = mx.array(False)
1806
+ a ^= True
1807
+ self.assertEqual(a.item(), True)
1808
+
1809
+ def test_inplace_preserves_ids(self):
1810
+ a = mx.array([1.0])
1811
+ orig_id = id(a)
1812
+ a += mx.array(2.0)
1813
+ self.assertEqual(id(a), orig_id)
1814
+
1815
+ a[0] = 2.0
1816
+ self.assertEqual(id(a), orig_id)
1817
+
1818
+ a -= mx.array(3.0)
1819
+ self.assertEqual(id(a), orig_id)
1820
+
1821
+ a *= mx.array(3.0)
1822
+ self.assertEqual(id(a), orig_id)
1823
+
1824
+ def test_load_from_pickled_np(self):
1825
+ a = np.array([1, 2, 3], dtype=np.int32)
1826
+ b = pickle.loads(pickle.dumps(a))
1827
+ self.assertTrue(mx.array_equal(mx.array(a), mx.array(b)))
1828
+
1829
+ a = np.array([1.0, 2.0, 3.0], dtype=np.float16)
1830
+ b = pickle.loads(pickle.dumps(a))
1831
+ self.assertTrue(mx.array_equal(mx.array(a), mx.array(b)))
1832
+
1833
+ def test_multi_output_leak(self):
1834
+ def fun():
1835
+ a = mx.zeros((2**20))
1836
+ mx.eval(a)
1837
+ b, c = mx.divmod(a, a)
1838
+ del b, c
1839
+
1840
+ fun()
1841
+ mx.synchronize()
1842
+ peak_1 = mx.get_peak_memory()
1843
+ fun()
1844
+ mx.synchronize()
1845
+ peak_2 = mx.get_peak_memory()
1846
+ self.assertEqual(peak_1, peak_2)
1847
+
1848
+ def fun():
1849
+ a = mx.array([1.0, 2.0, 3.0, 4.0])
1850
+ b, _ = mx.divmod(a, a)
1851
+ return mx.log(b)
1852
+
1853
+ fun()
1854
+ mx.synchronize()
1855
+ peak_1 = mx.get_peak_memory()
1856
+ fun()
1857
+ mx.synchronize()
1858
+ peak_2 = mx.get_peak_memory()
1859
+ self.assertEqual(peak_1, peak_2)
1860
+
1861
+ def test_add_numpy(self):
1862
+ x = mx.array(1)
1863
+ y = np.array(2, dtype=np.int32)
1864
+ z = x + y
1865
+ self.assertEqual(z.dtype, mx.int32)
1866
+ self.assertEqual(z.item(), 3)
1867
+
1868
+ def test_dlpack(self):
1869
+ x = mx.array(1, dtype=mx.int32)
1870
+ y = np.from_dlpack(x)
1871
+ self.assertTrue(mx.array_equal(y, x))
1872
+
1873
+ x = mx.array([[1.0, 2.0], [3.0, 4.0]])
1874
+ y = np.from_dlpack(x)
1875
+ self.assertTrue(mx.array_equal(y, x))
1876
+
1877
+ x = mx.arange(16).reshape(4, 4)
1878
+ x = x[::2, ::2]
1879
+ y = np.from_dlpack(x)
1880
+ self.assertTrue(mx.array_equal(y, x))
1881
+
1882
+ def test_getitem_with_list(self):
1883
+ a = mx.array([1, 2, 3, 4, 5])
1884
+ idx = [0, 2, 4]
1885
+ self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
1886
+
1887
+ a = mx.array([[1, 2], [3, 4], [5, 6]])
1888
+ idx = [0, 2]
1889
+ self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
1890
+
1891
+ a = mx.arange(10).reshape(5, 2)
1892
+ idx = [0, 2, 4]
1893
+ self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
1894
+
1895
+ idx = [0, 2]
1896
+ a = mx.arange(16).reshape(4, 4)
1897
+ anp = np.array(a)
1898
+ self.assertTrue(np.array_equal(a[idx, 0], anp[idx, 0]))
1899
+ self.assertTrue(np.array_equal(a[idx, :], anp[idx, :]))
1900
+ self.assertTrue(np.array_equal(a[0, idx], anp[0, idx]))
1901
+ self.assertTrue(np.array_equal(a[:, idx], anp[:, idx]))
1902
+
1903
+ def test_setitem_with_list(self):
1904
+ a = mx.array([1, 2, 3, 4, 5])
1905
+ anp = np.array(a)
1906
+ idx = [0, 2, 4]
1907
+ a[idx] = 3
1908
+ anp[idx] = 3
1909
+ self.assertTrue(np.array_equal(a, anp))
1910
+
1911
+ a = mx.array([[1, 2], [3, 4], [5, 6]])
1912
+ idx = [0, 2]
1913
+ anp = np.array(a)
1914
+ a[idx] = 3
1915
+ anp[idx] = 3
1916
+ self.assertTrue(np.array_equal(a, anp))
1917
+
1918
+ a = mx.arange(10).reshape(5, 2)
1919
+ idx = [0, 2, 4]
1920
+ anp = np.array(a)
1921
+ a[idx] = 3
1922
+ anp[idx] = 3
1923
+ self.assertTrue(np.array_equal(a, anp))
1924
+
1925
+ idx = [0, 2]
1926
+ a = mx.arange(16).reshape(4, 4)
1927
+ anp = np.array(a)
1928
+ a[idx, 0] = 1
1929
+ anp[idx, 0] = 1
1930
+ self.assertTrue(np.array_equal(a, anp))
1931
+
1932
+ a[idx, :] = 2
1933
+ anp[idx, :] = 2
1934
+ self.assertTrue(np.array_equal(a, anp))
1935
+
1936
+ a[0, idx] = 3
1937
+ anp[0, idx] = 3
1938
+ self.assertTrue(np.array_equal(a, anp))
1939
+
1940
+ a[:, idx] = 4
1941
+ anp[:, idx] = 4
1942
+ self.assertTrue(np.array_equal(a, anp))
1943
+
1944
+ def test_setitem_with_boolean_mask(self):
1945
+ # Python list mask
1946
+ a = mx.array([1.0, 2.0, 3.0])
1947
+ mask = [True, False, True]
1948
+ src = mx.array([5.0, 6.0])
1949
+ expected = mx.array([5.0, 2.0, 6.0])
1950
+ a[mask] = src
1951
+ self.assertTrue(mx.array_equal(a, expected))
1952
+
1953
+ # mx.array scalar mask
1954
+ a = mx.array([1.0, 2.0, 3.0])
1955
+ mask = mx.array(True)
1956
+ expected = mx.array([5.0, 5.0, 5.0])
1957
+ a[mask] = 5.0
1958
+ self.assertTrue(mx.array_equal(a, expected))
1959
+
1960
+ # scalar mask
1961
+ a = mx.array([1.0, 2.0, 3.0])
1962
+ mask = True
1963
+ expected = mx.array([5.0, 5.0, 5.0])
1964
+ a[mask] = 5.0
1965
+ self.assertTrue(mx.array_equal(a, expected))
1966
+
1967
+ mask_np = np.zeros((1, 10, 10), dtype=bool)
1968
+ with self.assertRaises(ValueError):
1969
+ mx.arange(1000).reshape(10, 10, 10)[mask_np] = 0
1970
+
1971
+ mask_np = np.zeros((10, 10, 1), dtype=bool)
1972
+ with self.assertRaises(ValueError):
1973
+ mx.arange(1000).reshape(10, 10, 10)[mask_np] = 0
1974
+
1975
+ def test_array_namespace(self):
1976
+ a = mx.array(1.0)
1977
+ api = a.__array_namespace__()
1978
+ self.assertTrue(hasattr(api, "array"))
1979
+ self.assertTrue(hasattr(api, "add"))
1980
+
1981
+ def test_array_namespace_asarray(self):
1982
+ xp = mx.array(1.0).__array_namespace__()
1983
+ self.assertTrue(hasattr(xp, "asarray"))
1984
+
1985
+ arr = xp.asarray([1, 2, 3])
1986
+ self.assertEqual(arr.tolist(), [1, 2, 3])
1987
+
1988
+ arr_f32 = xp.asarray([1, 2, 3], dtype=mx.float32)
1989
+ self.assertEqual(arr_f32.dtype, mx.float32)
1990
+
1991
+ existing = mx.array([4, 5, 6])
1992
+ arr_pass = xp.asarray(existing)
1993
+ self.assertEqual(arr_pass.tolist(), [4, 5, 6])
1994
+
1995
+ def test_asarray(self):
1996
+ # List inputs
1997
+ self.assertEqual(mx.asarray([1, 2, 3]).tolist(), [1, 2, 3])
1998
+ self.assertEqual(mx.asarray([[1, 2], [3, 4]]).tolist(), [[1, 2], [3, 4]])
1999
+
2000
+ # Tuple inputs
2001
+ self.assertEqual(mx.asarray((1, 2, 3)).tolist(), [1, 2, 3])
2002
+ self.assertEqual(mx.asarray(((1, 2), (3, 4))).tolist(), [[1, 2], [3, 4]])
2003
+
2004
+ # Mixed nesting
2005
+ self.assertEqual(mx.asarray([(1, 2), (3, 4)]).tolist(), [[1, 2], [3, 4]])
2006
+ self.assertEqual(mx.asarray(([1, 2], [3, 4])).tolist(), [[1, 2], [3, 4]])
2007
+
2008
+ # Scalar inputs
2009
+ self.assertEqual(mx.asarray(42).item(), 42)
2010
+ self.assertEqual(mx.asarray(3.14).item(), 3.140000104904175)
2011
+ self.assertEqual(mx.asarray(True).item(), True)
2012
+ self.assertEqual(mx.asarray(1 + 2j).item(), (1 + 2j))
2013
+
2014
+ # MLX array inputs
2015
+ arr = mx.array([1, 2, 3])
2016
+ self.assertEqual(mx.asarray(arr).tolist(), [1, 2, 3])
2017
+
2018
+ arr_int = mx.array([1, 2, 3], dtype=mx.int32)
2019
+ arr_float = mx.asarray(arr_int, dtype=mx.float32)
2020
+ self.assertEqual(arr_float.dtype, mx.float32)
2021
+ self.assertEqual(arr_float.tolist(), [1.0, 2.0, 3.0])
2022
+
2023
+ # NumPy array inputs
2024
+ np_arr = np.array([1.0, 2.0, 3.0], dtype=np.float32)
2025
+ mx_arr = mx.asarray(np_arr)
2026
+ self.assertEqual(mx_arr.tolist(), [1.0, 2.0, 3.0])
2027
+ self.assertEqual(mx_arr.dtype, mx.float32)
2028
+
2029
+ # dtype parameter
2030
+ self.assertEqual(mx.asarray([1, 2, 3], dtype=mx.float32).dtype, mx.float32)
2031
+ self.assertEqual(mx.asarray(42, dtype=mx.float16).dtype, mx.float16)
2032
+
2033
+ def test_to_scalar(self):
2034
+ a = mx.array(1)
2035
+ self.assertEqual(int(a), 1)
2036
+ self.assertEqual(float(a), 1)
2037
+
2038
+ a = mx.array(1.5)
2039
+ self.assertEqual(float(a), 1.5)
2040
+ self.assertEqual(int(a), 1)
2041
+
2042
+ a = mx.zeros((2, 1))
2043
+ with self.assertRaises(ValueError):
2044
+ float(a)
2045
+ with self.assertRaises(ValueError):
2046
+ int(a)
2047
+
2048
+ def test_format(self):
2049
+ a = mx.arange(3)
2050
+ self.assertEqual(f"{a[0]:.2f}", "0.00")
2051
+
2052
+ b = mx.array(0.35487)
2053
+ self.assertEqual(f"{b:.1f}", "0.4")
2054
+
2055
+ with self.assertRaises(TypeError):
2056
+ s = f"{a:.2f}"
2057
+
2058
+ a = mx.array([1, 2, 3])
2059
+ self.assertEqual(f"{a}", "array([1, 2, 3], dtype=int32)")
2060
+
2061
+ def test_deep_graphs(self):
2062
+ # The following tests should simply run cleanly without a segfault or
2063
+ # crash due to exceeding recursion depth limits.
2064
+
2065
+ # Deep graph destroyed without eval
2066
+ x = mx.array([1.0, 2.0])
2067
+ for _ in range(100_000):
2068
+ x = mx.sin(x)
2069
+ del x
2070
+
2071
+ # Duplicate input deep graph destroyed without eval
2072
+ x = mx.array([1.0, 2.0])
2073
+ for _ in range(100_000):
2074
+ x = x + x
2075
+
2076
+ # Deep graph with siblings destroyed without eval
2077
+ x = mx.array([1, 2])
2078
+ for _ in range(100_000):
2079
+ x = mx.concatenate(mx.split(x, 2))
2080
+ del x
2081
+
2082
+ # Deep graph with eval
2083
+ x = mx.array([1.0, 2.0])
2084
+ for _ in range(100_000):
2085
+ x = mx.sin(x)
2086
+ mx.eval(x)
2087
+
2088
+ def test_siblings_without_eval(self):
2089
+ def get_mem():
2090
+ if platform.system() == "Windows":
2091
+ process = psutil.Process(os.getpid())
2092
+ return process.memory_info().peak_wset
2093
+ else:
2094
+ return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
2095
+
2096
+ key = mx.array([1, 2])
2097
+
2098
+ def t():
2099
+ a, b = mx.split(key, 2)
2100
+ a = mx.reshape(a, [])
2101
+ b = mx.reshape(b, [])
2102
+ return b
2103
+
2104
+ mx.synchronize()
2105
+ t()
2106
+ gc.collect()
2107
+ expected = get_mem()
2108
+ for _ in range(100):
2109
+ t()
2110
+ used = get_mem()
2111
+ self.assertEqual(expected, used)
2112
+
2113
+ def test_scalar_integer_conversion_overflow(self):
2114
+ y = mx.array(2000000000, dtype=mx.int32)
2115
+ x = 3000000000
2116
+ with self.assertRaises(ValueError):
2117
+ y + x
2118
+ with self.assertRaises(ValueError):
2119
+ mx.add(y, x)
2120
+
2121
+ def test_real_imag(self):
2122
+ x = mx.array([1.0])
2123
+ self.assertEqual(x.real.item(), 1.0)
2124
+ self.assertEqual(x.imag.item(), 0.0)
2125
+
2126
+ x = mx.array([1.0 + 1.0j])
2127
+ self.assertEqual(x.imag.item(), 1.0)
2128
+ self.assertEqual(x.real.item(), 1.0)
2129
+
2130
+ def test_large_indices(self):
2131
+ x = mx.array([0, 1, 2])
2132
+ with self.assertRaises(ValueError):
2133
+ x[: 2**32]
2134
+ with self.assertRaises(ValueError):
2135
+ x[2**32]
2136
+
2137
+
2138
+ if __name__ == "__main__":
2139
+ mlx_tests.MLXTestRunner()