vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,438 @@
|
|
1
|
+
import enum
|
2
|
+
from enum import Enum
|
3
|
+
from typing import Any, Dict, List, Optional
|
4
|
+
|
5
|
+
import torch
|
6
|
+
from torch.nn.parameter import Parameter
|
7
|
+
|
8
|
+
from vllm import _custom_ops as ops
|
9
|
+
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
10
|
+
set_weight_attrs)
|
11
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
12
|
+
QuantizationConfig)
|
13
|
+
|
14
|
+
GPTQ_MARLIN_TILE = 16
|
15
|
+
GPTQ_MARLIN_MIN_THREAD_N = 64
|
16
|
+
GPTQ_MARLIN_MIN_THREAD_K = 128
|
17
|
+
GPTQ_MARLIN_MAX_PARALLEL = 16
|
18
|
+
|
19
|
+
GPTQ_MARLIN_SUPPORTED_NUM_BITS = [4, 8]
|
20
|
+
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
|
21
|
+
GPTQ_MARLIN_SUPPORTED_SYM = [True]
|
22
|
+
|
23
|
+
|
24
|
+
# Permutations for Marlin scale shuffling
|
25
|
+
def get_scale_perms(num_bits):
|
26
|
+
scale_perm = []
|
27
|
+
for i in range(8):
|
28
|
+
scale_perm.extend([i + 8 * j for j in range(8)])
|
29
|
+
scale_perm_single = []
|
30
|
+
for i in range(4):
|
31
|
+
scale_perm_single.extend(
|
32
|
+
[2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
|
33
|
+
return scale_perm, scale_perm_single
|
34
|
+
|
35
|
+
|
36
|
+
def get_pack_factor(num_bits):
|
37
|
+
assert (num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS
|
38
|
+
), f"Unsupported num_bits = {num_bits}"
|
39
|
+
return 32 // num_bits
|
40
|
+
|
41
|
+
|
42
|
+
def marlin_permute_scales(s, size_k, size_n, group_size, num_bits):
|
43
|
+
scale_perm, scale_perm_single = get_scale_perms(num_bits)
|
44
|
+
if group_size < size_k and group_size != -1:
|
45
|
+
s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
|
46
|
+
else:
|
47
|
+
s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
|
48
|
+
s = s.reshape((-1, size_n)).contiguous()
|
49
|
+
|
50
|
+
return s
|
51
|
+
|
52
|
+
|
53
|
+
class GPTQMarlinConfig(QuantizationConfig):
|
54
|
+
"""Config class for GPTQ Marlin"""
|
55
|
+
|
56
|
+
def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
|
57
|
+
is_sym: bool) -> None:
|
58
|
+
if desc_act and group_size == -1:
|
59
|
+
# In this case, act_order == True is the same as act_order == False
|
60
|
+
# (since we have only one group per output channel)
|
61
|
+
desc_act = False
|
62
|
+
|
63
|
+
self.weight_bits = weight_bits
|
64
|
+
self.group_size = group_size
|
65
|
+
self.desc_act = desc_act
|
66
|
+
self.is_sym = is_sym
|
67
|
+
|
68
|
+
# Verify
|
69
|
+
if self.weight_bits not in GPTQ_MARLIN_SUPPORTED_NUM_BITS:
|
70
|
+
raise ValueError(
|
71
|
+
f"Marlin does not support weight_bits = {self.weight_bits}. "
|
72
|
+
f"Only weight_bits = {GPTQ_MARLIN_SUPPORTED_NUM_BITS} "
|
73
|
+
"are supported.")
|
74
|
+
if self.group_size not in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES:
|
75
|
+
raise ValueError(
|
76
|
+
f"Marlin does not support group_size = {self.group_size}. "
|
77
|
+
f"Only group_sizes = {GPTQ_MARLIN_SUPPORTED_GROUP_SIZES} "
|
78
|
+
"are supported.")
|
79
|
+
if self.is_sym not in GPTQ_MARLIN_SUPPORTED_SYM:
|
80
|
+
raise ValueError(
|
81
|
+
f"Marlin does not support is_sym = {self.is_sym}. "
|
82
|
+
f"Only sym = {GPTQ_MARLIN_SUPPORTED_SYM} are supported.")
|
83
|
+
|
84
|
+
# Init
|
85
|
+
self.pack_factor = get_pack_factor(weight_bits)
|
86
|
+
self.tile_size = GPTQ_MARLIN_TILE
|
87
|
+
self.min_thread_n = GPTQ_MARLIN_MIN_THREAD_N
|
88
|
+
self.min_thread_k = GPTQ_MARLIN_MIN_THREAD_K
|
89
|
+
self.max_parallel = GPTQ_MARLIN_MAX_PARALLEL
|
90
|
+
|
91
|
+
def __repr__(self) -> str:
|
92
|
+
return (f"GPTQMarlinConfig(weight_bits={self.weight_bits}, "
|
93
|
+
f"group_size={self.group_size}, "
|
94
|
+
f"desc_act={self.desc_act})")
|
95
|
+
|
96
|
+
@classmethod
|
97
|
+
def get_name(cls) -> str:
|
98
|
+
return "gptq_marlin"
|
99
|
+
|
100
|
+
@classmethod
|
101
|
+
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
102
|
+
return [torch.half]
|
103
|
+
|
104
|
+
@classmethod
|
105
|
+
def get_min_capability(cls) -> int:
|
106
|
+
return 80
|
107
|
+
|
108
|
+
@classmethod
|
109
|
+
def get_config_filenames(cls) -> List[str]:
|
110
|
+
return ["quantize_config.json"]
|
111
|
+
|
112
|
+
@classmethod
|
113
|
+
def from_config(cls, config: Dict[str, Any]) -> "GPTQMarlinConfig":
|
114
|
+
weight_bits = cls.get_from_keys(config, ["bits"])
|
115
|
+
group_size = cls.get_from_keys(config, ["group_size"])
|
116
|
+
desc_act = cls.get_from_keys(config, ["desc_act"])
|
117
|
+
is_sym = cls.get_from_keys(config, ["sym"])
|
118
|
+
return cls(weight_bits, group_size, desc_act, is_sym)
|
119
|
+
|
120
|
+
def get_quant_method(
|
121
|
+
self,
|
122
|
+
layer: torch.nn.Module) -> Optional["GPTQMarlinLinearMethod"]:
|
123
|
+
if isinstance(layer, LinearBase):
|
124
|
+
return GPTQMarlinLinearMethod(self)
|
125
|
+
return None
|
126
|
+
|
127
|
+
def get_scaled_act_names(self) -> List[str]:
|
128
|
+
return []
|
129
|
+
|
130
|
+
@classmethod
|
131
|
+
def is_marlin_compatible(cls, quant_config: Dict[str, Any]):
|
132
|
+
# Extract data from quant config.
|
133
|
+
num_bits = quant_config.get("bits", None)
|
134
|
+
group_size = quant_config.get("group_size", None)
|
135
|
+
sym = quant_config.get("sym", None)
|
136
|
+
desc_act = quant_config.get("desc_act", None)
|
137
|
+
|
138
|
+
# If we cannot find the info needed in the config, cannot convert.
|
139
|
+
if (num_bits is None or group_size is None or sym is None
|
140
|
+
or desc_act is None):
|
141
|
+
return False
|
142
|
+
|
143
|
+
# If the capability of the device is too low, cannot convert.
|
144
|
+
major, minor = torch.cuda.get_device_capability()
|
145
|
+
device_capability = major * 10 + minor
|
146
|
+
if device_capability < cls.get_min_capability():
|
147
|
+
return False
|
148
|
+
|
149
|
+
# Otherwise, can convert if model satisfies marlin constraints.
|
150
|
+
return (num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS
|
151
|
+
and group_size in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES
|
152
|
+
and sym in GPTQ_MARLIN_SUPPORTED_SYM)
|
153
|
+
|
154
|
+
|
155
|
+
class GPTQMarlinState(Enum):
|
156
|
+
REPACK = enum.auto()
|
157
|
+
READY = enum.auto()
|
158
|
+
|
159
|
+
|
160
|
+
class GPTQMarlinLinearMethod(LinearMethodBase):
|
161
|
+
"""Linear method for GPTQ Marlin.
|
162
|
+
|
163
|
+
Args:
|
164
|
+
quant_config: The GPTQ Marlin quantization config.
|
165
|
+
"""
|
166
|
+
|
167
|
+
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
|
168
|
+
self.quant_config = quant_config
|
169
|
+
|
170
|
+
def create_weights(
|
171
|
+
self,
|
172
|
+
layer: torch.nn.Module,
|
173
|
+
input_size_per_partition: int,
|
174
|
+
output_partition_sizes: List[int],
|
175
|
+
input_size: int,
|
176
|
+
output_size: int,
|
177
|
+
params_dtype: torch.dtype,
|
178
|
+
**extra_weight_attrs,
|
179
|
+
) -> None:
|
180
|
+
del output_size
|
181
|
+
|
182
|
+
# Normalize group_size
|
183
|
+
if self.quant_config.group_size != -1:
|
184
|
+
group_size = self.quant_config.group_size
|
185
|
+
else:
|
186
|
+
group_size = input_size
|
187
|
+
|
188
|
+
# Validate dtype
|
189
|
+
if params_dtype != torch.float16:
|
190
|
+
raise ValueError(
|
191
|
+
f"The params dtype must be float16, but got {params_dtype}")
|
192
|
+
|
193
|
+
# Validate output_size_per_partition
|
194
|
+
output_size_per_partition = sum(output_partition_sizes)
|
195
|
+
if output_size_per_partition % self.quant_config.min_thread_n != 0:
|
196
|
+
raise ValueError(
|
197
|
+
f"Weight output_size_per_partition = "
|
198
|
+
f"{output_size_per_partition} is not divisible by "
|
199
|
+
f" min_thread_n = {self.quant_config.min_thread_n}.")
|
200
|
+
|
201
|
+
# Validate input_size_per_partition
|
202
|
+
if input_size_per_partition % self.quant_config.min_thread_k != 0:
|
203
|
+
raise ValueError(
|
204
|
+
f"Weight input_size_per_partition = "
|
205
|
+
f"{input_size_per_partition} is not divisible "
|
206
|
+
f"by min_thread_k = {self.quant_config.min_thread_k}.")
|
207
|
+
|
208
|
+
if (group_size < input_size
|
209
|
+
and input_size_per_partition % group_size != 0):
|
210
|
+
raise ValueError(
|
211
|
+
f"Weight input_size_per_partition = {input_size_per_partition}"
|
212
|
+
f" is not divisible by group_size = {group_size}.")
|
213
|
+
|
214
|
+
# Detect sharding of scales/zp
|
215
|
+
|
216
|
+
# By default, no sharding over "input dim"
|
217
|
+
scales_and_zp_size = input_size // group_size
|
218
|
+
scales_and_zp_input_dim = None
|
219
|
+
|
220
|
+
if self.quant_config.desc_act:
|
221
|
+
# Act-order case
|
222
|
+
assert self.quant_config.group_size != -1
|
223
|
+
|
224
|
+
is_k_full = input_size_per_partition == input_size
|
225
|
+
|
226
|
+
else:
|
227
|
+
# No act-order case
|
228
|
+
|
229
|
+
# K is always full due to full alignment with
|
230
|
+
# group-size and shard of scales/zp
|
231
|
+
is_k_full = True
|
232
|
+
|
233
|
+
# If this is a row-parallel case, then shard scales/zp
|
234
|
+
if (input_size != input_size_per_partition
|
235
|
+
and self.quant_config.group_size != -1):
|
236
|
+
scales_and_zp_size = input_size_per_partition // group_size
|
237
|
+
scales_and_zp_input_dim = 0
|
238
|
+
|
239
|
+
# Init buffers
|
240
|
+
|
241
|
+
# Quantized weights
|
242
|
+
qweight = Parameter(
|
243
|
+
torch.empty(
|
244
|
+
input_size_per_partition // self.quant_config.pack_factor,
|
245
|
+
output_size_per_partition,
|
246
|
+
dtype=torch.int32,
|
247
|
+
),
|
248
|
+
requires_grad=False,
|
249
|
+
)
|
250
|
+
set_weight_attrs(
|
251
|
+
qweight,
|
252
|
+
{
|
253
|
+
**extra_weight_attrs,
|
254
|
+
"input_dim": 0,
|
255
|
+
"output_dim": 1,
|
256
|
+
"packed_dim": 0,
|
257
|
+
"pack_factor": self.quant_config.pack_factor,
|
258
|
+
},
|
259
|
+
)
|
260
|
+
|
261
|
+
# Activation order
|
262
|
+
g_idx = Parameter(
|
263
|
+
torch.empty(
|
264
|
+
input_size_per_partition,
|
265
|
+
dtype=torch.int32,
|
266
|
+
),
|
267
|
+
requires_grad=False,
|
268
|
+
)
|
269
|
+
# Ignore warning from fused linear layers such as QKVParallelLinear.
|
270
|
+
set_weight_attrs(
|
271
|
+
g_idx,
|
272
|
+
{
|
273
|
+
**extra_weight_attrs, "input_dim": 0,
|
274
|
+
"ignore_warning": True
|
275
|
+
},
|
276
|
+
)
|
277
|
+
|
278
|
+
g_idx_sort_indices = Parameter(
|
279
|
+
torch.empty(
|
280
|
+
g_idx.shape,
|
281
|
+
dtype=torch.int32,
|
282
|
+
),
|
283
|
+
requires_grad=False,
|
284
|
+
)
|
285
|
+
set_weight_attrs(g_idx_sort_indices, extra_weight_attrs)
|
286
|
+
|
287
|
+
# Scales
|
288
|
+
scales = Parameter(
|
289
|
+
torch.empty(
|
290
|
+
scales_and_zp_size,
|
291
|
+
output_size_per_partition,
|
292
|
+
dtype=params_dtype,
|
293
|
+
),
|
294
|
+
requires_grad=False,
|
295
|
+
)
|
296
|
+
set_weight_attrs(
|
297
|
+
scales,
|
298
|
+
{
|
299
|
+
**extra_weight_attrs,
|
300
|
+
"input_dim": scales_and_zp_input_dim,
|
301
|
+
"output_dim": 1,
|
302
|
+
},
|
303
|
+
)
|
304
|
+
|
305
|
+
# Quantized zero-points
|
306
|
+
qzeros = Parameter(
|
307
|
+
torch.empty(
|
308
|
+
scales_and_zp_size,
|
309
|
+
output_size_per_partition // self.quant_config.pack_factor,
|
310
|
+
dtype=torch.int32,
|
311
|
+
device="meta",
|
312
|
+
),
|
313
|
+
requires_grad=False,
|
314
|
+
)
|
315
|
+
set_weight_attrs(
|
316
|
+
qzeros,
|
317
|
+
{
|
318
|
+
**extra_weight_attrs,
|
319
|
+
"input_dim": scales_and_zp_input_dim,
|
320
|
+
"output_dim": 1,
|
321
|
+
"packed_dim": 1,
|
322
|
+
"pack_factor": self.quant_config.pack_factor,
|
323
|
+
},
|
324
|
+
)
|
325
|
+
|
326
|
+
# Allocate marlin workspace
|
327
|
+
max_workspace_size = (
|
328
|
+
output_size_per_partition //
|
329
|
+
self.quant_config.min_thread_n) * self.quant_config.max_parallel
|
330
|
+
workspace = torch.zeros(max_workspace_size,
|
331
|
+
dtype=torch.int,
|
332
|
+
requires_grad=False)
|
333
|
+
|
334
|
+
layer.register_parameter("qweight", qweight)
|
335
|
+
layer.register_parameter("g_idx", g_idx)
|
336
|
+
layer.register_parameter("g_idx_sort_indices", g_idx_sort_indices)
|
337
|
+
layer.register_parameter("scales", scales)
|
338
|
+
layer.register_parameter("qzeros", qzeros)
|
339
|
+
layer.workspace = workspace
|
340
|
+
layer.input_size_per_partition = input_size_per_partition
|
341
|
+
layer.output_size_per_partition = output_size_per_partition
|
342
|
+
layer.input_size = input_size
|
343
|
+
layer.is_k_full = is_k_full
|
344
|
+
layer.marlin_state = GPTQMarlinState.REPACK
|
345
|
+
|
346
|
+
def apply(
|
347
|
+
self,
|
348
|
+
layer: torch.nn.Module,
|
349
|
+
x: torch.Tensor,
|
350
|
+
bias: Optional[torch.Tensor] = None,
|
351
|
+
) -> torch.Tensor:
|
352
|
+
reshaped_x = x.reshape(-1, x.shape[-1])
|
353
|
+
|
354
|
+
size_m = reshaped_x.shape[0]
|
355
|
+
part_size_n = layer.output_size_per_partition
|
356
|
+
part_size_k = layer.input_size_per_partition
|
357
|
+
full_size_k = layer.input_size
|
358
|
+
|
359
|
+
out_shape = x.shape[:-1] + (part_size_n, )
|
360
|
+
|
361
|
+
if layer.marlin_state == GPTQMarlinState.REPACK:
|
362
|
+
layer.marlin_state = GPTQMarlinState.READY
|
363
|
+
|
364
|
+
# Newly generated tensors need to replace existing tensors that are
|
365
|
+
# already registered as parameters by vLLM (and won't be freed)
|
366
|
+
def replace_tensor(name, new_t):
|
367
|
+
# It is important to use resize_() here since it ensures
|
368
|
+
# the same buffer is reused
|
369
|
+
getattr(layer, name).resize_(new_t.shape)
|
370
|
+
getattr(layer, name).copy_(new_t)
|
371
|
+
del new_t
|
372
|
+
|
373
|
+
cur_device = layer.qweight.device
|
374
|
+
|
375
|
+
# Process act_order
|
376
|
+
if self.quant_config.desc_act:
|
377
|
+
# Get sorting based on g_idx
|
378
|
+
g_idx_sort_indices = torch.argsort(layer.g_idx).to(torch.int)
|
379
|
+
|
380
|
+
sorted_g_idx = layer.g_idx[g_idx_sort_indices]
|
381
|
+
|
382
|
+
replace_tensor("g_idx", sorted_g_idx)
|
383
|
+
replace_tensor("g_idx_sort_indices", g_idx_sort_indices)
|
384
|
+
|
385
|
+
else:
|
386
|
+
# Reset g_idx related tensors
|
387
|
+
layer.g_idx = Parameter(
|
388
|
+
torch.empty(0, dtype=torch.int, device=cur_device),
|
389
|
+
requires_grad=False,
|
390
|
+
)
|
391
|
+
layer.g_idx_sort_indices = Parameter(
|
392
|
+
torch.empty(0, dtype=torch.int, device=cur_device),
|
393
|
+
requires_grad=False,
|
394
|
+
)
|
395
|
+
|
396
|
+
# Repack weights
|
397
|
+
marlin_qweight = ops.gptq_marlin_repack(
|
398
|
+
layer.qweight,
|
399
|
+
layer.g_idx_sort_indices,
|
400
|
+
part_size_k,
|
401
|
+
part_size_n,
|
402
|
+
self.quant_config.weight_bits,
|
403
|
+
)
|
404
|
+
replace_tensor("qweight", marlin_qweight)
|
405
|
+
|
406
|
+
# Permute scales
|
407
|
+
scales_size_k = part_size_k
|
408
|
+
scales_size_n = part_size_n
|
409
|
+
if self.quant_config.desc_act:
|
410
|
+
scales_size_k = full_size_k
|
411
|
+
|
412
|
+
marlin_scales = marlin_permute_scales(
|
413
|
+
layer.scales,
|
414
|
+
scales_size_k,
|
415
|
+
scales_size_n,
|
416
|
+
self.quant_config.group_size,
|
417
|
+
self.quant_config.weight_bits,
|
418
|
+
)
|
419
|
+
replace_tensor("scales", marlin_scales)
|
420
|
+
|
421
|
+
output = ops.gptq_marlin_gemm(
|
422
|
+
reshaped_x,
|
423
|
+
layer.qweight,
|
424
|
+
layer.scales,
|
425
|
+
layer.g_idx,
|
426
|
+
layer.g_idx_sort_indices,
|
427
|
+
layer.workspace,
|
428
|
+
self.quant_config.weight_bits,
|
429
|
+
size_m,
|
430
|
+
part_size_n,
|
431
|
+
part_size_k,
|
432
|
+
layer.is_k_full,
|
433
|
+
)
|
434
|
+
|
435
|
+
if bias is not None:
|
436
|
+
output.add_(bias) # In-place add
|
437
|
+
|
438
|
+
return output.reshape(out_shape)
|
@@ -0,0 +1,227 @@
|
|
1
|
+
from typing import Any, Dict, List, Optional
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch.nn.parameter import Parameter
|
5
|
+
|
6
|
+
from vllm import _custom_ops as ops
|
7
|
+
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
8
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
9
|
+
QuantizationConfig)
|
10
|
+
from vllm.model_executor.utils import set_weight_attrs
|
11
|
+
|
12
|
+
|
13
|
+
class MarlinConfig(QuantizationConfig):
|
14
|
+
"""Config class for Marlin.
|
15
|
+
|
16
|
+
Reference: https://github.com/IST-DASLab/marlin/tree/master
|
17
|
+
"""
|
18
|
+
|
19
|
+
def __init__(
|
20
|
+
self,
|
21
|
+
group_size: int,
|
22
|
+
) -> None:
|
23
|
+
# Group size for the quantization.
|
24
|
+
self.group_size = group_size
|
25
|
+
if self.group_size != 128 and self.group_size != -1:
|
26
|
+
raise ValueError(
|
27
|
+
"Currently, only group size 128 and -1 (channelwise) "
|
28
|
+
"is supported for Marlin, but got group_size of "
|
29
|
+
f"{self.group_size}")
|
30
|
+
|
31
|
+
# 4 Bits packed into 32 bit datatype.
|
32
|
+
self.pack_factor = 32 // 4
|
33
|
+
|
34
|
+
# Tile size used by marlin kernels.
|
35
|
+
self.tile_size = 16
|
36
|
+
|
37
|
+
# Min out_features dim
|
38
|
+
self.min_n_threads = 64
|
39
|
+
|
40
|
+
# Min in_features dim
|
41
|
+
self.min_k_threads = 128
|
42
|
+
|
43
|
+
# Max parallel problems to solve at once (improves large
|
44
|
+
# batch performance)
|
45
|
+
self.max_parallel = 16
|
46
|
+
|
47
|
+
# Permutation length used by the marlin kernels.
|
48
|
+
self.perm_len = 1024
|
49
|
+
|
50
|
+
def __repr__(self) -> str:
|
51
|
+
return f"MarlinConfig(group_size={self.group_size})"
|
52
|
+
|
53
|
+
@classmethod
|
54
|
+
def get_name(cls) -> str:
|
55
|
+
return "marlin"
|
56
|
+
|
57
|
+
@classmethod
|
58
|
+
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
59
|
+
return [torch.half]
|
60
|
+
|
61
|
+
@classmethod
|
62
|
+
# Need to figure it out
|
63
|
+
def get_min_capability(cls) -> int:
|
64
|
+
return 80
|
65
|
+
|
66
|
+
@classmethod
|
67
|
+
def get_config_filenames(cls) -> List[str]:
|
68
|
+
return ["quantize_config.json"]
|
69
|
+
|
70
|
+
@classmethod
|
71
|
+
def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
|
72
|
+
group_size = cls.get_from_keys(config, ["group_size"])
|
73
|
+
return cls(group_size)
|
74
|
+
|
75
|
+
def get_quant_method(
|
76
|
+
self, layer: torch.nn.Module) -> Optional["MarlinLinearMethod"]:
|
77
|
+
if isinstance(layer, LinearBase):
|
78
|
+
return MarlinLinearMethod(self)
|
79
|
+
return None
|
80
|
+
|
81
|
+
def get_scaled_act_names(self) -> List[str]:
|
82
|
+
return []
|
83
|
+
|
84
|
+
|
85
|
+
class MarlinLinearMethod(LinearMethodBase):
|
86
|
+
"""Linear method for Marlin.
|
87
|
+
|
88
|
+
Args:
|
89
|
+
quant_config: The Marlin quantization config.
|
90
|
+
"""
|
91
|
+
|
92
|
+
def __init__(self, quant_config: MarlinConfig):
|
93
|
+
self.quant_config = quant_config
|
94
|
+
|
95
|
+
def create_weights(
|
96
|
+
self,
|
97
|
+
layer: torch.nn.Module,
|
98
|
+
input_size_per_partition: int,
|
99
|
+
output_partition_sizes: List[int],
|
100
|
+
input_size: int,
|
101
|
+
output_size: int,
|
102
|
+
params_dtype: torch.dtype,
|
103
|
+
**extra_weight_attrs,
|
104
|
+
):
|
105
|
+
del output_size # Unused.
|
106
|
+
|
107
|
+
if params_dtype != torch.float16:
|
108
|
+
raise ValueError(
|
109
|
+
f"The params dtype must be float16, but got {params_dtype}")
|
110
|
+
|
111
|
+
# Validate output_size_per_partition
|
112
|
+
output_size_per_partition = sum(output_partition_sizes)
|
113
|
+
if output_size_per_partition % self.quant_config.min_n_threads != 0:
|
114
|
+
raise ValueError(
|
115
|
+
f"Weight output_size_per_partition = "
|
116
|
+
f"{output_size_per_partition} is not divisible by "
|
117
|
+
f"min_n_threads = {self.quant_config.min_n_threads}.")
|
118
|
+
if output_size_per_partition % self.quant_config.pack_factor != 0:
|
119
|
+
raise ValueError(
|
120
|
+
f"Weight output_size_per_partition = "
|
121
|
+
f"{output_size_per_partition} is not divisible by "
|
122
|
+
f"pack_factor = {self.quant_config.pack_factor}.")
|
123
|
+
|
124
|
+
# Validate input_size_per_partition
|
125
|
+
if input_size_per_partition % self.quant_config.min_k_threads != 0:
|
126
|
+
raise ValueError(
|
127
|
+
f"Weight input_size_per_partition = "
|
128
|
+
f"{input_size_per_partition} is not divisible by "
|
129
|
+
f"min_k_threads = {self.quant_config.min_k_threads}.")
|
130
|
+
if (self.quant_config.group_size != -1 and
|
131
|
+
input_size_per_partition % self.quant_config.group_size != 0):
|
132
|
+
raise ValueError(f"Weight input_size_per_partition = "
|
133
|
+
f"{input_size_per_partition} is not divisible by "
|
134
|
+
f"group_size = {self.quant_config.group_size}.")
|
135
|
+
|
136
|
+
# Check that we have at least 4 tiles horizontally in the shard
|
137
|
+
num_tiles_per_perm = self.quant_config.perm_len // (
|
138
|
+
self.quant_config.tile_size**2)
|
139
|
+
if output_size_per_partition % num_tiles_per_perm != 0:
|
140
|
+
raise ValueError(
|
141
|
+
"Each permutation group must reside on the same gpu")
|
142
|
+
|
143
|
+
# Quantized 4Bit weights packed into Int32.
|
144
|
+
qweight = Parameter(
|
145
|
+
torch.empty(
|
146
|
+
input_size_per_partition // self.quant_config.tile_size,
|
147
|
+
output_size_per_partition * self.quant_config.tile_size //
|
148
|
+
self.quant_config.pack_factor,
|
149
|
+
device="cuda",
|
150
|
+
dtype=torch.int32,
|
151
|
+
),
|
152
|
+
requires_grad=False,
|
153
|
+
)
|
154
|
+
set_weight_attrs(
|
155
|
+
qweight,
|
156
|
+
{
|
157
|
+
"input_dim": 0,
|
158
|
+
"output_dim": 1,
|
159
|
+
"packed_dim": 1,
|
160
|
+
"pack_factor": self.quant_config.pack_factor,
|
161
|
+
"marlin_tile_size": self.quant_config.tile_size,
|
162
|
+
},
|
163
|
+
)
|
164
|
+
|
165
|
+
# Determine if channelwise or not
|
166
|
+
input_groups = (1 if self.quant_config.group_size == -1 else
|
167
|
+
input_size_per_partition //
|
168
|
+
self.quant_config.group_size)
|
169
|
+
|
170
|
+
scales = Parameter(
|
171
|
+
torch.empty(
|
172
|
+
input_groups,
|
173
|
+
output_size_per_partition,
|
174
|
+
device="cuda",
|
175
|
+
dtype=params_dtype,
|
176
|
+
),
|
177
|
+
requires_grad=False,
|
178
|
+
)
|
179
|
+
set_weight_attrs(
|
180
|
+
scales,
|
181
|
+
{
|
182
|
+
"input_dim": None if input_groups == 1 else 0,
|
183
|
+
"output_dim": 1,
|
184
|
+
},
|
185
|
+
)
|
186
|
+
|
187
|
+
# Allocate workspace (Used for internal locking mechanism)
|
188
|
+
max_workspace_size = (
|
189
|
+
output_size_per_partition //
|
190
|
+
self.quant_config.min_n_threads) * self.quant_config.max_parallel
|
191
|
+
workspace = Parameter(torch.zeros(max_workspace_size,
|
192
|
+
device="cuda",
|
193
|
+
dtype=torch.int),
|
194
|
+
requires_grad=False)
|
195
|
+
|
196
|
+
layer.register_parameter("B", qweight)
|
197
|
+
set_weight_attrs(qweight, extra_weight_attrs)
|
198
|
+
layer.register_parameter("s", scales)
|
199
|
+
set_weight_attrs(scales, extra_weight_attrs)
|
200
|
+
layer.register_parameter("workspace", workspace)
|
201
|
+
set_weight_attrs(workspace, extra_weight_attrs)
|
202
|
+
|
203
|
+
def apply(
|
204
|
+
self,
|
205
|
+
layer: torch.nn.Module,
|
206
|
+
x: torch.Tensor,
|
207
|
+
bias: Optional[torch.Tensor] = None,
|
208
|
+
) -> torch.Tensor:
|
209
|
+
qweight = layer.B
|
210
|
+
scales = layer.s
|
211
|
+
workspace = layer.workspace
|
212
|
+
|
213
|
+
x_2d = x.view(-1, x.shape[-1])
|
214
|
+
|
215
|
+
size_m = x_2d.shape[0]
|
216
|
+
size_k = x_2d.shape[1]
|
217
|
+
size_n = scales.shape[1]
|
218
|
+
|
219
|
+
output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
|
220
|
+
size_n, size_k)
|
221
|
+
|
222
|
+
output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
|
223
|
+
|
224
|
+
if bias is not None:
|
225
|
+
output.add_(bias) # In-place add
|
226
|
+
|
227
|
+
return output
|