vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,438 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
6
+ #
7
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
8
+ # and OPT implementations in this library. It has been modified from its
9
+ # original forms to accommodate minor architectural differences compared
10
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
11
+ #
12
+ # Licensed under the Apache License, Version 2.0 (the "License");
13
+ # you may not use this file except in compliance with the License.
14
+ # You may obtain a copy of the License at
15
+ #
16
+ # http://www.apache.org/licenses/LICENSE-2.0
17
+ #
18
+ # Unless required by applicable law or agreed to in writing, software
19
+ # distributed under the License is distributed on an "AS IS" BASIS,
20
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
+ # See the License for the specific language governing permissions and
22
+ # limitations under the License.
23
+ """Inference-only Deepseek model."""
24
+ from typing import Any, Dict, Iterable, List, Optional, Tuple
25
+
26
+ import torch
27
+ from torch import nn
28
+ from transformers import PretrainedConfig
29
+
30
+ from vllm.attention import Attention, AttentionMetadata
31
+ from vllm.distributed import (get_tensor_model_parallel_rank,
32
+ get_tensor_model_parallel_world_size,
33
+ tensor_model_parallel_all_reduce)
34
+ from vllm.model_executor.layers.activation import SiluAndMul
35
+ from vllm.model_executor.layers.fused_moe import fused_moe
36
+ from vllm.model_executor.layers.layernorm import RMSNorm
37
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
38
+ QKVParallelLinear,
39
+ ReplicatedLinear,
40
+ RowParallelLinear)
41
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
42
+ from vllm.model_executor.layers.quantization.base_config import (
43
+ QuantizationConfig)
44
+ from vllm.model_executor.layers.rotary_embedding import get_rope
45
+ from vllm.model_executor.layers.sampler import Sampler
46
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
47
+ ParallelLMHead, VocabParallelEmbedding)
48
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
49
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
50
+ from vllm.sequence import SamplerOutput
51
+
52
+
53
+ class DeepseekMLP(nn.Module):
54
+
55
+ def __init__(
56
+ self,
57
+ hidden_size: int,
58
+ intermediate_size: int,
59
+ hidden_act: str,
60
+ quant_config: Optional[QuantizationConfig] = None,
61
+ reduce_results: bool = True,
62
+ ) -> None:
63
+ super().__init__()
64
+ self.gate_up_proj = MergedColumnParallelLinear(
65
+ hidden_size, [intermediate_size] * 2,
66
+ bias=False,
67
+ quant_config=quant_config)
68
+ self.down_proj = RowParallelLinear(intermediate_size,
69
+ hidden_size,
70
+ bias=False,
71
+ quant_config=quant_config,
72
+ reduce_results=reduce_results)
73
+ if hidden_act != "silu":
74
+ raise ValueError(f"Unsupported activation: {hidden_act}. "
75
+ "Only silu is supported for now.")
76
+ self.act_fn = SiluAndMul()
77
+
78
+ def forward(self, x):
79
+ gate_up, _ = self.gate_up_proj(x)
80
+ x = self.act_fn(gate_up)
81
+ x, _ = self.down_proj(x)
82
+ return x
83
+
84
+
85
+ class DeepseekMoE(nn.Module):
86
+
87
+ def __init__(
88
+ self,
89
+ config: PretrainedConfig,
90
+ quant_config: Optional[QuantizationConfig] = None,
91
+ ):
92
+ super().__init__()
93
+ self.config = config
94
+ self.rank = get_tensor_model_parallel_rank()
95
+ self.tp_size = get_tensor_model_parallel_world_size()
96
+ self.n_routed_experts = config.n_routed_experts
97
+ self.top_k = config.num_experts_per_tok
98
+ if self.tp_size > self.n_routed_experts:
99
+ raise ValueError(
100
+ f"Tensor parallel size {self.tp_size} is greater than "
101
+ f"the number of experts {self.n_routed_experts}.")
102
+
103
+ self.experts = nn.ModuleList([
104
+ DeepseekMLP(hidden_size=config.hidden_size,
105
+ intermediate_size=config.moe_intermediate_size,
106
+ hidden_act=config.hidden_act,
107
+ quant_config=quant_config,
108
+ reduce_results=False)
109
+ for idx in range(self.n_routed_experts)
110
+ ])
111
+ self.pack_params()
112
+
113
+ self.gate = ReplicatedLinear(config.hidden_size,
114
+ self.n_routed_experts,
115
+ bias=False,
116
+ quant_config=None)
117
+
118
+ if config.n_shared_experts is not None:
119
+ intermediate_size = (config.moe_intermediate_size *
120
+ config.n_shared_experts)
121
+ self.shared_experts = DeepseekMLP(
122
+ hidden_size=config.hidden_size,
123
+ intermediate_size=intermediate_size,
124
+ hidden_act=config.hidden_act,
125
+ quant_config=quant_config,
126
+ reduce_results=False,
127
+ )
128
+
129
+ def pack_params(self):
130
+ w1 = []
131
+ w2 = []
132
+ for expert in self.experts:
133
+ w1.append(expert.gate_up_proj.weight)
134
+ w2.append(expert.down_proj.weight)
135
+ self.w1 = torch._utils._flatten_dense_tensors(w1)
136
+ w1s = torch._utils._unflatten_dense_tensors(self.w1, w1)
137
+ for data, param in zip(w1s, w1):
138
+ param.data = data
139
+ self.w1 = self.w1.view(len(w1), *w1s[0].shape)
140
+
141
+ self.w2 = torch._utils._flatten_dense_tensors(w2)
142
+ w2s = torch._utils._unflatten_dense_tensors(self.w2, w2)
143
+ for data, param in zip(w2s, w2):
144
+ param.data = data
145
+
146
+ self.w2 = self.w2.view(len(w2), *w2s[0].shape)
147
+
148
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
149
+ num_tokens, hidden_dim = hidden_states.shape
150
+ hidden_states = hidden_states.view(-1, hidden_dim)
151
+ if self.config.n_shared_experts is not None:
152
+ shared_output = self.shared_experts(hidden_states)
153
+ # router_logits: (num_tokens, n_experts)
154
+ router_logits, _ = self.gate(hidden_states)
155
+ final_hidden_states = fused_moe(hidden_states,
156
+ self.w1,
157
+ self.w2,
158
+ router_logits,
159
+ self.top_k,
160
+ renormalize=self.config.norm_topk_prob,
161
+ inplace=True)
162
+
163
+ if self.config.n_shared_experts is not None:
164
+ final_hidden_states = final_hidden_states + shared_output
165
+ final_hidden_states = tensor_model_parallel_all_reduce(
166
+ final_hidden_states)
167
+
168
+ return final_hidden_states.view(num_tokens, hidden_dim)
169
+
170
+
171
+ class DeepseekAttention(nn.Module):
172
+
173
+ def __init__(
174
+ self,
175
+ hidden_size: int,
176
+ num_heads: int,
177
+ num_kv_heads: int,
178
+ rope_theta: float = 10000,
179
+ rope_scaling: Optional[Dict[str, Any]] = None,
180
+ max_position_embeddings: int = 8192,
181
+ quant_config: Optional[QuantizationConfig] = None,
182
+ ) -> None:
183
+ super().__init__()
184
+ self.hidden_size = hidden_size
185
+ tp_size = get_tensor_model_parallel_world_size()
186
+ self.total_num_heads = num_heads
187
+ assert self.total_num_heads % tp_size == 0
188
+ self.num_heads = self.total_num_heads // tp_size
189
+ self.total_num_kv_heads = num_kv_heads
190
+ if self.total_num_kv_heads >= tp_size:
191
+ # Number of KV heads is greater than TP size, so we partition
192
+ # the KV heads across multiple tensor parallel GPUs.
193
+ assert self.total_num_kv_heads % tp_size == 0
194
+ else:
195
+ # Number of KV heads is less than TP size, so we replicate
196
+ # the KV heads across multiple tensor parallel GPUs.
197
+ assert tp_size % self.total_num_kv_heads == 0
198
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
199
+ self.head_dim = hidden_size // self.total_num_heads
200
+ self.q_size = self.num_heads * self.head_dim
201
+ self.kv_size = self.num_kv_heads * self.head_dim
202
+ self.scaling = self.head_dim**-0.5
203
+ self.rope_theta = rope_theta
204
+ self.max_position_embeddings = max_position_embeddings
205
+
206
+ self.qkv_proj = QKVParallelLinear(
207
+ hidden_size,
208
+ self.head_dim,
209
+ self.total_num_heads,
210
+ self.total_num_kv_heads,
211
+ bias=False,
212
+ quant_config=quant_config,
213
+ )
214
+
215
+ self.o_proj = RowParallelLinear(
216
+ self.total_num_heads * self.head_dim,
217
+ hidden_size,
218
+ bias=False,
219
+ quant_config=quant_config,
220
+ )
221
+
222
+ self.rotary_emb = get_rope(
223
+ self.head_dim,
224
+ rotary_dim=self.head_dim,
225
+ max_position=max_position_embeddings,
226
+ base=rope_theta,
227
+ rope_scaling=rope_scaling,
228
+ )
229
+ self.attn = Attention(self.num_heads,
230
+ self.head_dim,
231
+ self.scaling,
232
+ num_kv_heads=self.num_kv_heads)
233
+
234
+ def forward(
235
+ self,
236
+ positions: torch.Tensor,
237
+ hidden_states: torch.Tensor,
238
+ kv_cache: torch.Tensor,
239
+ attn_metadata: AttentionMetadata,
240
+ ) -> torch.Tensor:
241
+ qkv, _ = self.qkv_proj(hidden_states)
242
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
243
+ q, k = self.rotary_emb(positions, q, k)
244
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
245
+ output, _ = self.o_proj(attn_output)
246
+ return output
247
+
248
+
249
+ class DeepseekDecoderLayer(nn.Module):
250
+
251
+ def __init__(
252
+ self,
253
+ config: PretrainedConfig,
254
+ layer_idx: int,
255
+ quant_config: Optional[QuantizationConfig] = None,
256
+ ) -> None:
257
+ super().__init__()
258
+ self.hidden_size = config.hidden_size
259
+ rope_theta = getattr(config, "rope_theta", 10000)
260
+ rope_scaling = getattr(config, "rope_scaling", None)
261
+ max_position_embeddings = getattr(config, "max_position_embeddings",
262
+ 8192)
263
+ self.self_attn = DeepseekAttention(
264
+ hidden_size=self.hidden_size,
265
+ num_heads=config.num_attention_heads,
266
+ num_kv_heads=config.num_key_value_heads,
267
+ rope_theta=rope_theta,
268
+ rope_scaling=rope_scaling,
269
+ max_position_embeddings=max_position_embeddings,
270
+ quant_config=quant_config,
271
+ )
272
+ if (config.n_routed_experts is not None
273
+ and layer_idx >= config.first_k_dense_replace
274
+ and layer_idx % config.moe_layer_freq == 0):
275
+ self.mlp = DeepseekMoE(config=config, quant_config=quant_config)
276
+ else:
277
+ self.mlp = DeepseekMLP(
278
+ hidden_size=config.hidden_size,
279
+ intermediate_size=config.intermediate_size,
280
+ hidden_act=config.hidden_act,
281
+ quant_config=quant_config,
282
+ )
283
+ self.input_layernorm = RMSNorm(config.hidden_size,
284
+ eps=config.rms_norm_eps)
285
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
286
+ eps=config.rms_norm_eps)
287
+
288
+ def forward(
289
+ self,
290
+ positions: torch.Tensor,
291
+ hidden_states: torch.Tensor,
292
+ kv_cache: torch.Tensor,
293
+ attn_metadata: AttentionMetadata,
294
+ residual: Optional[torch.Tensor],
295
+ ) -> torch.Tensor:
296
+ # Self Attention
297
+ if residual is None:
298
+ residual = hidden_states
299
+ hidden_states = self.input_layernorm(hidden_states)
300
+ else:
301
+ hidden_states, residual = self.input_layernorm(
302
+ hidden_states, residual)
303
+ hidden_states = self.self_attn(
304
+ positions=positions,
305
+ hidden_states=hidden_states,
306
+ kv_cache=kv_cache,
307
+ attn_metadata=attn_metadata,
308
+ )
309
+
310
+ # Fully Connected
311
+ hidden_states, residual = self.post_attention_layernorm(
312
+ hidden_states, residual)
313
+ hidden_states = self.mlp(hidden_states)
314
+ return hidden_states, residual
315
+
316
+
317
+ class DeepseekModel(nn.Module):
318
+
319
+ fall_back_to_pt_during_load = False
320
+
321
+ def __init__(
322
+ self,
323
+ config: PretrainedConfig,
324
+ quant_config: Optional[QuantizationConfig] = None,
325
+ ) -> None:
326
+ super().__init__()
327
+ self.padding_idx = config.pad_token_id
328
+ self.vocab_size = config.vocab_size
329
+
330
+ self.embed_tokens = VocabParallelEmbedding(
331
+ config.vocab_size,
332
+ config.hidden_size,
333
+ )
334
+ self.layers = nn.ModuleList([
335
+ DeepseekDecoderLayer(config, layer_idx, quant_config=quant_config)
336
+ for layer_idx in range(config.num_hidden_layers)
337
+ ])
338
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
339
+
340
+ def forward(
341
+ self,
342
+ input_ids: torch.Tensor,
343
+ positions: torch.Tensor,
344
+ kv_caches: List[torch.Tensor],
345
+ attn_metadata: AttentionMetadata,
346
+ ) -> torch.Tensor:
347
+ hidden_states = self.embed_tokens(input_ids)
348
+ residual = None
349
+ for i in range(len(self.layers)):
350
+ layer = self.layers[i]
351
+ hidden_states, residual = layer(positions, hidden_states,
352
+ kv_caches[i], attn_metadata,
353
+ residual)
354
+ hidden_states, _ = self.norm(hidden_states, residual)
355
+ return hidden_states
356
+
357
+
358
+ class DeepseekForCausalLM(nn.Module):
359
+
360
+ def __init__(
361
+ self,
362
+ config: PretrainedConfig,
363
+ quant_config: Optional[QuantizationConfig] = None,
364
+ ) -> None:
365
+ super().__init__()
366
+ self.config = config
367
+ self.quant_config = quant_config
368
+ self.model = DeepseekModel(config, quant_config)
369
+ self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
370
+ self.logits_processor = LogitsProcessor(config.vocab_size)
371
+ self.sampler = Sampler()
372
+
373
+ def forward(
374
+ self,
375
+ input_ids: torch.Tensor,
376
+ positions: torch.Tensor,
377
+ kv_caches: List[torch.Tensor],
378
+ attn_metadata: AttentionMetadata,
379
+ ) -> torch.Tensor:
380
+ hidden_states = self.model(input_ids, positions, kv_caches,
381
+ attn_metadata)
382
+ return hidden_states
383
+
384
+ def compute_logits(self, hidden_states: torch.Tensor,
385
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
386
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
387
+ sampling_metadata)
388
+ return logits
389
+
390
+ def sample(
391
+ self,
392
+ logits: Optional[torch.Tensor],
393
+ sampling_metadata: SamplingMetadata,
394
+ ) -> Optional[SamplerOutput]:
395
+ next_tokens = self.sampler(logits, sampling_metadata)
396
+ return next_tokens
397
+
398
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
399
+ stacked_params_mapping = [
400
+ # (param_name, shard_name, shard_id)
401
+ ("qkv_proj", "q_proj", "q"),
402
+ ("qkv_proj", "k_proj", "k"),
403
+ ("qkv_proj", "v_proj", "v"),
404
+ ("gate_up_proj", "gate_proj", 0),
405
+ ("gate_up_proj", "up_proj", 1),
406
+ ]
407
+
408
+ params_dict = dict(self.named_parameters())
409
+ for name, loaded_weight in weights:
410
+ if "rotary_emb.inv_freq" in name:
411
+ continue
412
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
413
+ if weight_name not in name:
414
+ continue
415
+ name = name.replace(weight_name, param_name)
416
+ # Skip loading extra bias for GPTQ models.
417
+ if name.endswith(".bias") and name not in params_dict:
418
+ continue
419
+ # Skip experts that are not assigned to this worker.
420
+ if (("mlp.experts." in name or "mlp.shared_experts." in name)
421
+ and name not in params_dict):
422
+ continue
423
+ param = params_dict[name]
424
+ weight_loader = param.weight_loader
425
+ weight_loader(param, loaded_weight, shard_id)
426
+ break
427
+ else:
428
+ # Skip loading extra bias for GPTQ models.
429
+ if name.endswith(".bias") and name not in params_dict:
430
+ continue
431
+ # Skip experts that are not assigned to this worker.
432
+ if (("mlp.experts." in name or "mlp.shared_experts." in name)
433
+ and name not in params_dict):
434
+ continue
435
+ param = params_dict[name]
436
+ weight_loader = getattr(param, "weight_loader",
437
+ default_weight_loader)
438
+ weight_loader(param, loaded_weight)