vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,447 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
4
+ # Copyright 2024 The Qwen team.
5
+ # Copyright 2023 The vLLM team.
6
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
7
+ #
8
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
9
+ # and OPT implementations in this library. It has been modified from its
10
+ # original forms to accommodate minor architectural differences compared
11
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
12
+ #
13
+ # Licensed under the Apache License, Version 2.0 (the "License");
14
+ # you may not use this file except in compliance with the License.
15
+ # You may obtain a copy of the License at
16
+ #
17
+ # http://www.apache.org/licenses/LICENSE-2.0
18
+ #
19
+ # Unless required by applicable law or agreed to in writing, software
20
+ # distributed under the License is distributed on an "AS IS" BASIS,
21
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22
+ # See the License for the specific language governing permissions and
23
+ # limitations under the License.
24
+ """Inference-only Qwen2MoE model compatible with HuggingFace weights."""
25
+ from typing import Any, Dict, Iterable, List, Optional, Tuple
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ from torch import nn
30
+ from transformers import PretrainedConfig
31
+
32
+ from vllm.attention import Attention, AttentionMetadata
33
+ from vllm.distributed import (get_tensor_model_parallel_rank,
34
+ get_tensor_model_parallel_world_size,
35
+ tensor_model_parallel_all_reduce)
36
+ from vllm.model_executor.layers.activation import SiluAndMul
37
+ from vllm.model_executor.layers.fused_moe import fused_moe
38
+ from vllm.model_executor.layers.layernorm import RMSNorm
39
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
40
+ QKVParallelLinear,
41
+ ReplicatedLinear,
42
+ RowParallelLinear)
43
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
44
+ from vllm.model_executor.layers.quantization.base_config import (
45
+ QuantizationConfig)
46
+ from vllm.model_executor.layers.rotary_embedding import get_rope
47
+ from vllm.model_executor.layers.sampler import Sampler
48
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
49
+ ParallelLMHead, VocabParallelEmbedding)
50
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
51
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
52
+ from vllm.sequence import SamplerOutput
53
+
54
+
55
+ class Qwen2MoeMLP(nn.Module):
56
+
57
+ def __init__(
58
+ self,
59
+ hidden_size: int,
60
+ intermediate_size: int,
61
+ hidden_act: str,
62
+ quant_config: Optional[QuantizationConfig] = None,
63
+ reduce_results: bool = True,
64
+ ) -> None:
65
+ super().__init__()
66
+ self.gate_up_proj = MergedColumnParallelLinear(
67
+ hidden_size, [intermediate_size] * 2,
68
+ bias=False,
69
+ quant_config=quant_config)
70
+ self.down_proj = RowParallelLinear(intermediate_size,
71
+ hidden_size,
72
+ bias=False,
73
+ quant_config=quant_config,
74
+ reduce_results=reduce_results)
75
+ if hidden_act != "silu":
76
+ raise ValueError(f"Unsupported activation: {hidden_act}. "
77
+ "Only silu is supported for now.")
78
+ self.act_fn = SiluAndMul()
79
+
80
+ def forward(self, x):
81
+ gate_up, _ = self.gate_up_proj(x)
82
+ x = self.act_fn(gate_up)
83
+ x, _ = self.down_proj(x)
84
+ return x
85
+
86
+
87
+ class Qwen2MoeSparseMoeBlock(nn.Module):
88
+
89
+ def __init__(
90
+ self,
91
+ config: PretrainedConfig,
92
+ quant_config: Optional[QuantizationConfig] = None,
93
+ ):
94
+ super().__init__()
95
+ self.config = config
96
+ self.rank = get_tensor_model_parallel_rank()
97
+ self.tp_size = get_tensor_model_parallel_world_size()
98
+ self.n_routed_experts = config.num_experts
99
+ self.top_k = config.num_experts_per_tok
100
+ if self.tp_size > self.n_routed_experts:
101
+ raise ValueError(
102
+ f"Tensor parallel size {self.tp_size} is greater than "
103
+ f"the number of experts {self.n_routed_experts}.")
104
+
105
+ self.experts = nn.ModuleList([
106
+ Qwen2MoeMLP(hidden_size=config.hidden_size,
107
+ intermediate_size=config.moe_intermediate_size,
108
+ hidden_act=config.hidden_act,
109
+ quant_config=quant_config,
110
+ reduce_results=False)
111
+ for idx in range(self.n_routed_experts)
112
+ ])
113
+ self.pack_params()
114
+
115
+ self.gate = ReplicatedLinear(config.hidden_size,
116
+ self.n_routed_experts,
117
+ bias=False,
118
+ quant_config=None)
119
+ if config.shared_expert_intermediate_size > 0:
120
+ self.shared_expert = Qwen2MoeMLP(
121
+ hidden_size=config.hidden_size,
122
+ intermediate_size=config.shared_expert_intermediate_size,
123
+ hidden_act=config.hidden_act,
124
+ quant_config=quant_config,
125
+ reduce_results=False,
126
+ )
127
+ else:
128
+ self.shared_expert = None
129
+ self.shared_expert_gate = torch.nn.Linear(config.hidden_size,
130
+ 1,
131
+ bias=False)
132
+
133
+ def pack_params(self):
134
+ w1 = []
135
+ w2 = []
136
+ for expert in self.experts:
137
+ w1.append(expert.gate_up_proj.weight)
138
+ w2.append(expert.down_proj.weight)
139
+ self.w1 = torch._utils._flatten_dense_tensors(w1)
140
+ w1s = torch._utils._unflatten_dense_tensors(self.w1, w1)
141
+ for data, param in zip(w1s, w1):
142
+ param.data = data
143
+ self.w1 = self.w1.view(len(w1), *w1s[0].shape)
144
+
145
+ self.w2 = torch._utils._flatten_dense_tensors(w2)
146
+ w2s = torch._utils._unflatten_dense_tensors(self.w2, w2)
147
+ for data, param in zip(w2s, w2):
148
+ param.data = data
149
+
150
+ self.w2 = self.w2.view(len(w2), *w2s[0].shape)
151
+
152
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
153
+ num_tokens, hidden_dim = hidden_states.shape
154
+ hidden_states = hidden_states.view(-1, hidden_dim)
155
+ shared_output = None
156
+ if self.shared_expert is not None:
157
+ shared_output = self.shared_expert(hidden_states)
158
+ if self.shared_expert_gate is not None:
159
+ shared_output = F.sigmoid(
160
+ self.shared_expert_gate(hidden_states)) * shared_output
161
+
162
+ # router_logits: (num_tokens, n_experts)
163
+ router_logits, _ = self.gate(hidden_states)
164
+ final_hidden_states = fused_moe(hidden_states,
165
+ self.w1,
166
+ self.w2,
167
+ router_logits,
168
+ self.top_k,
169
+ renormalize=self.config.norm_topk_prob,
170
+ inplace=True)
171
+
172
+ if shared_output is not None:
173
+ final_hidden_states = final_hidden_states + shared_output
174
+ final_hidden_states = tensor_model_parallel_all_reduce(
175
+ final_hidden_states)
176
+
177
+ return final_hidden_states.view(num_tokens, hidden_dim)
178
+
179
+
180
+ class Qwen2MoeAttention(nn.Module):
181
+
182
+ def __init__(
183
+ self,
184
+ hidden_size: int,
185
+ num_heads: int,
186
+ num_kv_heads: int,
187
+ rope_theta: float = 10000,
188
+ rope_scaling: Optional[Dict[str, Any]] = None,
189
+ max_position_embeddings: int = 8192,
190
+ quant_config: Optional[QuantizationConfig] = None,
191
+ ) -> None:
192
+ super().__init__()
193
+ self.hidden_size = hidden_size
194
+ tp_size = get_tensor_model_parallel_world_size()
195
+ self.total_num_heads = num_heads
196
+ assert self.total_num_heads % tp_size == 0
197
+ self.num_heads = self.total_num_heads // tp_size
198
+ self.total_num_kv_heads = num_kv_heads
199
+ if self.total_num_kv_heads >= tp_size:
200
+ # Number of KV heads is greater than TP size, so we partition
201
+ # the KV heads across multiple tensor parallel GPUs.
202
+ assert self.total_num_kv_heads % tp_size == 0
203
+ else:
204
+ # Number of KV heads is less than TP size, so we replicate
205
+ # the KV heads across multiple tensor parallel GPUs.
206
+ assert tp_size % self.total_num_kv_heads == 0
207
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
208
+ self.head_dim = hidden_size // self.total_num_heads
209
+ self.q_size = self.num_heads * self.head_dim
210
+ self.kv_size = self.num_kv_heads * self.head_dim
211
+ self.scaling = self.head_dim**-0.5
212
+ self.rope_theta = rope_theta
213
+ self.max_position_embeddings = max_position_embeddings
214
+
215
+ self.qkv_proj = QKVParallelLinear(
216
+ hidden_size,
217
+ self.head_dim,
218
+ self.total_num_heads,
219
+ self.total_num_kv_heads,
220
+ bias=True,
221
+ quant_config=quant_config,
222
+ )
223
+
224
+ self.o_proj = RowParallelLinear(
225
+ self.total_num_heads * self.head_dim,
226
+ hidden_size,
227
+ bias=False,
228
+ quant_config=quant_config,
229
+ )
230
+
231
+ self.rotary_emb = get_rope(
232
+ self.head_dim,
233
+ rotary_dim=self.head_dim,
234
+ max_position=max_position_embeddings,
235
+ base=rope_theta,
236
+ rope_scaling=rope_scaling,
237
+ )
238
+ self.attn = Attention(self.num_heads,
239
+ self.head_dim,
240
+ self.scaling,
241
+ num_kv_heads=self.num_kv_heads)
242
+
243
+ def forward(
244
+ self,
245
+ positions: torch.Tensor,
246
+ hidden_states: torch.Tensor,
247
+ kv_cache: torch.Tensor,
248
+ attn_metadata: AttentionMetadata,
249
+ ) -> torch.Tensor:
250
+ qkv, _ = self.qkv_proj(hidden_states)
251
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
252
+ q, k = self.rotary_emb(positions, q, k)
253
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
254
+ output, _ = self.o_proj(attn_output)
255
+ return output
256
+
257
+
258
+ class Qwen2MoeDecoderLayer(nn.Module):
259
+
260
+ def __init__(
261
+ self,
262
+ config: PretrainedConfig,
263
+ layer_idx: int,
264
+ quant_config: Optional[QuantizationConfig] = None,
265
+ ) -> None:
266
+ super().__init__()
267
+ self.hidden_size = config.hidden_size
268
+ rope_theta = getattr(config, "rope_theta", 10000)
269
+ rope_scaling = getattr(config, "rope_scaling", None)
270
+ max_position_embeddings = getattr(config, "max_position_embeddings",
271
+ 8192)
272
+ self.self_attn = Qwen2MoeAttention(
273
+ hidden_size=self.hidden_size,
274
+ num_heads=config.num_attention_heads,
275
+ num_kv_heads=config.num_key_value_heads,
276
+ rope_theta=rope_theta,
277
+ rope_scaling=rope_scaling,
278
+ max_position_embeddings=max_position_embeddings,
279
+ quant_config=quant_config,
280
+ )
281
+ if (config.num_experts is not None
282
+ and (layer_idx + 1) % config.decoder_sparse_step == 0):
283
+ self.mlp = Qwen2MoeSparseMoeBlock(config=config,
284
+ quant_config=quant_config)
285
+ else:
286
+ self.mlp = Qwen2MoeMLP(
287
+ hidden_size=config.hidden_size,
288
+ intermediate_size=config.intermediate_size,
289
+ hidden_act=config.hidden_act,
290
+ quant_config=quant_config,
291
+ )
292
+ self.input_layernorm = RMSNorm(config.hidden_size,
293
+ eps=config.rms_norm_eps)
294
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
295
+ eps=config.rms_norm_eps)
296
+
297
+ def forward(
298
+ self,
299
+ positions: torch.Tensor,
300
+ hidden_states: torch.Tensor,
301
+ kv_cache: torch.Tensor,
302
+ attn_metadata: AttentionMetadata,
303
+ residual: Optional[torch.Tensor],
304
+ ) -> torch.Tensor:
305
+ # Self Attention
306
+ if residual is None:
307
+ residual = hidden_states
308
+ hidden_states = self.input_layernorm(hidden_states)
309
+ else:
310
+ hidden_states, residual = self.input_layernorm(
311
+ hidden_states, residual)
312
+ hidden_states = self.self_attn(
313
+ positions=positions,
314
+ hidden_states=hidden_states,
315
+ kv_cache=kv_cache,
316
+ attn_metadata=attn_metadata,
317
+ )
318
+
319
+ # Fully Connected
320
+ hidden_states, residual = self.post_attention_layernorm(
321
+ hidden_states, residual)
322
+ hidden_states = self.mlp(hidden_states)
323
+ return hidden_states, residual
324
+
325
+
326
+ class Qwen2MoeModel(nn.Module):
327
+
328
+ def __init__(
329
+ self,
330
+ config: PretrainedConfig,
331
+ quant_config: Optional[QuantizationConfig] = None,
332
+ ) -> None:
333
+ super().__init__()
334
+ self.padding_idx = config.pad_token_id
335
+ self.vocab_size = config.vocab_size
336
+
337
+ self.embed_tokens = VocabParallelEmbedding(
338
+ config.vocab_size,
339
+ config.hidden_size,
340
+ )
341
+ self.layers = nn.ModuleList([
342
+ Qwen2MoeDecoderLayer(config, layer_idx, quant_config=quant_config)
343
+ for layer_idx in range(config.num_hidden_layers)
344
+ ])
345
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
346
+
347
+ def forward(
348
+ self,
349
+ input_ids: torch.Tensor,
350
+ positions: torch.Tensor,
351
+ kv_caches: List[torch.Tensor],
352
+ attn_metadata: AttentionMetadata,
353
+ ) -> torch.Tensor:
354
+ hidden_states = self.embed_tokens(input_ids)
355
+ residual = None
356
+ for i in range(len(self.layers)):
357
+ layer = self.layers[i]
358
+ hidden_states, residual = layer(positions, hidden_states,
359
+ kv_caches[i], attn_metadata,
360
+ residual)
361
+ hidden_states, _ = self.norm(hidden_states, residual)
362
+ return hidden_states
363
+
364
+
365
+ class Qwen2MoeForCausalLM(nn.Module):
366
+
367
+ fall_back_to_pt_during_load = False
368
+
369
+ def __init__(
370
+ self,
371
+ config: PretrainedConfig,
372
+ quant_config: Optional[QuantizationConfig] = None,
373
+ ) -> None:
374
+ super().__init__()
375
+ self.config = config
376
+ self.quant_config = quant_config
377
+ self.model = Qwen2MoeModel(config, quant_config)
378
+ self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
379
+ self.logits_processor = LogitsProcessor(config.vocab_size)
380
+ self.sampler = Sampler()
381
+
382
+ def forward(
383
+ self,
384
+ input_ids: torch.Tensor,
385
+ positions: torch.Tensor,
386
+ kv_caches: List[torch.Tensor],
387
+ attn_metadata: AttentionMetadata,
388
+ ) -> torch.Tensor:
389
+ hidden_states = self.model(input_ids, positions, kv_caches,
390
+ attn_metadata)
391
+ return hidden_states
392
+
393
+ def compute_logits(self, hidden_states: torch.Tensor,
394
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
395
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
396
+ sampling_metadata)
397
+ return logits
398
+
399
+ def sample(
400
+ self,
401
+ logits: Optional[torch.Tensor],
402
+ sampling_metadata: SamplingMetadata,
403
+ ) -> Optional[SamplerOutput]:
404
+ next_tokens = self.sampler(logits, sampling_metadata)
405
+ return next_tokens
406
+
407
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
408
+ stacked_params_mapping = [
409
+ # (param_name, shard_name, shard_id)
410
+ ("qkv_proj", "q_proj", "q"),
411
+ ("qkv_proj", "k_proj", "k"),
412
+ ("qkv_proj", "v_proj", "v"),
413
+ ("gate_up_proj", "gate_proj", 0),
414
+ ("gate_up_proj", "up_proj", 1),
415
+ ]
416
+
417
+ params_dict = dict(self.named_parameters())
418
+ for name, loaded_weight in weights:
419
+ if "rotary_emb.inv_freq" in name:
420
+ continue
421
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
422
+ if weight_name not in name:
423
+ continue
424
+ name = name.replace(weight_name, param_name)
425
+ # Skip loading extra bias for GPTQ models.
426
+ if name.endswith(".bias") and name not in params_dict:
427
+ continue
428
+ # Skip experts that are not assigned to this worker.
429
+ if (("mlp.experts." in name or "mlp.shared_expert." in name)
430
+ and name not in params_dict):
431
+ continue
432
+ param = params_dict[name]
433
+ weight_loader = param.weight_loader
434
+ weight_loader(param, loaded_weight, shard_id)
435
+ break
436
+ else:
437
+ # Skip loading extra bias for GPTQ models.
438
+ if name.endswith(".bias") and name not in params_dict:
439
+ continue
440
+ # Skip experts that are not assigned to this worker.
441
+ if (("mlp.experts." in name or "mlp.shared_expert." in name)
442
+ and name not in params_dict):
443
+ continue
444
+ param = params_dict[name]
445
+ weight_loader = getattr(param, "weight_loader",
446
+ default_weight_loader)
447
+ weight_loader(param, loaded_weight)