mlx 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlx might be problematic. Click here for more details.
- checksums.yaml +7 -0
- data/ext/mlx/CMakeLists.txt +7 -0
- data/ext/mlx/Makefile +273 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/mkmf.log +44 -0
- data/ext/mlx/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Info.plist +20 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/DWARF/native.bundle +0 -0
- data/ext/mlx/native.bundle.dSYM/Contents/Resources/Relocations/aarch64/native.bundle.yml +5 -0
- data/ext/mlx/native.cpp +8027 -0
- data/ext/mlx/native.o +0 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version +1 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/.clang-format +87 -0
- data/mlx/.git +1 -0
- data/mlx/.github/ISSUE_TEMPLATE/bug_report.md +28 -0
- data/mlx/.github/actions/build-cuda-release/action.yml +31 -0
- data/mlx/.github/actions/build-docs/action.yml +38 -0
- data/mlx/.github/actions/build-linux/action.yml +38 -0
- data/mlx/.github/actions/build-linux-release/action.yml +42 -0
- data/mlx/.github/actions/build-macos/action.yml +80 -0
- data/mlx/.github/actions/build-macos-release/action.yml +36 -0
- data/mlx/.github/actions/build-windows/action.yml +26 -0
- data/mlx/.github/actions/setup-linux/action.yml +93 -0
- data/mlx/.github/actions/setup-macos/action.yml +24 -0
- data/mlx/.github/actions/setup-windows/action.yml +42 -0
- data/mlx/.github/actions/test-linux/action.yml +69 -0
- data/mlx/.github/actions/test-windows/action.yml +20 -0
- data/mlx/.github/dependabot.yml +6 -0
- data/mlx/.github/pull_request_template.md +12 -0
- data/mlx/.github/scripts/build-sanitizer-tests.sh +48 -0
- data/mlx/.github/scripts/setup+build-cpp-linux-fedora-container.sh +27 -0
- data/mlx/.github/workflows/build_and_test.yml +152 -0
- data/mlx/.github/workflows/documentation.yml +28 -0
- data/mlx/.github/workflows/nightly.yml +104 -0
- data/mlx/.github/workflows/release.yml +256 -0
- data/mlx/.gitignore +81 -0
- data/mlx/.pre-commit-config.yaml +27 -0
- data/mlx/ACKNOWLEDGMENTS.md +268 -0
- data/mlx/CITATION.cff +24 -0
- data/mlx/CMakeLists.txt +437 -0
- data/mlx/CODE_OF_CONDUCT.md +132 -0
- data/mlx/CONTRIBUTING.md +38 -0
- data/mlx/LICENSE +21 -0
- data/mlx/MANIFEST.in +6 -0
- data/mlx/README.md +121 -0
- data/mlx/benchmarks/cpp/CMakeLists.txt +11 -0
- data/mlx/benchmarks/cpp/autograd.cpp +39 -0
- data/mlx/benchmarks/cpp/compare_devices.cpp +27 -0
- data/mlx/benchmarks/cpp/irregular_strides.cpp +201 -0
- data/mlx/benchmarks/cpp/single_ops.cpp +288 -0
- data/mlx/benchmarks/cpp/time_utils.h +39 -0
- data/mlx/benchmarks/numpy/single_ops.py +39 -0
- data/mlx/benchmarks/numpy/time_utils.py +20 -0
- data/mlx/benchmarks/python/batch_matmul_bench.py +62 -0
- data/mlx/benchmarks/python/blas/bench_gemm.py +191 -0
- data/mlx/benchmarks/python/blas/bench_gemv.py +220 -0
- data/mlx/benchmarks/python/comparative/README.md +15 -0
- data/mlx/benchmarks/python/comparative/bench_mlx.py +519 -0
- data/mlx/benchmarks/python/comparative/bench_torch.py +482 -0
- data/mlx/benchmarks/python/comparative/compare.py +284 -0
- data/mlx/benchmarks/python/compile_bench.py +107 -0
- data/mlx/benchmarks/python/conv1d_bench.py +123 -0
- data/mlx/benchmarks/python/conv2d_bench_cpu.py +127 -0
- data/mlx/benchmarks/python/conv2d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv2d_transpose_bench_cpu.py +129 -0
- data/mlx/benchmarks/python/conv3d_bench_cpu.py +110 -0
- data/mlx/benchmarks/python/conv3d_train_bench_cpu.py +143 -0
- data/mlx/benchmarks/python/conv3d_transpose_bench_cpu.py +116 -0
- data/mlx/benchmarks/python/conv_bench.py +135 -0
- data/mlx/benchmarks/python/conv_transpose_bench.py +135 -0
- data/mlx/benchmarks/python/conv_unaligned_bench.py +107 -0
- data/mlx/benchmarks/python/distributed_bench.py +66 -0
- data/mlx/benchmarks/python/einsum_bench.py +84 -0
- data/mlx/benchmarks/python/fft_bench.py +118 -0
- data/mlx/benchmarks/python/gather_bench.py +52 -0
- data/mlx/benchmarks/python/gather_mm_bench.py +74 -0
- data/mlx/benchmarks/python/gather_qmm_bench.py +84 -0
- data/mlx/benchmarks/python/hadamard_bench.py +70 -0
- data/mlx/benchmarks/python/large_gemm_bench.py +119 -0
- data/mlx/benchmarks/python/layer_norm_bench.py +82 -0
- data/mlx/benchmarks/python/masked_scatter.py +212 -0
- data/mlx/benchmarks/python/rms_norm_bench.py +63 -0
- data/mlx/benchmarks/python/rope_bench.py +35 -0
- data/mlx/benchmarks/python/scatter_bench.py +96 -0
- data/mlx/benchmarks/python/sdpa_bench.py +223 -0
- data/mlx/benchmarks/python/sdpa_vector_bench.py +95 -0
- data/mlx/benchmarks/python/single_ops.py +132 -0
- data/mlx/benchmarks/python/synchronize_bench.py +55 -0
- data/mlx/benchmarks/python/time_utils.py +38 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/docs/.clang-format +2 -0
- data/mlx/docs/.gitignore +3 -0
- data/mlx/docs/.nojekyll +0 -0
- data/mlx/docs/Doxyfile +51 -0
- data/mlx/docs/Makefile +18 -0
- data/mlx/docs/README.md +54 -0
- data/mlx/docs/index.html +1 -0
- data/mlx/docs/requirements.txt +5 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh-broken.png +0 -0
- data/mlx/docs/src/_static/distributed/m3-ultra-mesh.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/capture.png +0 -0
- data/mlx/docs/src/_static/metal_debugger/schema.png +0 -0
- data/mlx/docs/src/_static/mlx_logo.png +0 -0
- data/mlx/docs/src/_static/mlx_logo_dark.png +0 -0
- data/mlx/docs/src/_static/tp_inference/all-to-sharded-linear.png +0 -0
- data/mlx/docs/src/_static/tp_inference/column-row-tp.png +0 -0
- data/mlx/docs/src/_static/tp_inference/llama-transformer.png +0 -0
- data/mlx/docs/src/_static/tp_inference/sharded-to-all-linear.png +0 -0
- data/mlx/docs/src/_templates/module-base-class.rst +33 -0
- data/mlx/docs/src/_templates/nn-module-template.rst +20 -0
- data/mlx/docs/src/_templates/optimizers-template.rst +20 -0
- data/mlx/docs/src/conf.py +99 -0
- data/mlx/docs/src/cpp/ops.rst +7 -0
- data/mlx/docs/src/dev/custom_metal_kernels.rst +445 -0
- data/mlx/docs/src/dev/extensions.rst +811 -0
- data/mlx/docs/src/dev/metal_debugger.rst +68 -0
- data/mlx/docs/src/dev/metal_logging.rst +40 -0
- data/mlx/docs/src/dev/mlx_in_cpp.rst +121 -0
- data/mlx/docs/src/examples/data_parallelism.rst +91 -0
- data/mlx/docs/src/examples/linear_regression.rst +77 -0
- data/mlx/docs/src/examples/llama-inference.rst +382 -0
- data/mlx/docs/src/examples/mlp.rst +134 -0
- data/mlx/docs/src/examples/tensor_parallelism.rst +239 -0
- data/mlx/docs/src/index.rst +96 -0
- data/mlx/docs/src/install.rst +340 -0
- data/mlx/docs/src/python/array.rst +65 -0
- data/mlx/docs/src/python/cuda.rst +9 -0
- data/mlx/docs/src/python/data_types.rst +78 -0
- data/mlx/docs/src/python/devices_and_streams.rst +21 -0
- data/mlx/docs/src/python/distributed.rst +22 -0
- data/mlx/docs/src/python/export.rst +14 -0
- data/mlx/docs/src/python/fast.rst +16 -0
- data/mlx/docs/src/python/fft.rst +24 -0
- data/mlx/docs/src/python/linalg.rst +27 -0
- data/mlx/docs/src/python/memory_management.rst +16 -0
- data/mlx/docs/src/python/metal.rst +12 -0
- data/mlx/docs/src/python/nn/distributed.rst +30 -0
- data/mlx/docs/src/python/nn/functions.rst +40 -0
- data/mlx/docs/src/python/nn/init.rst +45 -0
- data/mlx/docs/src/python/nn/layers.rst +74 -0
- data/mlx/docs/src/python/nn/losses.rst +25 -0
- data/mlx/docs/src/python/nn/module.rst +38 -0
- data/mlx/docs/src/python/nn.rst +186 -0
- data/mlx/docs/src/python/ops.rst +184 -0
- data/mlx/docs/src/python/optimizers/common_optimizers.rst +22 -0
- data/mlx/docs/src/python/optimizers/optimizer.rst +23 -0
- data/mlx/docs/src/python/optimizers/schedulers.rst +15 -0
- data/mlx/docs/src/python/optimizers.rst +78 -0
- data/mlx/docs/src/python/random.rst +48 -0
- data/mlx/docs/src/python/transforms.rst +22 -0
- data/mlx/docs/src/python/tree_utils.rst +23 -0
- data/mlx/docs/src/usage/compile.rst +516 -0
- data/mlx/docs/src/usage/distributed.rst +572 -0
- data/mlx/docs/src/usage/export.rst +288 -0
- data/mlx/docs/src/usage/function_transforms.rst +191 -0
- data/mlx/docs/src/usage/indexing.rst +194 -0
- data/mlx/docs/src/usage/launching_distributed.rst +234 -0
- data/mlx/docs/src/usage/lazy_evaluation.rst +144 -0
- data/mlx/docs/src/usage/numpy.rst +124 -0
- data/mlx/docs/src/usage/quick_start.rst +67 -0
- data/mlx/docs/src/usage/saving_and_loading.rst +81 -0
- data/mlx/docs/src/usage/unified_memory.rst +78 -0
- data/mlx/docs/src/usage/using_streams.rst +18 -0
- data/mlx/examples/cmake_project/CMakeLists.txt +22 -0
- data/mlx/examples/cmake_project/README.md +26 -0
- data/mlx/examples/cmake_project/example.cpp +14 -0
- data/mlx/examples/cpp/CMakeLists.txt +12 -0
- data/mlx/examples/cpp/distributed.cpp +22 -0
- data/mlx/examples/cpp/linear_regression.cpp +54 -0
- data/mlx/examples/cpp/logistic_regression.cpp +54 -0
- data/mlx/examples/cpp/metal_capture.cpp +31 -0
- data/mlx/examples/cpp/timer.h +20 -0
- data/mlx/examples/cpp/tutorial.cpp +99 -0
- data/mlx/examples/export/CMakeLists.txt +22 -0
- data/mlx/examples/export/README.md +49 -0
- data/mlx/examples/export/eval_mlp.cpp +25 -0
- data/mlx/examples/export/eval_mlp.py +52 -0
- data/mlx/examples/export/train_mlp.cpp +35 -0
- data/mlx/examples/export/train_mlp.py +76 -0
- data/mlx/examples/extensions/CMakeLists.txt +78 -0
- data/mlx/examples/extensions/README.md +24 -0
- data/mlx/examples/extensions/axpby/axpby.cpp +306 -0
- data/mlx/examples/extensions/axpby/axpby.h +90 -0
- data/mlx/examples/extensions/axpby/axpby.metal +47 -0
- data/mlx/examples/extensions/bindings.cpp +39 -0
- data/mlx/examples/extensions/mlx_sample_extensions/__init__.py +5 -0
- data/mlx/examples/extensions/pyproject.toml +8 -0
- data/mlx/examples/extensions/requirements.txt +4 -0
- data/mlx/examples/extensions/setup.py +18 -0
- data/mlx/examples/extensions/test.py +12 -0
- data/mlx/examples/python/linear_regression.py +46 -0
- data/mlx/examples/python/logistic_regression.py +49 -0
- data/mlx/examples/python/qqmm.py +117 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- data/mlx/pyproject.toml +7 -0
- data/mlx/python/mlx/__main__.py +27 -0
- data/mlx/python/mlx/_distributed_utils/common.py +135 -0
- data/mlx/python/mlx/_distributed_utils/config.py +631 -0
- data/mlx/python/mlx/_distributed_utils/launch.py +570 -0
- data/mlx/python/mlx/_reprlib_fix.py +16 -0
- data/mlx/python/mlx/_stub_patterns.txt +36 -0
- data/mlx/python/mlx/extension.py +88 -0
- data/mlx/python/mlx/nn/__init__.py +5 -0
- data/mlx/python/mlx/nn/init.py +441 -0
- data/mlx/python/mlx/nn/layers/__init__.py +105 -0
- data/mlx/python/mlx/nn/layers/activations.py +661 -0
- data/mlx/python/mlx/nn/layers/base.py +675 -0
- data/mlx/python/mlx/nn/layers/containers.py +24 -0
- data/mlx/python/mlx/nn/layers/convolution.py +232 -0
- data/mlx/python/mlx/nn/layers/convolution_transpose.py +242 -0
- data/mlx/python/mlx/nn/layers/distributed.py +601 -0
- data/mlx/python/mlx/nn/layers/dropout.py +137 -0
- data/mlx/python/mlx/nn/layers/embedding.py +53 -0
- data/mlx/python/mlx/nn/layers/linear.py +180 -0
- data/mlx/python/mlx/nn/layers/normalization.py +363 -0
- data/mlx/python/mlx/nn/layers/pooling.py +398 -0
- data/mlx/python/mlx/nn/layers/positional_encoding.py +162 -0
- data/mlx/python/mlx/nn/layers/quantized.py +426 -0
- data/mlx/python/mlx/nn/layers/recurrent.py +289 -0
- data/mlx/python/mlx/nn/layers/transformer.py +354 -0
- data/mlx/python/mlx/nn/layers/upsample.py +277 -0
- data/mlx/python/mlx/nn/losses.py +610 -0
- data/mlx/python/mlx/nn/utils.py +165 -0
- data/mlx/python/mlx/optimizers/__init__.py +4 -0
- data/mlx/python/mlx/optimizers/optimizers.py +976 -0
- data/mlx/python/mlx/optimizers/schedulers.py +158 -0
- data/mlx/python/mlx/py.typed +1 -0
- data/mlx/python/mlx/utils.py +325 -0
- data/mlx/python/src/CMakeLists.txt +96 -0
- data/mlx/python/src/array.cpp +1525 -0
- data/mlx/python/src/buffer.h +124 -0
- data/mlx/python/src/constants.cpp +15 -0
- data/mlx/python/src/convert.cpp +504 -0
- data/mlx/python/src/convert.h +50 -0
- data/mlx/python/src/cuda.cpp +19 -0
- data/mlx/python/src/device.cpp +98 -0
- data/mlx/python/src/distributed.cpp +352 -0
- data/mlx/python/src/export.cpp +356 -0
- data/mlx/python/src/fast.cpp +627 -0
- data/mlx/python/src/fft.cpp +514 -0
- data/mlx/python/src/indexing.cpp +1016 -0
- data/mlx/python/src/indexing.h +41 -0
- data/mlx/python/src/linalg.cpp +663 -0
- data/mlx/python/src/load.cpp +531 -0
- data/mlx/python/src/load.h +51 -0
- data/mlx/python/src/memory.cpp +125 -0
- data/mlx/python/src/metal.cpp +98 -0
- data/mlx/python/src/mlx.cpp +51 -0
- data/mlx/python/src/mlx_func.cpp +116 -0
- data/mlx/python/src/mlx_func.h +31 -0
- data/mlx/python/src/ops.cpp +5545 -0
- data/mlx/python/src/random.cpp +516 -0
- data/mlx/python/src/small_vector.h +76 -0
- data/mlx/python/src/stream.cpp +147 -0
- data/mlx/python/src/transforms.cpp +1542 -0
- data/mlx/python/src/trees.cpp +311 -0
- data/mlx/python/src/trees.h +62 -0
- data/mlx/python/src/utils.cpp +98 -0
- data/mlx/python/src/utils.h +78 -0
- data/mlx/python/tests/__main__.py +5 -0
- data/mlx/python/tests/cuda_skip.py +62 -0
- data/mlx/python/tests/mlx_distributed_tests.py +314 -0
- data/mlx/python/tests/mlx_tests.py +116 -0
- data/mlx/python/tests/mpi_test_distributed.py +142 -0
- data/mlx/python/tests/nccl_test_distributed.py +52 -0
- data/mlx/python/tests/ring_test_distributed.py +131 -0
- data/mlx/python/tests/test_array.py +2139 -0
- data/mlx/python/tests/test_autograd.py +880 -0
- data/mlx/python/tests/test_bf16.py +196 -0
- data/mlx/python/tests/test_blas.py +1429 -0
- data/mlx/python/tests/test_compile.py +1277 -0
- data/mlx/python/tests/test_constants.py +41 -0
- data/mlx/python/tests/test_conv.py +1198 -0
- data/mlx/python/tests/test_conv_transpose.py +810 -0
- data/mlx/python/tests/test_device.py +150 -0
- data/mlx/python/tests/test_double.py +306 -0
- data/mlx/python/tests/test_einsum.py +363 -0
- data/mlx/python/tests/test_eval.py +200 -0
- data/mlx/python/tests/test_export_import.py +614 -0
- data/mlx/python/tests/test_fast.py +923 -0
- data/mlx/python/tests/test_fast_sdpa.py +647 -0
- data/mlx/python/tests/test_fft.py +323 -0
- data/mlx/python/tests/test_graph.py +37 -0
- data/mlx/python/tests/test_init.py +139 -0
- data/mlx/python/tests/test_linalg.py +621 -0
- data/mlx/python/tests/test_load.py +447 -0
- data/mlx/python/tests/test_losses.py +427 -0
- data/mlx/python/tests/test_memory.py +77 -0
- data/mlx/python/tests/test_nn.py +1986 -0
- data/mlx/python/tests/test_ops.py +3261 -0
- data/mlx/python/tests/test_optimizers.py +584 -0
- data/mlx/python/tests/test_quantized.py +1160 -0
- data/mlx/python/tests/test_random.py +392 -0
- data/mlx/python/tests/test_reduce.py +223 -0
- data/mlx/python/tests/test_tree.py +96 -0
- data/mlx/python/tests/test_upsample.py +100 -0
- data/mlx/python/tests/test_vmap.py +860 -0
- data/mlx/setup.py +315 -0
- data/mlx/tests/CMakeLists.txt +44 -0
- data/mlx/tests/allocator_tests.cpp +41 -0
- data/mlx/tests/arg_reduce_tests.cpp +204 -0
- data/mlx/tests/array_tests.cpp +663 -0
- data/mlx/tests/autograd_tests.cpp +1399 -0
- data/mlx/tests/blas_tests.cpp +110 -0
- data/mlx/tests/compile_tests.cpp +818 -0
- data/mlx/tests/creations_tests.cpp +239 -0
- data/mlx/tests/custom_vjp_tests.cpp +55 -0
- data/mlx/tests/device_tests.cpp +35 -0
- data/mlx/tests/einsum_tests.cpp +85 -0
- data/mlx/tests/eval_tests.cpp +93 -0
- data/mlx/tests/export_import_tests.cpp +164 -0
- data/mlx/tests/fft_tests.cpp +366 -0
- data/mlx/tests/gpu_tests.cpp +523 -0
- data/mlx/tests/linalg_tests.cpp +639 -0
- data/mlx/tests/load_tests.cpp +270 -0
- data/mlx/tests/ops_tests.cpp +4159 -0
- data/mlx/tests/random_tests.cpp +716 -0
- data/mlx/tests/scheduler_tests.cpp +121 -0
- data/mlx/tests/tests.cpp +26 -0
- data/mlx/tests/utils_tests.cpp +67 -0
- data/mlx/tests/vmap_tests.cpp +547 -0
- metadata +958 -0
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
# Copyright © 2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
import mlx.core as mx
|
|
4
|
+
import mlx.nn as nn
|
|
5
|
+
import mlx.optimizers as optim
|
|
6
|
+
import mlx.utils
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class MLP(nn.Module):
|
|
10
|
+
"""A simple MLP."""
|
|
11
|
+
|
|
12
|
+
def __init__(
|
|
13
|
+
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
|
|
14
|
+
):
|
|
15
|
+
super().__init__()
|
|
16
|
+
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
|
|
17
|
+
self.layers = [
|
|
18
|
+
nn.Linear(idim, odim)
|
|
19
|
+
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
|
|
20
|
+
]
|
|
21
|
+
|
|
22
|
+
def __call__(self, x):
|
|
23
|
+
for l in self.layers[:-1]:
|
|
24
|
+
x = nn.relu(l(x))
|
|
25
|
+
return self.layers[-1](x)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
if __name__ == "__main__":
|
|
29
|
+
|
|
30
|
+
batch_size = 8
|
|
31
|
+
input_dim = 32
|
|
32
|
+
output_dim = 10
|
|
33
|
+
|
|
34
|
+
def init():
|
|
35
|
+
# Seed for the parameter initialization
|
|
36
|
+
mx.random.seed(0)
|
|
37
|
+
model = MLP(
|
|
38
|
+
num_layers=3, input_dim=input_dim, hidden_dim=64, output_dim=output_dim
|
|
39
|
+
)
|
|
40
|
+
optimizer = optim.SGD(learning_rate=1e-1)
|
|
41
|
+
optimizer.init(model.parameters())
|
|
42
|
+
state = [model.parameters(), optimizer.state]
|
|
43
|
+
tree_structure, state = zip(*mlx.utils.tree_flatten(state))
|
|
44
|
+
return model, optimizer, tree_structure, state
|
|
45
|
+
|
|
46
|
+
# Export the model parameter initialization
|
|
47
|
+
model, optimizer, tree_structure, state = init()
|
|
48
|
+
mx.eval(state)
|
|
49
|
+
mx.export_function("init_mlp.mlxfn", lambda: init()[-1])
|
|
50
|
+
|
|
51
|
+
def loss_fn(params, X, y):
|
|
52
|
+
model.update(params)
|
|
53
|
+
return nn.losses.cross_entropy(model(X), y, reduction="mean")
|
|
54
|
+
|
|
55
|
+
def step(*inputs):
|
|
56
|
+
*state, X, y = inputs
|
|
57
|
+
params, opt_state = mlx.utils.tree_unflatten(list(zip(tree_structure, state)))
|
|
58
|
+
optimizer.state = opt_state
|
|
59
|
+
loss, grads = mx.value_and_grad(loss_fn)(params, X, y)
|
|
60
|
+
params = optimizer.apply_gradients(grads, params)
|
|
61
|
+
_, state = zip(*mlx.utils.tree_flatten([params, optimizer.state]))
|
|
62
|
+
return *state, loss
|
|
63
|
+
|
|
64
|
+
# Make some random data
|
|
65
|
+
mx.random.seed(42)
|
|
66
|
+
example_X = mx.random.normal(shape=(batch_size, input_dim))
|
|
67
|
+
example_y = mx.random.randint(low=0, high=output_dim, shape=(batch_size,))
|
|
68
|
+
mx.export_function("train_mlp.mlxfn", step, *state, example_X, example_y)
|
|
69
|
+
|
|
70
|
+
# Export one step of SGD
|
|
71
|
+
imported_step = mx.import_function("train_mlp.mlxfn")
|
|
72
|
+
|
|
73
|
+
for it in range(100):
|
|
74
|
+
*state, loss = imported_step(*state, example_X, example_y)
|
|
75
|
+
if it % 10 == 0:
|
|
76
|
+
print(f"Loss {loss.item():.6}")
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
cmake_minimum_required(VERSION 3.27)
|
|
2
|
+
|
|
3
|
+
project(_ext LANGUAGES CXX)
|
|
4
|
+
|
|
5
|
+
# ----------------------------- Setup -----------------------------
|
|
6
|
+
set(CMAKE_CXX_STANDARD 17)
|
|
7
|
+
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
|
8
|
+
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
|
9
|
+
|
|
10
|
+
option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
|
11
|
+
|
|
12
|
+
# ----------------------------- Dependencies -----------------------------
|
|
13
|
+
find_package(
|
|
14
|
+
Python 3.8
|
|
15
|
+
COMPONENTS Interpreter Development.Module
|
|
16
|
+
REQUIRED)
|
|
17
|
+
execute_process(
|
|
18
|
+
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
|
19
|
+
OUTPUT_STRIP_TRAILING_WHITESPACE
|
|
20
|
+
OUTPUT_VARIABLE nanobind_ROOT)
|
|
21
|
+
find_package(nanobind CONFIG REQUIRED)
|
|
22
|
+
|
|
23
|
+
execute_process(
|
|
24
|
+
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
|
|
25
|
+
OUTPUT_STRIP_TRAILING_WHITESPACE
|
|
26
|
+
OUTPUT_VARIABLE MLX_ROOT)
|
|
27
|
+
find_package(MLX CONFIG REQUIRED)
|
|
28
|
+
|
|
29
|
+
# ----------------------------- Extensions -----------------------------
|
|
30
|
+
|
|
31
|
+
# Add library
|
|
32
|
+
add_library(mlx_ext)
|
|
33
|
+
|
|
34
|
+
# Add sources
|
|
35
|
+
target_sources(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp)
|
|
36
|
+
|
|
37
|
+
# Add include headers
|
|
38
|
+
target_include_directories(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR})
|
|
39
|
+
|
|
40
|
+
# Link to mlx
|
|
41
|
+
target_link_libraries(mlx_ext PUBLIC mlx)
|
|
42
|
+
|
|
43
|
+
# ----------------------------- Metal -----------------------------
|
|
44
|
+
|
|
45
|
+
# Build metallib
|
|
46
|
+
if(MLX_BUILD_METAL)
|
|
47
|
+
mlx_build_metallib(
|
|
48
|
+
TARGET
|
|
49
|
+
mlx_ext_metallib
|
|
50
|
+
TITLE
|
|
51
|
+
mlx_ext
|
|
52
|
+
SOURCES
|
|
53
|
+
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
|
|
54
|
+
INCLUDE_DIRS
|
|
55
|
+
${PROJECT_SOURCE_DIR}
|
|
56
|
+
${MLX_INCLUDE_DIRS}
|
|
57
|
+
OUTPUT_DIRECTORY
|
|
58
|
+
${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
|
|
59
|
+
|
|
60
|
+
add_dependencies(mlx_ext mlx_ext_metallib)
|
|
61
|
+
|
|
62
|
+
endif()
|
|
63
|
+
|
|
64
|
+
# ----------------------------- Python Bindings -----------------------------
|
|
65
|
+
nanobind_add_module(
|
|
66
|
+
_ext
|
|
67
|
+
NB_STATIC
|
|
68
|
+
STABLE_ABI
|
|
69
|
+
LTO
|
|
70
|
+
NOMINSIZE
|
|
71
|
+
NB_DOMAIN
|
|
72
|
+
mlx
|
|
73
|
+
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp)
|
|
74
|
+
target_link_libraries(_ext PRIVATE mlx_ext)
|
|
75
|
+
|
|
76
|
+
if(BUILD_SHARED_LIBS)
|
|
77
|
+
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
|
78
|
+
endif()
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
|
|
2
|
+
## Build
|
|
3
|
+
|
|
4
|
+
```
|
|
5
|
+
pip install -e .
|
|
6
|
+
```
|
|
7
|
+
|
|
8
|
+
For faster builds during development, you can also pre-install the requirements:
|
|
9
|
+
|
|
10
|
+
```
|
|
11
|
+
pip install -r requirements.txt
|
|
12
|
+
```
|
|
13
|
+
|
|
14
|
+
And then run:
|
|
15
|
+
|
|
16
|
+
```
|
|
17
|
+
python setup.py build_ext -j8 --inplace
|
|
18
|
+
```
|
|
19
|
+
|
|
20
|
+
## Test
|
|
21
|
+
|
|
22
|
+
```
|
|
23
|
+
python test.py
|
|
24
|
+
```
|
|
@@ -0,0 +1,306 @@
|
|
|
1
|
+
// Copyright © 2023-2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <dlfcn.h>
|
|
4
|
+
#include <iostream>
|
|
5
|
+
#include <sstream>
|
|
6
|
+
|
|
7
|
+
#include "mlx/backend/common/utils.h"
|
|
8
|
+
#include "mlx/backend/cpu/encoder.h"
|
|
9
|
+
#include "mlx/utils.h"
|
|
10
|
+
|
|
11
|
+
#include "axpby/axpby.h"
|
|
12
|
+
|
|
13
|
+
#ifdef _METAL_
|
|
14
|
+
#include "mlx/backend/metal/device.h"
|
|
15
|
+
#include "mlx/backend/metal/utils.h"
|
|
16
|
+
#endif
|
|
17
|
+
|
|
18
|
+
namespace my_ext {
|
|
19
|
+
|
|
20
|
+
// A helper function to find the location of the current binary on disk.
|
|
21
|
+
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
|
22
|
+
std::string current_binary_dir() {
|
|
23
|
+
static std::string binary_dir = []() {
|
|
24
|
+
Dl_info info;
|
|
25
|
+
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
|
26
|
+
throw std::runtime_error("Unable to get current binary dir.");
|
|
27
|
+
}
|
|
28
|
+
return std::filesystem::path(info.dli_fname).parent_path().string();
|
|
29
|
+
}();
|
|
30
|
+
return binary_dir;
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
34
|
+
// Operation Implementation
|
|
35
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
36
|
+
|
|
37
|
+
/**
|
|
38
|
+
* Scale and sum two vectors element-wise
|
|
39
|
+
* z = alpha * x + beta * y
|
|
40
|
+
*
|
|
41
|
+
* Follow numpy style broadcasting between x and y
|
|
42
|
+
* Inputs are upcasted to floats if needed
|
|
43
|
+
**/
|
|
44
|
+
mx::array axpby(
|
|
45
|
+
const mx::array& x, // Input mx::array x
|
|
46
|
+
const mx::array& y, // Input mx::array y
|
|
47
|
+
const float alpha, // Scaling factor for x
|
|
48
|
+
const float beta, // Scaling factor for y
|
|
49
|
+
mx::StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
|
|
50
|
+
) {
|
|
51
|
+
// Promote dtypes between x and y as needed
|
|
52
|
+
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
|
53
|
+
|
|
54
|
+
// Upcast to float32 for non-floating point inputs x and y
|
|
55
|
+
auto out_dtype = mx::issubdtype(promoted_dtype, mx::float32)
|
|
56
|
+
? promoted_dtype
|
|
57
|
+
: promote_types(promoted_dtype, mx::float32);
|
|
58
|
+
|
|
59
|
+
// Cast x and y up to the determined dtype (on the same stream s)
|
|
60
|
+
auto x_casted = mx::astype(x, out_dtype, s);
|
|
61
|
+
auto y_casted = mx::astype(y, out_dtype, s);
|
|
62
|
+
|
|
63
|
+
// Broadcast the shapes of x and y (on the same stream s)
|
|
64
|
+
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
|
|
65
|
+
auto out_shape = broadcasted_inputs[0].shape();
|
|
66
|
+
|
|
67
|
+
// Construct the array as the output of the Axpby primitive
|
|
68
|
+
// with the broadcasted and upcasted arrays as inputs
|
|
69
|
+
return mx::array(
|
|
70
|
+
/* const mx::Shape& shape = */ out_shape,
|
|
71
|
+
/* mx::Dtype dtype = */ out_dtype,
|
|
72
|
+
/* std::shared_ptr<mx::Primitive> primitive = */
|
|
73
|
+
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
|
74
|
+
/* const std::vector<mx::array>& inputs = */ broadcasted_inputs);
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
78
|
+
// Primitive Common Backend Implementation
|
|
79
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
80
|
+
|
|
81
|
+
template <typename T>
|
|
82
|
+
void axpby_impl(
|
|
83
|
+
const mx::array& x,
|
|
84
|
+
const mx::array& y,
|
|
85
|
+
mx::array& out,
|
|
86
|
+
float alpha_,
|
|
87
|
+
float beta_,
|
|
88
|
+
mx::Stream stream) {
|
|
89
|
+
out.set_data(mx::allocator::malloc(out.nbytes()));
|
|
90
|
+
|
|
91
|
+
// Get the CPU command encoder and register input and output arrays
|
|
92
|
+
auto& encoder = mx::cpu::get_command_encoder(stream);
|
|
93
|
+
encoder.set_input_array(x);
|
|
94
|
+
encoder.set_input_array(y);
|
|
95
|
+
encoder.set_output_array(out);
|
|
96
|
+
|
|
97
|
+
// Launch the CPU kernel
|
|
98
|
+
encoder.dispatch([x_ptr = x.data<T>(),
|
|
99
|
+
y_ptr = y.data<T>(),
|
|
100
|
+
out_ptr = out.data<T>(),
|
|
101
|
+
size = out.size(),
|
|
102
|
+
shape = out.shape(),
|
|
103
|
+
x_strides = x.strides(),
|
|
104
|
+
y_strides = y.strides(),
|
|
105
|
+
alpha_,
|
|
106
|
+
beta_]() {
|
|
107
|
+
// Cast alpha and beta to the relevant types
|
|
108
|
+
T alpha = static_cast<T>(alpha_);
|
|
109
|
+
T beta = static_cast<T>(beta_);
|
|
110
|
+
|
|
111
|
+
// Do the element-wise operation for each output
|
|
112
|
+
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
|
113
|
+
// Map linear indices to offsets in x and y
|
|
114
|
+
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
|
115
|
+
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
|
116
|
+
|
|
117
|
+
// We allocate the output to be contiguous and regularly strided
|
|
118
|
+
// (defaults to row major) and hence it doesn't need additional mapping
|
|
119
|
+
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
|
120
|
+
}
|
|
121
|
+
});
|
|
122
|
+
}
|
|
123
|
+
|
|
124
|
+
void Axpby::eval_cpu(
|
|
125
|
+
const std::vector<mx::array>& inputs,
|
|
126
|
+
std::vector<mx::array>& outputs) {
|
|
127
|
+
auto& x = inputs[0];
|
|
128
|
+
auto& y = inputs[1];
|
|
129
|
+
auto& out = outputs[0];
|
|
130
|
+
|
|
131
|
+
// Dispatch to the correct dtype
|
|
132
|
+
if (out.dtype() == mx::float32) {
|
|
133
|
+
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
|
134
|
+
} else if (out.dtype() == mx::float16) {
|
|
135
|
+
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
|
136
|
+
} else if (out.dtype() == mx::bfloat16) {
|
|
137
|
+
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
|
138
|
+
} else if (out.dtype() == mx::complex64) {
|
|
139
|
+
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
|
140
|
+
} else {
|
|
141
|
+
throw std::runtime_error(
|
|
142
|
+
"Axpby is only supported for floating point types.");
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
147
|
+
// Primitive Metal Backend Implementation
|
|
148
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
149
|
+
|
|
150
|
+
#ifdef _METAL_
|
|
151
|
+
|
|
152
|
+
/** Evaluate primitive on GPU */
|
|
153
|
+
void Axpby::eval_gpu(
|
|
154
|
+
const std::vector<mx::array>& inputs,
|
|
155
|
+
std::vector<mx::array>& outputs) {
|
|
156
|
+
// Prepare inputs
|
|
157
|
+
auto& x = inputs[0];
|
|
158
|
+
auto& y = inputs[1];
|
|
159
|
+
auto& out = outputs[0];
|
|
160
|
+
|
|
161
|
+
// Each primitive carries the stream it should execute on
|
|
162
|
+
// and each stream carries its device identifiers
|
|
163
|
+
auto& s = stream();
|
|
164
|
+
// We get the needed metal device using the stream
|
|
165
|
+
auto& d = mx::metal::device(s.device);
|
|
166
|
+
|
|
167
|
+
// Prepare to specialize based on contiguity
|
|
168
|
+
bool contiguous_kernel =
|
|
169
|
+
(x.flags().row_contiguous && y.flags().row_contiguous) ||
|
|
170
|
+
(x.flags().col_contiguous && y.flags().col_contiguous);
|
|
171
|
+
|
|
172
|
+
// Allocate output memory with strides based on specialization
|
|
173
|
+
if (contiguous_kernel) {
|
|
174
|
+
out.set_data(
|
|
175
|
+
mx::allocator::malloc(x.data_size() * out.itemsize()),
|
|
176
|
+
x.data_size(),
|
|
177
|
+
x.strides(),
|
|
178
|
+
x.flags());
|
|
179
|
+
} else {
|
|
180
|
+
out.set_data(mx::allocator::malloc(out.nbytes()));
|
|
181
|
+
}
|
|
182
|
+
|
|
183
|
+
// Resolve name of kernel (corresponds to axpby.metal)
|
|
184
|
+
std::string kname = "axpby_";
|
|
185
|
+
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
|
186
|
+
kname += type_to_name(out);
|
|
187
|
+
|
|
188
|
+
// Load the metal library
|
|
189
|
+
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
|
190
|
+
|
|
191
|
+
// Make a kernel from this metal library
|
|
192
|
+
auto kernel = d.get_kernel(kname, lib);
|
|
193
|
+
|
|
194
|
+
// Prepare to encode kernel
|
|
195
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
196
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
197
|
+
|
|
198
|
+
// Kernel parameters are registered with buffer indices corresponding to
|
|
199
|
+
// those in the kernel declaration at axpby.metal
|
|
200
|
+
int ndim = out.ndim();
|
|
201
|
+
size_t nelem = out.size();
|
|
202
|
+
|
|
203
|
+
// Encode input arrays to kernel
|
|
204
|
+
compute_encoder.set_input_array(x, 0);
|
|
205
|
+
compute_encoder.set_input_array(y, 1);
|
|
206
|
+
|
|
207
|
+
// Encode output arrays to kernel
|
|
208
|
+
compute_encoder.set_output_array(out, 2);
|
|
209
|
+
|
|
210
|
+
// Encode alpha and beta
|
|
211
|
+
compute_encoder.set_bytes(alpha_, 3);
|
|
212
|
+
compute_encoder.set_bytes(beta_, 4);
|
|
213
|
+
|
|
214
|
+
// Encode shape, strides and ndim if needed
|
|
215
|
+
if (!contiguous_kernel) {
|
|
216
|
+
compute_encoder.set_vector_bytes(x.shape(), 5);
|
|
217
|
+
compute_encoder.set_vector_bytes(x.strides(), 6);
|
|
218
|
+
compute_encoder.set_vector_bytes(y.strides(), 7);
|
|
219
|
+
compute_encoder.set_bytes(ndim, 8);
|
|
220
|
+
}
|
|
221
|
+
|
|
222
|
+
// We launch 1 thread for each input and make sure that the number of
|
|
223
|
+
// threads in any given threadgroup is not higher than the max allowed
|
|
224
|
+
size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());
|
|
225
|
+
|
|
226
|
+
// Fix the 3D size of each threadgroup (in terms of threads)
|
|
227
|
+
MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);
|
|
228
|
+
|
|
229
|
+
// Fix the 3D size of the launch grid (in terms of threads)
|
|
230
|
+
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
|
|
231
|
+
|
|
232
|
+
// Launch the grid with the given number of threads divided among
|
|
233
|
+
// the given threadgroups
|
|
234
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
235
|
+
}
|
|
236
|
+
|
|
237
|
+
#else // Metal is not available
|
|
238
|
+
|
|
239
|
+
/** Fail evaluation on GPU */
|
|
240
|
+
void Axpby::eval_gpu(
|
|
241
|
+
const std::vector<mx::array>& inputs,
|
|
242
|
+
std::vector<mx::array>& out) {
|
|
243
|
+
throw std::runtime_error("Axpby has no GPU implementation.");
|
|
244
|
+
}
|
|
245
|
+
|
|
246
|
+
#endif
|
|
247
|
+
|
|
248
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
249
|
+
// Primitive Transforms
|
|
250
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
251
|
+
|
|
252
|
+
/** The Jacobian-vector product. */
|
|
253
|
+
std::vector<mx::array> Axpby::jvp(
|
|
254
|
+
const std::vector<mx::array>& primals,
|
|
255
|
+
const std::vector<mx::array>& tangents,
|
|
256
|
+
const std::vector<int>& argnums) {
|
|
257
|
+
// Forward mode diff that pushes along the tangents
|
|
258
|
+
// The jvp transform on the primitive can built with ops
|
|
259
|
+
// that are scheduled on the same stream as the primitive
|
|
260
|
+
|
|
261
|
+
// If argnums = {0}, we only push along x in which case the
|
|
262
|
+
// jvp is just the tangent scaled by alpha
|
|
263
|
+
// Similarly, if argnums = {1}, the jvp is just the tangent
|
|
264
|
+
// scaled by beta
|
|
265
|
+
if (argnums.size() > 1) {
|
|
266
|
+
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
|
267
|
+
auto scale_arr = mx::array(scale, tangents[0].dtype());
|
|
268
|
+
return {mx::multiply(scale_arr, tangents[0], stream())};
|
|
269
|
+
}
|
|
270
|
+
// If, argnums = {0, 1}, we take contributions from both
|
|
271
|
+
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
|
272
|
+
else {
|
|
273
|
+
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
|
274
|
+
}
|
|
275
|
+
}
|
|
276
|
+
|
|
277
|
+
/** The vector-Jacobian product. */
|
|
278
|
+
std::vector<mx::array> Axpby::vjp(
|
|
279
|
+
const std::vector<mx::array>& primals,
|
|
280
|
+
const std::vector<mx::array>& cotangents,
|
|
281
|
+
const std::vector<int>& argnums,
|
|
282
|
+
const std::vector<mx::array>&) {
|
|
283
|
+
// Reverse mode diff
|
|
284
|
+
std::vector<mx::array> vjps;
|
|
285
|
+
for (auto arg : argnums) {
|
|
286
|
+
auto scale = arg == 0 ? alpha_ : beta_;
|
|
287
|
+
auto scale_arr = mx::array(scale, cotangents[0].dtype());
|
|
288
|
+
vjps.push_back(mx::multiply(scale_arr, cotangents[0], stream()));
|
|
289
|
+
}
|
|
290
|
+
return vjps;
|
|
291
|
+
}
|
|
292
|
+
|
|
293
|
+
/** Vectorize primitive along given axis */
|
|
294
|
+
std::pair<std::vector<mx::array>, std::vector<int>> Axpby::vmap(
|
|
295
|
+
const std::vector<mx::array>& inputs,
|
|
296
|
+
const std::vector<int>& axes) {
|
|
297
|
+
throw std::runtime_error("Axpby has no vmap implementation.");
|
|
298
|
+
}
|
|
299
|
+
|
|
300
|
+
/** Equivalence check **/
|
|
301
|
+
bool Axpby::is_equivalent(const Primitive& other) const {
|
|
302
|
+
const Axpby& r_other = static_cast<const Axpby&>(other);
|
|
303
|
+
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
|
|
304
|
+
}
|
|
305
|
+
|
|
306
|
+
} // namespace my_ext
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
// Copyright © 2023-2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/ops.h"
|
|
6
|
+
#include "mlx/primitives.h"
|
|
7
|
+
|
|
8
|
+
namespace mx = mlx::core;
|
|
9
|
+
|
|
10
|
+
namespace my_ext {
|
|
11
|
+
|
|
12
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
13
|
+
// Operation
|
|
14
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
15
|
+
|
|
16
|
+
/**
|
|
17
|
+
* Scale and sum two vectors element-wise
|
|
18
|
+
* z = alpha * x + beta * y
|
|
19
|
+
*
|
|
20
|
+
* Follow numpy style broadcasting between x and y
|
|
21
|
+
* Inputs are upcasted to floats if needed
|
|
22
|
+
**/
|
|
23
|
+
mx::array axpby(
|
|
24
|
+
const mx::array& x, // Input array x
|
|
25
|
+
const mx::array& y, // Input array y
|
|
26
|
+
const float alpha, // Scaling factor for x
|
|
27
|
+
const float beta, // Scaling factor for y
|
|
28
|
+
mx::StreamOrDevice s = {} // Stream on which to schedule the operation
|
|
29
|
+
);
|
|
30
|
+
|
|
31
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
32
|
+
// Primitive
|
|
33
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
34
|
+
|
|
35
|
+
class Axpby : public mx::Primitive {
|
|
36
|
+
public:
|
|
37
|
+
explicit Axpby(mx::Stream stream, float alpha, float beta)
|
|
38
|
+
: mx::Primitive(stream), alpha_(alpha), beta_(beta) {};
|
|
39
|
+
|
|
40
|
+
/**
|
|
41
|
+
* A primitive must know how to evaluate itself on the CPU/GPU
|
|
42
|
+
* for the given inputs and populate the output array.
|
|
43
|
+
*
|
|
44
|
+
* To avoid unnecessary allocations, the evaluation function
|
|
45
|
+
* is responsible for allocating space for the array.
|
|
46
|
+
*/
|
|
47
|
+
void eval_cpu(
|
|
48
|
+
const std::vector<mx::array>& inputs,
|
|
49
|
+
std::vector<mx::array>& outputs) override;
|
|
50
|
+
void eval_gpu(
|
|
51
|
+
const std::vector<mx::array>& inputs,
|
|
52
|
+
std::vector<mx::array>& outputs) override;
|
|
53
|
+
|
|
54
|
+
/** The Jacobian-vector product. */
|
|
55
|
+
std::vector<mx::array> jvp(
|
|
56
|
+
const std::vector<mx::array>& primals,
|
|
57
|
+
const std::vector<mx::array>& tangents,
|
|
58
|
+
const std::vector<int>& argnums) override;
|
|
59
|
+
|
|
60
|
+
/** The vector-Jacobian product. */
|
|
61
|
+
std::vector<mx::array> vjp(
|
|
62
|
+
const std::vector<mx::array>& primals,
|
|
63
|
+
const std::vector<mx::array>& cotangents,
|
|
64
|
+
const std::vector<int>& argnums,
|
|
65
|
+
const std::vector<mx::array>& outputs) override;
|
|
66
|
+
|
|
67
|
+
/**
|
|
68
|
+
* The primitive must know how to vectorize itself across
|
|
69
|
+
* the given axes. The output is a pair containing the array
|
|
70
|
+
* representing the vectorized computation and the axis which
|
|
71
|
+
* corresponds to the output vectorized dimension.
|
|
72
|
+
*/
|
|
73
|
+
std::pair<std::vector<mx::array>, std::vector<int>> vmap(
|
|
74
|
+
const std::vector<mx::array>& inputs,
|
|
75
|
+
const std::vector<int>& axes) override;
|
|
76
|
+
|
|
77
|
+
/** The name of primitive. */
|
|
78
|
+
const char* name() const override {
|
|
79
|
+
return "Axpby";
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
/** Equivalence check **/
|
|
83
|
+
bool is_equivalent(const mx::Primitive& other) const override;
|
|
84
|
+
|
|
85
|
+
private:
|
|
86
|
+
float alpha_;
|
|
87
|
+
float beta_;
|
|
88
|
+
};
|
|
89
|
+
|
|
90
|
+
} // namespace my_ext
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
// Copyright © 2023-2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <metal_stdlib>
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/metal/kernels/utils.h"
|
|
6
|
+
|
|
7
|
+
template <typename T>
|
|
8
|
+
[[kernel]] void axpby_general(
|
|
9
|
+
device const T* x [[buffer(0)]],
|
|
10
|
+
device const T* y [[buffer(1)]],
|
|
11
|
+
device T* out [[buffer(2)]],
|
|
12
|
+
constant const float& alpha [[buffer(3)]],
|
|
13
|
+
constant const float& beta [[buffer(4)]],
|
|
14
|
+
constant const int* shape [[buffer(5)]],
|
|
15
|
+
constant const int64_t* x_strides [[buffer(6)]],
|
|
16
|
+
constant const int64_t* y_strides [[buffer(7)]],
|
|
17
|
+
constant const int& ndim [[buffer(8)]],
|
|
18
|
+
uint index [[thread_position_in_grid]]) {
|
|
19
|
+
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
|
20
|
+
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
|
21
|
+
out[index] =
|
|
22
|
+
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
template <typename T>
|
|
26
|
+
[[kernel]] void axpby_contiguous(
|
|
27
|
+
device const T* x [[buffer(0)]],
|
|
28
|
+
device const T* y [[buffer(1)]],
|
|
29
|
+
device T* out [[buffer(2)]],
|
|
30
|
+
constant const float& alpha [[buffer(3)]],
|
|
31
|
+
constant const float& beta [[buffer(4)]],
|
|
32
|
+
uint index [[thread_position_in_grid]]) {
|
|
33
|
+
out[index] =
|
|
34
|
+
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
// clang-format off
|
|
38
|
+
#define instantiate_axpby(type_name, type) \
|
|
39
|
+
instantiate_kernel("axpby_general_" #type_name, axpby_general, type) \
|
|
40
|
+
instantiate_kernel( \
|
|
41
|
+
"axpby_contiguous_" #type_name, axpby_contiguous, type)
|
|
42
|
+
|
|
43
|
+
instantiate_axpby(float32, float);
|
|
44
|
+
instantiate_axpby(float16, half);
|
|
45
|
+
instantiate_axpby(bfloat16, bfloat16_t);
|
|
46
|
+
instantiate_axpby(complex64, complex64_t);
|
|
47
|
+
// clang-format on
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <nanobind/nanobind.h>
|
|
4
|
+
#include <nanobind/stl/variant.h>
|
|
5
|
+
|
|
6
|
+
#include "axpby/axpby.h"
|
|
7
|
+
|
|
8
|
+
namespace nb = nanobind;
|
|
9
|
+
using namespace nb::literals;
|
|
10
|
+
|
|
11
|
+
NB_MODULE(_ext, m) {
|
|
12
|
+
m.doc() = "Sample extension for MLX";
|
|
13
|
+
|
|
14
|
+
m.def(
|
|
15
|
+
"axpby",
|
|
16
|
+
&my_ext::axpby,
|
|
17
|
+
"x"_a,
|
|
18
|
+
"y"_a,
|
|
19
|
+
"alpha"_a,
|
|
20
|
+
"beta"_a,
|
|
21
|
+
nb::kw_only(),
|
|
22
|
+
"stream"_a = nb::none(),
|
|
23
|
+
R"(
|
|
24
|
+
Scale and sum two vectors element-wise
|
|
25
|
+
``z = alpha * x + beta * y``
|
|
26
|
+
|
|
27
|
+
Follows numpy style broadcasting between ``x`` and ``y``
|
|
28
|
+
Inputs are upcasted to floats if needed
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
x (array): Input array.
|
|
32
|
+
y (array): Input array.
|
|
33
|
+
alpha (float): Scaling factor for ``x``.
|
|
34
|
+
beta (float): Scaling factor for ``y``.
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
array: ``alpha * x + beta * y``
|
|
38
|
+
)");
|
|
39
|
+
}
|