vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,368 @@
|
|
1
|
+
import argparse
|
2
|
+
import dataclasses
|
3
|
+
import io
|
4
|
+
import os
|
5
|
+
import time
|
6
|
+
import typing
|
7
|
+
from dataclasses import dataclass
|
8
|
+
from typing import Generator, Optional, Tuple, Type, Union
|
9
|
+
|
10
|
+
import torch
|
11
|
+
from torch import nn
|
12
|
+
from transformers import PretrainedConfig
|
13
|
+
|
14
|
+
import vllm.envs as envs
|
15
|
+
from vllm.config import ModelConfig, ParallelConfig
|
16
|
+
from vllm.logger import init_logger
|
17
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
18
|
+
QuantizationConfig)
|
19
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
20
|
+
VocabParallelEmbedding)
|
21
|
+
|
22
|
+
tensorizer_load_fail = None
|
23
|
+
|
24
|
+
try:
|
25
|
+
from tensorizer import (DecryptionParams, EncryptionParams,
|
26
|
+
TensorDeserializer, TensorSerializer)
|
27
|
+
from tensorizer.stream_io import open_stream
|
28
|
+
from tensorizer.utils import (convert_bytes, get_mem_usage,
|
29
|
+
no_init_or_tensor)
|
30
|
+
except ImportError as e:
|
31
|
+
tensorizer_load_fail = e
|
32
|
+
|
33
|
+
__all__ = [
|
34
|
+
'EncryptionParams', 'DecryptionParams', 'TensorDeserializer',
|
35
|
+
'TensorSerializer', 'open_stream', 'convert_bytes', 'get_mem_usage',
|
36
|
+
'no_init_or_tensor', 'TensorizerConfig'
|
37
|
+
]
|
38
|
+
|
39
|
+
logger = init_logger(__name__)
|
40
|
+
|
41
|
+
|
42
|
+
@dataclass
|
43
|
+
class TensorizerConfig:
|
44
|
+
tensorizer_uri: Union[io.BufferedIOBase, io.RawIOBase, typing.BinaryIO,
|
45
|
+
str, bytes, os.PathLike, int]
|
46
|
+
vllm_tensorized: bool
|
47
|
+
verify_hash: Optional[bool] = False
|
48
|
+
num_readers: Optional[int] = None
|
49
|
+
encryption_keyfile: Optional[str] = None
|
50
|
+
s3_access_key_id: Optional[str] = None
|
51
|
+
s3_secret_access_key: Optional[str] = None
|
52
|
+
s3_endpoint: Optional[str] = None
|
53
|
+
model_class: Optional[Type[torch.nn.Module]] = None
|
54
|
+
hf_config: Optional[PretrainedConfig] = None
|
55
|
+
dtype: Optional[Union[str, torch.dtype]] = None
|
56
|
+
|
57
|
+
def _construct_tensorizer_args(self) -> "TensorizerArgs":
|
58
|
+
tensorizer_args = {
|
59
|
+
"tensorizer_uri": self.tensorizer_uri,
|
60
|
+
"vllm_tensorized": self.vllm_tensorized,
|
61
|
+
"verify_hash": self.verify_hash,
|
62
|
+
"num_readers": self.num_readers,
|
63
|
+
"encryption_keyfile": self.encryption_keyfile,
|
64
|
+
"s3_access_key_id": self.s3_access_key_id,
|
65
|
+
"s3_secret_access_key": self.s3_secret_access_key,
|
66
|
+
"s3_endpoint": self.s3_endpoint,
|
67
|
+
}
|
68
|
+
return TensorizerArgs(**tensorizer_args) # type: ignore
|
69
|
+
|
70
|
+
def verify_with_parallel_config(
|
71
|
+
self,
|
72
|
+
parallel_config: "ParallelConfig",
|
73
|
+
) -> None:
|
74
|
+
if (parallel_config.tensor_parallel_size > 1
|
75
|
+
and self.tensorizer_uri is not None):
|
76
|
+
raise ValueError(
|
77
|
+
"Loading to multiple GPUs is not currently supported with "
|
78
|
+
"vLLM-serialized models. Please set tensor_parallel_size=1."
|
79
|
+
" or use a non-vLLM-serialized model, such as a "
|
80
|
+
"serialized Hugging Face `PretrainedModel`.")
|
81
|
+
|
82
|
+
def verify_with_model_config(self, model_config: "ModelConfig") -> None:
|
83
|
+
if (model_config.quantization is not None
|
84
|
+
and self.tensorizer_uri is not None):
|
85
|
+
logger.warning(
|
86
|
+
"Loading a model using Tensorizer with quantization on vLLM"
|
87
|
+
" is unstable and may lead to errors.")
|
88
|
+
|
89
|
+
|
90
|
+
def load_with_tensorizer(tensorizer_config: TensorizerConfig,
|
91
|
+
**extra_kwargs) -> nn.Module:
|
92
|
+
tensorizer = TensorizerAgent(tensorizer_config, **extra_kwargs)
|
93
|
+
return tensorizer.deserialize()
|
94
|
+
|
95
|
+
|
96
|
+
def is_vllm_serialized_tensorizer(tensorizer_config: TensorizerConfig) -> bool:
|
97
|
+
if tensorizer_config is None:
|
98
|
+
return False
|
99
|
+
return tensorizer_config.vllm_tensorized
|
100
|
+
|
101
|
+
|
102
|
+
@dataclass
|
103
|
+
class TensorizerArgs:
|
104
|
+
tensorizer_uri: Union[io.BufferedIOBase, io.RawIOBase, typing.BinaryIO,
|
105
|
+
str, bytes, os.PathLike, int]
|
106
|
+
vllm_tensorized: bool
|
107
|
+
verify_hash: Optional[bool] = False
|
108
|
+
num_readers: Optional[int] = None
|
109
|
+
encryption_keyfile: Optional[str] = None
|
110
|
+
s3_access_key_id: Optional[str] = None
|
111
|
+
s3_secret_access_key: Optional[str] = None
|
112
|
+
s3_endpoint: Optional[str] = None
|
113
|
+
"""
|
114
|
+
Args for the TensorizerAgent class. These are used to configure the behavior
|
115
|
+
of the TensorDeserializer when loading tensors from a serialized model.
|
116
|
+
|
117
|
+
Args:
|
118
|
+
tensorizer_uri: Path to serialized model tensors. Can be a local file
|
119
|
+
path or a S3 URI.
|
120
|
+
vllm_tensorized: If True, indicates that the serialized model is a
|
121
|
+
vLLM model. This is used to determine the behavior of the
|
122
|
+
TensorDeserializer when loading tensors from a serialized model.
|
123
|
+
It is far faster to deserialize a vLLM model as it utilizes
|
124
|
+
tensorizer's optimized GPU loading.
|
125
|
+
verify_hash: If True, the hashes of each tensor will be verified against
|
126
|
+
the hashes stored in the metadata. A `HashMismatchError` will be
|
127
|
+
raised if any of the hashes do not match.
|
128
|
+
num_readers: Controls how many threads are allowed to read concurrently
|
129
|
+
from the source file. Default is `None`, which will dynamically set
|
130
|
+
the number of readers based on the number of available
|
131
|
+
resources and model size. This greatly increases performance.
|
132
|
+
encryption_keyfile: File path to a binary file containing a
|
133
|
+
binary key to use for decryption. `None` (the default) means
|
134
|
+
no decryption. See the example script in
|
135
|
+
examples/tensorize_vllm_model.py.
|
136
|
+
s3_access_key_id: The access key for the S3 bucket. Can also be set via
|
137
|
+
the S3_ACCESS_KEY_ID environment variable.
|
138
|
+
s3_secret_access_key: The secret access key for the S3 bucket. Can also
|
139
|
+
be set via the S3_SECRET_ACCESS_KEY environment variable.
|
140
|
+
s3_endpoint: The endpoint for the S3 bucket. Can also be set via the
|
141
|
+
S3_ENDPOINT_URL environment variable.
|
142
|
+
"""
|
143
|
+
|
144
|
+
def __post_init__(self):
|
145
|
+
self.file_obj = self.tensorizer_uri
|
146
|
+
self.s3_access_key_id = self.s3_access_key_id or envs.S3_ACCESS_KEY_ID
|
147
|
+
self.s3_secret_access_key = (self.s3_secret_access_key
|
148
|
+
or envs.S3_SECRET_ACCESS_KEY)
|
149
|
+
self.s3_endpoint = self.s3_endpoint or envs.S3_ENDPOINT_URL
|
150
|
+
self.stream_params = {
|
151
|
+
"s3_access_key_id": self.s3_access_key_id,
|
152
|
+
"s3_secret_access_key": self.s3_secret_access_key,
|
153
|
+
"s3_endpoint": self.s3_endpoint,
|
154
|
+
}
|
155
|
+
|
156
|
+
self.deserializer_params = {
|
157
|
+
"verify_hash": self.verify_hash,
|
158
|
+
"encryption": self.encryption_keyfile,
|
159
|
+
"num_readers": self.num_readers
|
160
|
+
}
|
161
|
+
if self.encryption_keyfile:
|
162
|
+
with open_stream(
|
163
|
+
self.encryption_keyfile,
|
164
|
+
**self.stream_params,
|
165
|
+
) as stream:
|
166
|
+
key = stream.read()
|
167
|
+
decryption_params = DecryptionParams.from_key(key)
|
168
|
+
self.deserializer_params['encryption'] = decryption_params
|
169
|
+
|
170
|
+
@staticmethod
|
171
|
+
def add_cli_args(
|
172
|
+
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
|
173
|
+
"""Tensorizer CLI arguments"""
|
174
|
+
|
175
|
+
# Tensorizer options arg group
|
176
|
+
group = parser.add_argument_group(
|
177
|
+
'tensorizer options',
|
178
|
+
description=('Options for configuring the behavior of the'
|
179
|
+
' tensorizer deserializer when '
|
180
|
+
'--load-format=tensorizer'))
|
181
|
+
|
182
|
+
group.add_argument(
|
183
|
+
"--tensorizer-uri",
|
184
|
+
help="Path to serialized model tensors. Can be a local file path,"
|
185
|
+
" or an HTTP(S) or S3 URI.",
|
186
|
+
)
|
187
|
+
group.add_argument(
|
188
|
+
"--verify-hash",
|
189
|
+
action="store_true",
|
190
|
+
help="If enabled, the hashes of each tensor will be verified"
|
191
|
+
" against the hashes stored in the file metadata. An exception"
|
192
|
+
" will be raised if any of the hashes do not match.",
|
193
|
+
)
|
194
|
+
group.add_argument(
|
195
|
+
"--encryption-keyfile",
|
196
|
+
default=None,
|
197
|
+
help="The file path to a binary file containing a binary key to "
|
198
|
+
"use for decryption. Can be a file path or S3 network URI.")
|
199
|
+
group.add_argument(
|
200
|
+
"--num-readers",
|
201
|
+
default=None,
|
202
|
+
type=int,
|
203
|
+
help="Controls how many threads are allowed to read concurrently "
|
204
|
+
"from the source file. Default is `None`, which will dynamically "
|
205
|
+
"set the number of readers based on the available resources "
|
206
|
+
"and model size. This greatly increases performance.")
|
207
|
+
group.add_argument(
|
208
|
+
"--s3-access-key-id",
|
209
|
+
default=None,
|
210
|
+
help="The access key for the S3 bucket. Can also be set via the "
|
211
|
+
"S3_ACCESS_KEY_ID environment variable.",
|
212
|
+
)
|
213
|
+
group.add_argument(
|
214
|
+
"--s3-secret-access-key",
|
215
|
+
default=None,
|
216
|
+
help="The secret access key for the S3 bucket. Can also be set via "
|
217
|
+
"the S3_SECRET_ACCESS_KEY environment variable.",
|
218
|
+
)
|
219
|
+
group.add_argument(
|
220
|
+
"--s3-endpoint",
|
221
|
+
default=None,
|
222
|
+
help="The endpoint for the S3 bucket. Can also be set via the "
|
223
|
+
"S3_ENDPOINT_URL environment variable.",
|
224
|
+
)
|
225
|
+
group.add_argument(
|
226
|
+
"--vllm-tensorized",
|
227
|
+
action="store_true",
|
228
|
+
help="If enabled, indicates that the serialized model is a vLLM "
|
229
|
+
"model. This is used to determine the behavior of the "
|
230
|
+
"TensorDeserializer when loading tensors from a "
|
231
|
+
"serialized model.")
|
232
|
+
|
233
|
+
return parser
|
234
|
+
|
235
|
+
@classmethod
|
236
|
+
def from_cli_args(cls, args: argparse.Namespace) -> "TensorizerArgs":
|
237
|
+
attrs = [attr.name for attr in dataclasses.fields(cls)]
|
238
|
+
tensorizer_args = cls(**{
|
239
|
+
attr: getattr(args, attr)
|
240
|
+
for attr in attrs if hasattr(args, attr)
|
241
|
+
})
|
242
|
+
return tensorizer_args
|
243
|
+
|
244
|
+
|
245
|
+
class TensorizerAgent:
|
246
|
+
"""
|
247
|
+
A class for performing tensorizer deserializations specifically for
|
248
|
+
vLLM models using plaid_mode. Uses TensorizerArgs to configure the
|
249
|
+
behavior of the TensorDeserializer when loading tensors from a serialized
|
250
|
+
model. For deserializations of HuggingFace models, TensorDeserializer is
|
251
|
+
instead used as an iterator directly in the func hf_model_weights_iterator
|
252
|
+
in vllm/model_executor/model_loader/weight_utils.py
|
253
|
+
"""
|
254
|
+
|
255
|
+
def __init__(self, tensorizer_config: TensorizerConfig,
|
256
|
+
quant_config: QuantizationConfig, **extra_kwargs):
|
257
|
+
if tensorizer_load_fail is not None:
|
258
|
+
raise ImportError(
|
259
|
+
"Tensorizer is not installed. Please install tensorizer "
|
260
|
+
"to use this feature with `pip install vllm[tensorizer]`."
|
261
|
+
) from tensorizer_load_fail
|
262
|
+
|
263
|
+
self.tensorizer_config = tensorizer_config
|
264
|
+
self.tensorizer_args = (
|
265
|
+
self.tensorizer_config._construct_tensorizer_args())
|
266
|
+
self.extra_kwargs = extra_kwargs
|
267
|
+
if extra_kwargs.get("quant_config", None) is not None:
|
268
|
+
self.quant_config = extra_kwargs["quant_config"]
|
269
|
+
else:
|
270
|
+
self.quant_config = quant_config
|
271
|
+
self.model = self._init_model()
|
272
|
+
|
273
|
+
def _init_model(self):
|
274
|
+
assert self.tensorizer_config.hf_config is not None
|
275
|
+
model_args = self.tensorizer_config.hf_config
|
276
|
+
model_args.torch_dtype = self.tensorizer_config.dtype
|
277
|
+
assert self.tensorizer_config.model_class is not None
|
278
|
+
with no_init_or_tensor():
|
279
|
+
return self.tensorizer_config.model_class(
|
280
|
+
config=model_args,
|
281
|
+
quant_config=self.quant_config,
|
282
|
+
**self.extra_kwargs)
|
283
|
+
|
284
|
+
def _resize_lora_embeddings(self):
|
285
|
+
"""Modify LoRA embedding layers to use bigger tensors
|
286
|
+
to allow for adapter added tokens."""
|
287
|
+
for child in self.model.modules():
|
288
|
+
if (isinstance(child, VocabParallelEmbedding)
|
289
|
+
and child.weight.shape[0] <
|
290
|
+
child.num_embeddings_per_partition):
|
291
|
+
new_weight = torch.empty(child.num_embeddings_per_partition,
|
292
|
+
child.embedding_dim,
|
293
|
+
dtype=child.weight.dtype,
|
294
|
+
device=child.weight.device)
|
295
|
+
new_weight[:child.weight.shape[0]].copy_(child.weight.data)
|
296
|
+
new_weight[child.weight.shape[0]:].fill_(0)
|
297
|
+
child.weight.data = new_weight
|
298
|
+
|
299
|
+
def _check_tensors_on_meta_device(self):
|
300
|
+
for tensor in self.model.state_dict().values():
|
301
|
+
if tensor.device.type == 'meta':
|
302
|
+
raise ValueError(
|
303
|
+
"The serialized model contains tensors on the meta device,"
|
304
|
+
" indicating that some tensors were not loaded properly."
|
305
|
+
" Please check that the parameters of the model being"
|
306
|
+
" specified match that of the serialized model, such as"
|
307
|
+
" its quantization.")
|
308
|
+
|
309
|
+
def deserialize(self):
|
310
|
+
"""
|
311
|
+
Deserialize the model using the TensorDeserializer. This method is
|
312
|
+
specifically for vLLM models using tensorizer's plaid_mode.
|
313
|
+
|
314
|
+
The deserializer makes use of tensorizer_args.stream_params
|
315
|
+
to configure the behavior of the stream when loading tensors from a
|
316
|
+
serialized model. The deserializer_params are used to configure the
|
317
|
+
behavior of the TensorDeserializer when loading tensors themselves.
|
318
|
+
Documentation on these params can be found in TensorizerArgs
|
319
|
+
|
320
|
+
Returns:
|
321
|
+
nn.Module: The deserialized model.
|
322
|
+
"""
|
323
|
+
before_mem = get_mem_usage()
|
324
|
+
start = time.perf_counter()
|
325
|
+
with open_stream(
|
326
|
+
self.tensorizer_args.tensorizer_uri,
|
327
|
+
mode="rb",
|
328
|
+
**self.tensorizer_args.stream_params,
|
329
|
+
) as stream, TensorDeserializer(
|
330
|
+
stream,
|
331
|
+
dtype=self.tensorizer_config.dtype,
|
332
|
+
**self.tensorizer_args.deserializer_params) as deserializer:
|
333
|
+
deserializer.load_into_module(self.model)
|
334
|
+
end = time.perf_counter()
|
335
|
+
|
336
|
+
total_bytes_str = convert_bytes(deserializer.total_tensor_bytes)
|
337
|
+
duration = end - start
|
338
|
+
per_second = convert_bytes(deserializer.total_tensor_bytes / duration)
|
339
|
+
after_mem = get_mem_usage()
|
340
|
+
deserializer.close()
|
341
|
+
logger.info("Deserialized %s in %0.2fs, %s/s", total_bytes_str,
|
342
|
+
end - start, per_second)
|
343
|
+
logger.info("Memory usage before: %s", before_mem)
|
344
|
+
logger.info("Memory usage after: %s", after_mem)
|
345
|
+
|
346
|
+
self._check_tensors_on_meta_device()
|
347
|
+
self._resize_lora_embeddings()
|
348
|
+
return self.model.eval()
|
349
|
+
|
350
|
+
|
351
|
+
def tensorizer_weights_iterator(
|
352
|
+
tensorizer_args: "TensorizerArgs"
|
353
|
+
) -> Generator[Tuple[str, torch.Tensor], None, None]:
|
354
|
+
logger.warning(
|
355
|
+
"Deserializing HuggingFace models is not optimized for "
|
356
|
+
"loading on vLLM, as tensorizer is forced to load to CPU. "
|
357
|
+
"Consider deserializing a vLLM model instead for faster "
|
358
|
+
"load times. See the examples/tensorize_vllm_model.py example "
|
359
|
+
"script for serializing vLLM models.")
|
360
|
+
|
361
|
+
deserializer_args = tensorizer_args.deserializer_params
|
362
|
+
stream_params = tensorizer_args.stream_params
|
363
|
+
stream = open_stream(tensorizer_args.tensorizer_uri, **stream_params)
|
364
|
+
with TensorDeserializer(stream, **deserializer_args,
|
365
|
+
device="cpu") as state:
|
366
|
+
for name, param in state.items():
|
367
|
+
yield name, param
|
368
|
+
del state
|
@@ -0,0 +1,41 @@
|
|
1
|
+
"""Utilities for selecting and loading models."""
|
2
|
+
import contextlib
|
3
|
+
from typing import Tuple, Type
|
4
|
+
|
5
|
+
import torch
|
6
|
+
from torch import nn
|
7
|
+
|
8
|
+
from vllm.config import ModelConfig
|
9
|
+
from vllm.model_executor.models import ModelRegistry
|
10
|
+
|
11
|
+
|
12
|
+
@contextlib.contextmanager
|
13
|
+
def set_default_torch_dtype(dtype: torch.dtype):
|
14
|
+
"""Sets the default torch dtype to the given dtype."""
|
15
|
+
old_dtype = torch.get_default_dtype()
|
16
|
+
torch.set_default_dtype(dtype)
|
17
|
+
yield
|
18
|
+
torch.set_default_dtype(old_dtype)
|
19
|
+
|
20
|
+
|
21
|
+
def get_model_architecture(
|
22
|
+
model_config: ModelConfig) -> Tuple[Type[nn.Module], str]:
|
23
|
+
architectures = getattr(model_config.hf_config, "architectures", [])
|
24
|
+
# Special handling for quantized Mixtral.
|
25
|
+
# FIXME(woosuk): This is a temporary hack.
|
26
|
+
if (model_config.quantization is not None
|
27
|
+
and model_config.quantization != "fp8"
|
28
|
+
and "MixtralForCausalLM" in architectures):
|
29
|
+
architectures = ["QuantMixtralForCausalLM"]
|
30
|
+
|
31
|
+
for arch in architectures:
|
32
|
+
model_cls = ModelRegistry.load_model_cls(arch)
|
33
|
+
if model_cls is not None:
|
34
|
+
return (model_cls, arch)
|
35
|
+
raise ValueError(
|
36
|
+
f"Model architectures {architectures} are not supported for now. "
|
37
|
+
f"Supported architectures: {ModelRegistry.get_supported_archs()}")
|
38
|
+
|
39
|
+
|
40
|
+
def get_architecture_class_name(model_config: ModelConfig) -> str:
|
41
|
+
return get_model_architecture(model_config)[1]
|