vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,196 @@
|
|
1
|
+
from typing import List, Optional, Tuple
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch import nn
|
5
|
+
|
6
|
+
from vllm.config import (DeviceConfig, ModelConfig, ParallelConfig,
|
7
|
+
SchedulerConfig)
|
8
|
+
from vllm.logger import init_logger
|
9
|
+
from vllm.model_executor import SamplingMetadata
|
10
|
+
from vllm.model_executor.model_loader.neuron import get_neuron_model
|
11
|
+
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
12
|
+
from vllm.utils import is_pin_memory_available, make_tensor_with_pad
|
13
|
+
|
14
|
+
logger = init_logger(__name__)
|
15
|
+
|
16
|
+
|
17
|
+
class NeuronModelRunner:
|
18
|
+
|
19
|
+
def __init__(
|
20
|
+
self,
|
21
|
+
model_config: ModelConfig,
|
22
|
+
parallel_config: ParallelConfig,
|
23
|
+
scheduler_config: SchedulerConfig,
|
24
|
+
device_config: DeviceConfig,
|
25
|
+
):
|
26
|
+
self.model_config = model_config
|
27
|
+
self.parallel_config = parallel_config
|
28
|
+
self.scheduler_config = scheduler_config
|
29
|
+
|
30
|
+
if model_config is not None and model_config.get_sliding_window():
|
31
|
+
logger.warning("Sliding window is not supported on Neuron. "
|
32
|
+
"The model will run without sliding window.")
|
33
|
+
self.device_config = (device_config
|
34
|
+
if device_config is not None else DeviceConfig())
|
35
|
+
self.device = self.device_config.device
|
36
|
+
self.pin_memory = is_pin_memory_available()
|
37
|
+
|
38
|
+
# Lazy initialization.
|
39
|
+
self.model: nn.Module # initialize after load_model.
|
40
|
+
|
41
|
+
def load_model(self) -> None:
|
42
|
+
self.model = get_neuron_model(self.model_config,
|
43
|
+
parallel_config=self.parallel_config,
|
44
|
+
scheduler_config=self.scheduler_config)
|
45
|
+
|
46
|
+
def _prepare_prompt(
|
47
|
+
self,
|
48
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
49
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
|
50
|
+
assert len(seq_group_metadata_list) > 0
|
51
|
+
input_tokens: List[List[int]] = []
|
52
|
+
input_positions: List[List[int]] = []
|
53
|
+
input_block_ids: List[int] = []
|
54
|
+
|
55
|
+
seq_lens: List[int] = []
|
56
|
+
for seq_group_metadata in seq_group_metadata_list:
|
57
|
+
assert seq_group_metadata.is_prompt
|
58
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
59
|
+
assert len(seq_ids) == 1
|
60
|
+
seq_id = seq_ids[0]
|
61
|
+
|
62
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
63
|
+
prompt_tokens = seq_data.get_token_ids()
|
64
|
+
seq_len = len(prompt_tokens)
|
65
|
+
seq_lens.append(seq_len)
|
66
|
+
|
67
|
+
input_tokens.append(prompt_tokens)
|
68
|
+
input_positions.append(list(range(seq_len)))
|
69
|
+
|
70
|
+
assert seq_group_metadata.block_tables is not None
|
71
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
72
|
+
assert len(block_table) == 1
|
73
|
+
input_block_ids.append(block_table[0])
|
74
|
+
|
75
|
+
max_seq_len = max(seq_lens)
|
76
|
+
assert max_seq_len > 0
|
77
|
+
input_tokens = make_tensor_with_pad(input_tokens,
|
78
|
+
max_seq_len,
|
79
|
+
pad=0,
|
80
|
+
dtype=torch.long,
|
81
|
+
device=self.device)
|
82
|
+
input_positions = make_tensor_with_pad(input_positions,
|
83
|
+
max_seq_len,
|
84
|
+
pad=0,
|
85
|
+
dtype=torch.long,
|
86
|
+
device=self.device)
|
87
|
+
input_block_ids = torch.tensor(input_block_ids,
|
88
|
+
dtype=torch.long,
|
89
|
+
device=self.device)
|
90
|
+
|
91
|
+
return input_tokens, input_positions, input_block_ids, seq_lens
|
92
|
+
|
93
|
+
def _prepare_decode(
|
94
|
+
self,
|
95
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
96
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
97
|
+
assert len(seq_group_metadata_list) > 0
|
98
|
+
input_tokens: List[List[int]] = []
|
99
|
+
input_positions: List[List[int]] = []
|
100
|
+
input_block_ids: List[int] = []
|
101
|
+
context_lens: List[int] = []
|
102
|
+
|
103
|
+
for seq_group_metadata in seq_group_metadata_list:
|
104
|
+
assert not seq_group_metadata.is_prompt
|
105
|
+
|
106
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
107
|
+
|
108
|
+
for seq_id in seq_ids:
|
109
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
110
|
+
generation_token = seq_data.get_last_token_id()
|
111
|
+
input_tokens.append([generation_token])
|
112
|
+
|
113
|
+
seq_len = seq_data.get_len()
|
114
|
+
position = seq_len - 1
|
115
|
+
input_positions.append([position])
|
116
|
+
context_lens.append(seq_len)
|
117
|
+
|
118
|
+
assert seq_group_metadata.block_tables is not None
|
119
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
120
|
+
assert len(block_table) == 1
|
121
|
+
input_block_ids.append(block_table[0])
|
122
|
+
|
123
|
+
input_tokens = make_tensor_with_pad(input_tokens,
|
124
|
+
max_len=1,
|
125
|
+
pad=0,
|
126
|
+
dtype=torch.long,
|
127
|
+
device=self.device)
|
128
|
+
input_positions = make_tensor_with_pad(input_positions,
|
129
|
+
max_len=1,
|
130
|
+
pad=0,
|
131
|
+
dtype=torch.long,
|
132
|
+
device=self.device)
|
133
|
+
context_lens = torch.tensor(context_lens,
|
134
|
+
dtype=torch.int,
|
135
|
+
device=self.device)
|
136
|
+
input_block_ids = torch.tensor(input_block_ids,
|
137
|
+
dtype=torch.long,
|
138
|
+
device=self.device)
|
139
|
+
|
140
|
+
return input_tokens, input_positions, input_block_ids
|
141
|
+
|
142
|
+
def prepare_input_tensors(
|
143
|
+
self,
|
144
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
145
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, SamplingMetadata]:
|
146
|
+
# NOTE: We assume that all sequences in the group are all prompts or
|
147
|
+
# all decodes.
|
148
|
+
is_prompt = seq_group_metadata_list[0].is_prompt
|
149
|
+
# Prepare input tensors.
|
150
|
+
if is_prompt:
|
151
|
+
(input_tokens, input_positions, input_block_ids,
|
152
|
+
seq_lens) = self._prepare_prompt(seq_group_metadata_list)
|
153
|
+
else:
|
154
|
+
(input_tokens, input_positions,
|
155
|
+
input_block_ids) = self._prepare_decode(seq_group_metadata_list)
|
156
|
+
seq_lens = []
|
157
|
+
sampling_metadata = SamplingMetadata.prepare(
|
158
|
+
seq_group_metadata_list,
|
159
|
+
seq_lens,
|
160
|
+
# query_lens is not needed if chunked prefill is not
|
161
|
+
# supported. Since neuron worker doesn't support chunked prefill
|
162
|
+
# just use seq_lens instead.
|
163
|
+
seq_lens,
|
164
|
+
self.device,
|
165
|
+
self.pin_memory)
|
166
|
+
|
167
|
+
return (input_tokens, input_positions, input_block_ids,
|
168
|
+
sampling_metadata)
|
169
|
+
|
170
|
+
@torch.inference_mode()
|
171
|
+
def execute_model(
|
172
|
+
self,
|
173
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
174
|
+
) -> Optional[SamplerOutput]:
|
175
|
+
(input_tokens, input_positions, input_block_ids, sampling_metadata
|
176
|
+
) = self.prepare_input_tensors(seq_group_metadata_list)
|
177
|
+
|
178
|
+
hidden_states = self.model(
|
179
|
+
input_ids=input_tokens,
|
180
|
+
positions=input_positions,
|
181
|
+
input_block_ids=input_block_ids,
|
182
|
+
)
|
183
|
+
|
184
|
+
# Compute the logits.
|
185
|
+
logits = self.model.compute_logits(hidden_states, sampling_metadata)
|
186
|
+
|
187
|
+
# Sample the next token.
|
188
|
+
output = self.model.sample(
|
189
|
+
logits=logits,
|
190
|
+
sampling_metadata=sampling_metadata,
|
191
|
+
)
|
192
|
+
return output
|
193
|
+
|
194
|
+
@property
|
195
|
+
def vocab_size(self) -> int:
|
196
|
+
return self.model_config.get_vocab_size()
|
@@ -0,0 +1,98 @@
|
|
1
|
+
"""A Neuron worker class."""
|
2
|
+
from typing import List, Tuple
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.distributed
|
6
|
+
|
7
|
+
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
|
8
|
+
ParallelConfig, SchedulerConfig)
|
9
|
+
from vllm.model_executor import set_random_seed
|
10
|
+
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
|
11
|
+
from vllm.worker.neuron_model_runner import NeuronModelRunner
|
12
|
+
from vllm.worker.worker_base import LoraNotSupportedWorkerBase
|
13
|
+
|
14
|
+
|
15
|
+
class NeuronWorker(LoraNotSupportedWorkerBase):
|
16
|
+
"""A worker class that executes the model on a group of neuron cores.
|
17
|
+
"""
|
18
|
+
|
19
|
+
def __init__(
|
20
|
+
self,
|
21
|
+
model_config: ModelConfig,
|
22
|
+
parallel_config: ParallelConfig,
|
23
|
+
scheduler_config: SchedulerConfig,
|
24
|
+
device_config: DeviceConfig,
|
25
|
+
cache_config: CacheConfig,
|
26
|
+
) -> None:
|
27
|
+
self.model_config = model_config
|
28
|
+
self.parallel_config = parallel_config
|
29
|
+
self.scheduler_config = scheduler_config
|
30
|
+
self.device_config = device_config
|
31
|
+
self.cache_config = cache_config
|
32
|
+
if self.model_config.trust_remote_code:
|
33
|
+
# note: lazy import to avoid importing torch before initializing
|
34
|
+
from vllm.utils import init_cached_hf_modules
|
35
|
+
init_cached_hf_modules()
|
36
|
+
|
37
|
+
self.model_runner = NeuronModelRunner(model_config, parallel_config,
|
38
|
+
scheduler_config, device_config)
|
39
|
+
|
40
|
+
def init_device(self) -> None:
|
41
|
+
# Set random seed.
|
42
|
+
set_random_seed(self.model_config.seed)
|
43
|
+
|
44
|
+
def load_model(self):
|
45
|
+
self.model_runner.load_model()
|
46
|
+
|
47
|
+
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
48
|
+
"""Determine the number of available KV blocks.
|
49
|
+
|
50
|
+
Swapping is not yet supported, so always return num_cpu_blocks=0.
|
51
|
+
|
52
|
+
We configure num_gpu_blocks to be equal to max_num_seqs.
|
53
|
+
"""
|
54
|
+
# Set the number of GPU blocks to be the same as the maximum number of
|
55
|
+
# sequences that can be processed in a single batch. This is equivalent
|
56
|
+
# to schedule without PagedAttention.
|
57
|
+
num_gpu_blocks = self.scheduler_config.max_num_seqs
|
58
|
+
|
59
|
+
# Swap not yet supported with Neuron backend.
|
60
|
+
num_cpu_blocks = 0
|
61
|
+
|
62
|
+
return num_gpu_blocks, num_cpu_blocks
|
63
|
+
|
64
|
+
def initialize_cache(self, num_gpu_blocks: int,
|
65
|
+
num_cpu_blocks: int) -> None:
|
66
|
+
"""Initialize the KV cache.
|
67
|
+
"""
|
68
|
+
|
69
|
+
# Different values are not tested.
|
70
|
+
assert num_cpu_blocks == 0
|
71
|
+
assert num_gpu_blocks == self.scheduler_config.max_num_seqs
|
72
|
+
|
73
|
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
74
|
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
75
|
+
|
76
|
+
@torch.inference_mode()
|
77
|
+
def execute_model(
|
78
|
+
self,
|
79
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
80
|
+
) -> List[SamplerOutput]:
|
81
|
+
num_seq_groups = len(seq_group_metadata_list)
|
82
|
+
|
83
|
+
# If there is no input, we don't need to execute the model.
|
84
|
+
if num_seq_groups == 0:
|
85
|
+
return []
|
86
|
+
|
87
|
+
output = self.model_runner.execute_model(seq_group_metadata_list)
|
88
|
+
|
89
|
+
# Neuron worker only supports single-step output. Wrap the output in a
|
90
|
+
# list to conform to interface.
|
91
|
+
return [output]
|
92
|
+
|
93
|
+
def get_cache_block_size_bytes(self) -> int:
|
94
|
+
"""Determine the size in bytes of a cache block.
|
95
|
+
|
96
|
+
This is required for speculative decoding; it is not yet implemented.
|
97
|
+
"""
|
98
|
+
raise NotImplementedError
|
vllm/worker/worker.py
ADDED
@@ -0,0 +1,345 @@
|
|
1
|
+
"""A GPU worker class."""
|
2
|
+
import gc
|
3
|
+
import os
|
4
|
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
5
|
+
|
6
|
+
import torch
|
7
|
+
import torch.distributed
|
8
|
+
|
9
|
+
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
10
|
+
ModelConfig, ParallelConfig, SchedulerConfig,
|
11
|
+
VisionLanguageConfig)
|
12
|
+
from vllm.distributed import (broadcast_tensor_dict,
|
13
|
+
ensure_model_parallel_initialized,
|
14
|
+
get_tensor_model_parallel_cpu_group,
|
15
|
+
init_distributed_environment)
|
16
|
+
from vllm.distributed.device_communicators import pynccl_utils
|
17
|
+
from vllm.distributed.device_communicators.custom_all_reduce import (
|
18
|
+
init_custom_ar)
|
19
|
+
from vllm.lora.request import LoRARequest
|
20
|
+
from vllm.model_executor import set_random_seed
|
21
|
+
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
22
|
+
from vllm.worker.cache_engine import CacheEngine
|
23
|
+
from vllm.worker.model_runner import ModelRunner
|
24
|
+
from vllm.worker.worker_base import WorkerBase
|
25
|
+
|
26
|
+
|
27
|
+
class Worker(WorkerBase):
|
28
|
+
"""A worker class that executes (a partition of) the model on a GPU.
|
29
|
+
|
30
|
+
Each worker is associated with a single GPU. The worker is responsible for
|
31
|
+
maintaining the KV cache and executing the model on the GPU. In case of
|
32
|
+
distributed inference, each worker is assigned a partition of the model.
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(
|
36
|
+
self,
|
37
|
+
model_config: ModelConfig,
|
38
|
+
parallel_config: ParallelConfig,
|
39
|
+
scheduler_config: SchedulerConfig,
|
40
|
+
device_config: DeviceConfig,
|
41
|
+
cache_config: CacheConfig,
|
42
|
+
load_config: LoadConfig,
|
43
|
+
local_rank: int,
|
44
|
+
rank: int,
|
45
|
+
distributed_init_method: str,
|
46
|
+
lora_config: Optional[LoRAConfig] = None,
|
47
|
+
vision_language_config: Optional[VisionLanguageConfig] = None,
|
48
|
+
is_driver_worker: bool = False,
|
49
|
+
) -> None:
|
50
|
+
self.model_config = model_config
|
51
|
+
self.parallel_config = parallel_config
|
52
|
+
self.scheduler_config = scheduler_config
|
53
|
+
self.device_config = device_config
|
54
|
+
self.cache_config = cache_config
|
55
|
+
self.local_rank = local_rank
|
56
|
+
self.rank = rank
|
57
|
+
self.distributed_init_method = distributed_init_method
|
58
|
+
self.lora_config = lora_config
|
59
|
+
self.load_config = load_config
|
60
|
+
self.is_driver_worker = is_driver_worker
|
61
|
+
if self.is_driver_worker:
|
62
|
+
assert self.rank == 0, "The driver worker must have rank 0."
|
63
|
+
|
64
|
+
if self.model_config.trust_remote_code:
|
65
|
+
# note: lazy import to avoid importing torch before initializing
|
66
|
+
from vllm.utils import init_cached_hf_modules
|
67
|
+
init_cached_hf_modules()
|
68
|
+
self.vision_language_config = vision_language_config
|
69
|
+
if self.vision_language_config:
|
70
|
+
assert not self.lora_config, (
|
71
|
+
"To be tested: vision language model with LoRA settings.")
|
72
|
+
|
73
|
+
self.model_runner = ModelRunner(
|
74
|
+
model_config,
|
75
|
+
parallel_config,
|
76
|
+
scheduler_config,
|
77
|
+
device_config,
|
78
|
+
load_config=load_config,
|
79
|
+
lora_config=self.lora_config,
|
80
|
+
kv_cache_dtype=self.cache_config.cache_dtype,
|
81
|
+
is_driver_worker=is_driver_worker,
|
82
|
+
vision_language_config=vision_language_config,
|
83
|
+
)
|
84
|
+
# Uninitialized cache engine. Will be initialized by
|
85
|
+
# initialize_cache.
|
86
|
+
self.cache_engine: CacheEngine
|
87
|
+
self.gpu_cache: List[torch.Tensor]
|
88
|
+
|
89
|
+
def init_device(self) -> None:
|
90
|
+
if self.device_config.device.type == "cuda":
|
91
|
+
# torch.distributed.all_reduce does not free the input tensor until
|
92
|
+
# the synchronization point. This causes the memory usage to grow
|
93
|
+
# as the number of all_reduce calls increases. This env var disables
|
94
|
+
# this behavior.
|
95
|
+
# Related issue:
|
96
|
+
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
|
97
|
+
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
|
98
|
+
|
99
|
+
# This env var set by Ray causes exceptions with graph building.
|
100
|
+
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
|
101
|
+
self.device = torch.device(f"cuda:{self.local_rank}")
|
102
|
+
torch.cuda.set_device(self.device)
|
103
|
+
|
104
|
+
_check_if_gpu_supports_dtype(self.model_config.dtype)
|
105
|
+
torch.cuda.empty_cache()
|
106
|
+
self.init_gpu_memory = torch.cuda.mem_get_info()[0]
|
107
|
+
else:
|
108
|
+
raise RuntimeError(
|
109
|
+
f"Not support device type: {self.device_config.device}")
|
110
|
+
# Initialize the distributed environment.
|
111
|
+
init_worker_distributed_environment(self.parallel_config, self.rank,
|
112
|
+
self.distributed_init_method,
|
113
|
+
self.local_rank)
|
114
|
+
# Set random seed.
|
115
|
+
set_random_seed(self.model_config.seed)
|
116
|
+
|
117
|
+
def load_model(self):
|
118
|
+
self.model_runner.load_model()
|
119
|
+
|
120
|
+
@torch.inference_mode()
|
121
|
+
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
122
|
+
"""Profiles the peak memory usage of the model to determine how many
|
123
|
+
KV blocks may be allocated without OOMs.
|
124
|
+
|
125
|
+
The engine will first conduct a profiling of the existing memory usage.
|
126
|
+
Then, it calculate the maximum possible number of GPU and CPU blocks
|
127
|
+
that can be allocated with the remaining free memory.
|
128
|
+
|
129
|
+
.. tip::
|
130
|
+
You may limit the usage of GPU memory
|
131
|
+
by adjusting the `gpu_memory_utilization` parameter.
|
132
|
+
"""
|
133
|
+
# Profile the memory usage of the model and get the maximum number of
|
134
|
+
# cache blocks that can be allocated with the remaining free memory.
|
135
|
+
torch.cuda.empty_cache()
|
136
|
+
|
137
|
+
# Execute a forward pass with dummy inputs to profile the memory usage
|
138
|
+
# of the model.
|
139
|
+
self.model_runner.profile_run()
|
140
|
+
|
141
|
+
# Calculate the number of blocks that can be allocated with the
|
142
|
+
# profiled peak memory.
|
143
|
+
torch.cuda.synchronize()
|
144
|
+
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
145
|
+
# NOTE(woosuk): Here we assume that the other processes using the same
|
146
|
+
# GPU did not change their memory usage during the profiling.
|
147
|
+
peak_memory = self.init_gpu_memory - free_gpu_memory
|
148
|
+
assert peak_memory > 0, (
|
149
|
+
"Error in memory profiling. This happens when the GPU memory was "
|
150
|
+
"not properly cleaned up before initializing the vLLM instance.")
|
151
|
+
|
152
|
+
cache_block_size = self.get_cache_block_size_bytes()
|
153
|
+
num_gpu_blocks = int(
|
154
|
+
(total_gpu_memory * self.cache_config.gpu_memory_utilization -
|
155
|
+
peak_memory) // cache_block_size)
|
156
|
+
num_cpu_blocks = int(self.cache_config.swap_space_bytes //
|
157
|
+
cache_block_size)
|
158
|
+
num_gpu_blocks = max(num_gpu_blocks, 0)
|
159
|
+
num_cpu_blocks = max(num_cpu_blocks, 0)
|
160
|
+
if self.model_runner.lora_manager:
|
161
|
+
self.model_runner.remove_all_loras()
|
162
|
+
gc.collect()
|
163
|
+
torch.cuda.empty_cache()
|
164
|
+
return num_gpu_blocks, num_cpu_blocks
|
165
|
+
|
166
|
+
def initialize_cache(self, num_gpu_blocks: int,
|
167
|
+
num_cpu_blocks: int) -> None:
|
168
|
+
"""Allocate GPU and CPU KV cache with the specified number of blocks.
|
169
|
+
|
170
|
+
This also warms up the model, which may record CUDA graphs.
|
171
|
+
"""
|
172
|
+
raise_if_cache_size_invalid(num_gpu_blocks,
|
173
|
+
self.cache_config.block_size,
|
174
|
+
self.model_config.max_model_len)
|
175
|
+
|
176
|
+
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
177
|
+
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
178
|
+
|
179
|
+
self._init_cache_engine()
|
180
|
+
self._warm_up_model()
|
181
|
+
|
182
|
+
def _init_cache_engine(self):
|
183
|
+
assert self.cache_config.num_gpu_blocks is not None
|
184
|
+
self.cache_engine = CacheEngine(self.cache_config, self.model_config,
|
185
|
+
self.parallel_config)
|
186
|
+
self.gpu_cache = self.cache_engine.gpu_cache
|
187
|
+
self.model_runner.set_block_size(self.cache_engine.block_size)
|
188
|
+
|
189
|
+
def _warm_up_model(self) -> None:
|
190
|
+
if not self.model_config.enforce_eager:
|
191
|
+
self.model_runner.capture_model(self.gpu_cache)
|
192
|
+
# Reset the seed to ensure that the random state is not affected by
|
193
|
+
# the model initialization and profiling.
|
194
|
+
set_random_seed(self.model_config.seed)
|
195
|
+
|
196
|
+
def cache_swap(
|
197
|
+
self,
|
198
|
+
blocks_to_swap_in: Dict[int, int],
|
199
|
+
blocks_to_swap_out: Dict[int, int],
|
200
|
+
blocks_to_copy: Dict[int, List[int]],
|
201
|
+
) -> None:
|
202
|
+
# Issue cache operations.
|
203
|
+
# TODO(woosuk): Profile swapping overhead and optimize if needed.
|
204
|
+
if blocks_to_swap_in:
|
205
|
+
self.cache_engine.swap_in(blocks_to_swap_in)
|
206
|
+
if blocks_to_swap_out:
|
207
|
+
self.cache_engine.swap_out(blocks_to_swap_out)
|
208
|
+
if blocks_to_copy:
|
209
|
+
self.cache_engine.copy(blocks_to_copy)
|
210
|
+
|
211
|
+
@torch.inference_mode()
|
212
|
+
def execute_model(
|
213
|
+
self,
|
214
|
+
execute_model_req: Optional[ExecuteModelRequest] = None
|
215
|
+
) -> List[SamplerOutput]:
|
216
|
+
|
217
|
+
if execute_model_req is None:
|
218
|
+
seq_group_metadata_list = None
|
219
|
+
else:
|
220
|
+
seq_group_metadata_list = execute_model_req.seq_group_metadata_list
|
221
|
+
|
222
|
+
if self.is_driver_worker:
|
223
|
+
assert seq_group_metadata_list is not None
|
224
|
+
assert execute_model_req is not None
|
225
|
+
num_seq_groups = len(seq_group_metadata_list)
|
226
|
+
blocks_to_swap_in = execute_model_req.blocks_to_swap_in
|
227
|
+
blocks_to_swap_out = execute_model_req.blocks_to_swap_out
|
228
|
+
blocks_to_copy = execute_model_req.blocks_to_copy
|
229
|
+
data: Dict[str, Any] = {
|
230
|
+
"num_seq_groups": num_seq_groups,
|
231
|
+
"blocks_to_swap_in": blocks_to_swap_in,
|
232
|
+
"blocks_to_swap_out": blocks_to_swap_out,
|
233
|
+
"blocks_to_copy": blocks_to_copy,
|
234
|
+
}
|
235
|
+
broadcast_tensor_dict(data, src=0)
|
236
|
+
else:
|
237
|
+
data = broadcast_tensor_dict(src=0)
|
238
|
+
num_seq_groups = data["num_seq_groups"]
|
239
|
+
blocks_to_swap_in = data["blocks_to_swap_in"]
|
240
|
+
blocks_to_swap_out = data["blocks_to_swap_out"]
|
241
|
+
blocks_to_copy = data["blocks_to_copy"]
|
242
|
+
|
243
|
+
self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)
|
244
|
+
|
245
|
+
# If there is no input, we don't need to execute the model.
|
246
|
+
if num_seq_groups == 0:
|
247
|
+
return []
|
248
|
+
|
249
|
+
output = self.model_runner.execute_model(seq_group_metadata_list,
|
250
|
+
self.gpu_cache)
|
251
|
+
|
252
|
+
# Worker only supports single-step execution. Wrap the output in a list
|
253
|
+
# to conform to interface.
|
254
|
+
return [output]
|
255
|
+
|
256
|
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
257
|
+
return self.model_runner.add_lora(lora_request)
|
258
|
+
|
259
|
+
def remove_lora(self, lora_id: int) -> bool:
|
260
|
+
return self.model_runner.remove_lora(lora_id)
|
261
|
+
|
262
|
+
def list_loras(self) -> Set[int]:
|
263
|
+
return self.model_runner.list_loras()
|
264
|
+
|
265
|
+
@property
|
266
|
+
def max_model_len(self) -> int:
|
267
|
+
return self.model_config.max_model_len
|
268
|
+
|
269
|
+
@property
|
270
|
+
def vocab_size(self) -> int:
|
271
|
+
return self.model_runner.vocab_size
|
272
|
+
|
273
|
+
def get_cache_block_size_bytes(self) -> int:
|
274
|
+
"""Get the size of the KV cache block size in bytes.
|
275
|
+
"""
|
276
|
+
return CacheEngine.get_cache_block_size(self.cache_config,
|
277
|
+
self.model_config,
|
278
|
+
self.parallel_config)
|
279
|
+
|
280
|
+
|
281
|
+
def init_worker_distributed_environment(
|
282
|
+
parallel_config: ParallelConfig,
|
283
|
+
rank: int,
|
284
|
+
distributed_init_method: Optional[str] = None,
|
285
|
+
local_rank: int = -1,
|
286
|
+
) -> None:
|
287
|
+
"""Initialize the distributed environment."""
|
288
|
+
init_distributed_environment(parallel_config.world_size, rank,
|
289
|
+
distributed_init_method, local_rank)
|
290
|
+
|
291
|
+
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
|
292
|
+
parallel_config.pipeline_parallel_size)
|
293
|
+
|
294
|
+
if pynccl_utils.is_initialized():
|
295
|
+
pynccl_world_size = pynccl_utils.get_world_size()
|
296
|
+
if pynccl_world_size != parallel_config.world_size:
|
297
|
+
raise RuntimeError(
|
298
|
+
"pynccl is already initialized but the pynccl world "
|
299
|
+
"size does not match parallel_config.world_size "
|
300
|
+
f"({pynccl_world_size} vs. {parallel_config.world_size}).")
|
301
|
+
elif parallel_config.world_size > 1:
|
302
|
+
# NOTE(woosuk): We don't initialize pynccl process group when world size
|
303
|
+
# is 1.
|
304
|
+
# NOTE(kaichao): By default, pynccl is initialized for tp group.
|
305
|
+
pynccl_utils.init_process_group(
|
306
|
+
group=get_tensor_model_parallel_cpu_group())
|
307
|
+
|
308
|
+
# Initialize a custom fast all-reduce implementation.
|
309
|
+
if not parallel_config.disable_custom_all_reduce:
|
310
|
+
init_custom_ar()
|
311
|
+
|
312
|
+
# A small all_reduce for warmup.
|
313
|
+
torch.distributed.all_reduce(torch.zeros(1).cuda())
|
314
|
+
if pynccl_utils.is_initialized():
|
315
|
+
pynccl_utils.all_reduce(torch.zeros(1).cuda())
|
316
|
+
|
317
|
+
|
318
|
+
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
|
319
|
+
# Check if the GPU supports the dtype.
|
320
|
+
if torch_dtype == torch.bfloat16:
|
321
|
+
compute_capability = torch.cuda.get_device_capability()
|
322
|
+
if compute_capability[0] < 8:
|
323
|
+
gpu_name = torch.cuda.get_device_name()
|
324
|
+
raise ValueError(
|
325
|
+
"Bfloat16 is only supported on GPUs with compute capability "
|
326
|
+
f"of at least 8.0. Your {gpu_name} GPU has compute capability "
|
327
|
+
f"{compute_capability[0]}.{compute_capability[1]}. "
|
328
|
+
"You can use float16 instead by explicitly setting the"
|
329
|
+
"`dtype` flag in CLI, for example: --dtype=half.")
|
330
|
+
|
331
|
+
|
332
|
+
def raise_if_cache_size_invalid(num_gpu_blocks, block_size,
|
333
|
+
max_model_len) -> None:
|
334
|
+
if num_gpu_blocks <= 0:
|
335
|
+
raise ValueError("No available memory for the cache blocks. "
|
336
|
+
"Try increasing `gpu_memory_utilization` when "
|
337
|
+
"initializing the engine.")
|
338
|
+
max_seq_len = block_size * num_gpu_blocks
|
339
|
+
if max_model_len > max_seq_len:
|
340
|
+
raise ValueError(
|
341
|
+
f"The model's max seq len ({max_model_len}) "
|
342
|
+
"is larger than the maximum number of tokens that can be "
|
343
|
+
f"stored in KV cache ({max_seq_len}). Try increasing "
|
344
|
+
"`gpu_memory_utilization` or decreasing `max_model_len` when "
|
345
|
+
"initializing the engine.")
|