vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,479 @@
|
|
1
|
+
"""Fused MoE kernel."""
|
2
|
+
import functools
|
3
|
+
import json
|
4
|
+
import os
|
5
|
+
from typing import Any, Dict, Optional, Tuple
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from vllm import _custom_ops as ops
|
12
|
+
from vllm.logger import init_logger
|
13
|
+
from vllm.utils import is_hip
|
14
|
+
|
15
|
+
logger = init_logger(__name__)
|
16
|
+
|
17
|
+
|
18
|
+
@triton.jit
|
19
|
+
def fused_moe_kernel(
|
20
|
+
# Pointers to matrices
|
21
|
+
a_ptr,
|
22
|
+
b_ptr,
|
23
|
+
c_ptr,
|
24
|
+
a_scale_ptr,
|
25
|
+
b_scale_ptr,
|
26
|
+
topk_weights_ptr,
|
27
|
+
sorted_token_ids_ptr,
|
28
|
+
expert_ids_ptr,
|
29
|
+
num_tokens_post_padded_ptr,
|
30
|
+
# Matrix dimensions
|
31
|
+
N,
|
32
|
+
K,
|
33
|
+
EM,
|
34
|
+
num_valid_tokens,
|
35
|
+
# The stride variables represent how much to increase the ptr by when
|
36
|
+
# moving by 1 element in a particular dimension. E.g. `stride_am` is
|
37
|
+
# how much to increase `a_ptr` by to get the element one row down
|
38
|
+
# (A has M rows).
|
39
|
+
stride_am,
|
40
|
+
stride_ak,
|
41
|
+
stride_be,
|
42
|
+
stride_bk,
|
43
|
+
stride_bn,
|
44
|
+
stride_cm,
|
45
|
+
stride_cn,
|
46
|
+
# Meta-parameters
|
47
|
+
BLOCK_SIZE_M: tl.constexpr,
|
48
|
+
BLOCK_SIZE_N: tl.constexpr,
|
49
|
+
BLOCK_SIZE_K: tl.constexpr,
|
50
|
+
GROUP_SIZE_M: tl.constexpr,
|
51
|
+
MUL_ROUTED_WEIGHT: tl.constexpr,
|
52
|
+
top_k: tl.constexpr,
|
53
|
+
compute_type: tl.constexpr,
|
54
|
+
use_fp8: tl.constexpr,
|
55
|
+
):
|
56
|
+
"""
|
57
|
+
Implements the fused computation for a Mixture of Experts (MOE) using
|
58
|
+
token and expert matrices.
|
59
|
+
|
60
|
+
Key Parameters:
|
61
|
+
- A: The input tensor representing tokens with shape (*, K), where '*' can
|
62
|
+
be any shape representing batches and K is the feature dimension of
|
63
|
+
each token.
|
64
|
+
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
|
65
|
+
the number of experts, K is the input feature dimension, and N is
|
66
|
+
the output feature dimension.
|
67
|
+
- C: The output cache tensor with shape (M, topk, N), where M is the
|
68
|
+
total number of tokens post padding, topk is the number of times
|
69
|
+
each token is repeated, and N is the output feature dimension.
|
70
|
+
- sorted_token_ids: A tensor containing the sorted indices of tokens,
|
71
|
+
repeated topk times and arranged by the expert index they are
|
72
|
+
assigned to.
|
73
|
+
- expert_ids: A tensor containing the indices of the expert for each
|
74
|
+
block. It determines which expert matrix from B should be used for
|
75
|
+
each block in A.
|
76
|
+
This kernel performs the multiplication of a token by its corresponding
|
77
|
+
expert matrix as determined by `expert_ids`. The sorting of
|
78
|
+
`sorted_token_ids` by expert index and padding ensures divisibility by
|
79
|
+
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
|
80
|
+
multiplication across different blocks processed by the same expert.
|
81
|
+
"""
|
82
|
+
# -----------------------------------------------------------
|
83
|
+
# Map program ids `pid` to the block of C it should compute.
|
84
|
+
# This is done in a grouped ordering to promote L2 data reuse.
|
85
|
+
pid = tl.program_id(axis=0)
|
86
|
+
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
|
87
|
+
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
88
|
+
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
89
|
+
group_id = pid // num_pid_in_group
|
90
|
+
first_pid_m = group_id * GROUP_SIZE_M
|
91
|
+
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
92
|
+
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
|
93
|
+
pid_n = (pid % num_pid_in_group) // group_size_m
|
94
|
+
|
95
|
+
# ----------------------------------------------------------
|
96
|
+
# Create pointers for the first blocks of A and B.
|
97
|
+
# We will advance this pointer as we move in the K direction
|
98
|
+
# and accumulate
|
99
|
+
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
|
100
|
+
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
|
101
|
+
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
|
102
|
+
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
|
103
|
+
return
|
104
|
+
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
105
|
+
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
|
106
|
+
token_mask = offs_token < num_valid_tokens
|
107
|
+
|
108
|
+
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
|
109
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
110
|
+
a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
|
111
|
+
offs_k[None, :] * stride_ak)
|
112
|
+
|
113
|
+
off_experts = tl.load(expert_ids_ptr + pid_m)
|
114
|
+
b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk +
|
115
|
+
offs_bn[None, :] * stride_bn)
|
116
|
+
|
117
|
+
if use_fp8:
|
118
|
+
a_scale = tl.load(a_scale_ptr)
|
119
|
+
b_scale = tl.load(b_scale_ptr + off_experts)
|
120
|
+
|
121
|
+
# -----------------------------------------------------------
|
122
|
+
# Iterate to compute a block of the C matrix.
|
123
|
+
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
|
124
|
+
# of fp32 values for higher accuracy.
|
125
|
+
# `accumulator` will be converted back to fp16 after the loop.
|
126
|
+
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
127
|
+
|
128
|
+
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
129
|
+
# Load the next block of A and B, generate a mask by checking the
|
130
|
+
# K dimension.
|
131
|
+
a = tl.load(a_ptrs,
|
132
|
+
mask=token_mask[:, None] &
|
133
|
+
(offs_k[None, :] < K - k * BLOCK_SIZE_K),
|
134
|
+
other=0.0)
|
135
|
+
b = tl.load(b_ptrs,
|
136
|
+
mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
|
137
|
+
other=0.0)
|
138
|
+
# We accumulate along the K dimension.
|
139
|
+
if use_fp8:
|
140
|
+
accumulator = tl.dot(a, b, acc=accumulator)
|
141
|
+
else:
|
142
|
+
accumulator += tl.dot(a, b)
|
143
|
+
# Advance the ptrs to the next K block.
|
144
|
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
145
|
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
146
|
+
|
147
|
+
if MUL_ROUTED_WEIGHT:
|
148
|
+
moe_weight = tl.load(topk_weights_ptr + offs_token,
|
149
|
+
mask=token_mask,
|
150
|
+
other=0)
|
151
|
+
accumulator = accumulator * moe_weight[:, None]
|
152
|
+
|
153
|
+
if use_fp8:
|
154
|
+
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
|
155
|
+
else:
|
156
|
+
accumulator = accumulator.to(compute_type)
|
157
|
+
# -----------------------------------------------------------
|
158
|
+
# Write back the block of the output
|
159
|
+
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
160
|
+
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
|
161
|
+
None, :]
|
162
|
+
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
|
163
|
+
tl.store(c_ptrs, accumulator, mask=c_mask)
|
164
|
+
|
165
|
+
|
166
|
+
def moe_align_block_size(
|
167
|
+
topk_ids: torch.Tensor, block_size: int,
|
168
|
+
num_experts: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
169
|
+
"""
|
170
|
+
Aligns the token distribution across experts to be compatible with block
|
171
|
+
size for matrix multiplication.
|
172
|
+
|
173
|
+
Parameters:
|
174
|
+
- topk_ids: A tensor of shape [total_tokens, top_k] representing the
|
175
|
+
top-k expert indices for each token.
|
176
|
+
- block_size: The block size used in block matrix multiplication.
|
177
|
+
- num_experts: The total number of experts.
|
178
|
+
|
179
|
+
Returns:
|
180
|
+
- sorted_token_ids: A tensor containing the sorted token indices according
|
181
|
+
to their allocated expert.
|
182
|
+
- expert_ids: A tensor indicating the assigned expert index for each block.
|
183
|
+
- num_tokens_post_padded: The total number of tokens after padding,
|
184
|
+
ensuring divisibility by block_size.
|
185
|
+
|
186
|
+
This function pads the number of tokens that each expert needs to process
|
187
|
+
so that it is divisible by block_size.
|
188
|
+
Padding ensures that during block matrix multiplication, the dimensions
|
189
|
+
align correctly.
|
190
|
+
|
191
|
+
Example:
|
192
|
+
Given topk_ids = [[2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 2, 3]],
|
193
|
+
block_size = 4, and num_experts = 4:
|
194
|
+
- We initially have 12 tokens (after repeating 'top_k' times) and 4 experts,
|
195
|
+
with each expert needing to process 3 tokens.
|
196
|
+
- As block_size is 4, we pad 1 token for each expert.
|
197
|
+
- First, flatten topk_ids to [2, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 3].
|
198
|
+
- Then append padding tokens [12, 12, 12, 12] for each block.
|
199
|
+
- After sorting by expert index, we obtain token_ids
|
200
|
+
[3, 6, 9, 12, 0, 4, 10, 12, 1, 7, 11, 12, 2, 5, 8, 12].
|
201
|
+
Tokens 12 are non-existent (padding) and are ignored in
|
202
|
+
the subsequent matrix multiplication.
|
203
|
+
- The padding ensures that the total number of tokens is now divisible
|
204
|
+
by block_size for proper block matrix operations.
|
205
|
+
"""
|
206
|
+
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
207
|
+
sorted_ids = torch.empty((max_num_tokens_padded, ),
|
208
|
+
dtype=torch.int32,
|
209
|
+
device=topk_ids.device)
|
210
|
+
sorted_ids.fill_(topk_ids.numel())
|
211
|
+
max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
|
212
|
+
expert_ids = torch.empty((max_num_m_blocks, ),
|
213
|
+
dtype=torch.int32,
|
214
|
+
device=topk_ids.device)
|
215
|
+
num_tokens_post_pad = torch.empty((1),
|
216
|
+
dtype=torch.int32,
|
217
|
+
device=topk_ids.device)
|
218
|
+
ops.moe_align_block_size(topk_ids, num_experts, block_size, sorted_ids,
|
219
|
+
expert_ids, num_tokens_post_pad)
|
220
|
+
return sorted_ids, expert_ids, num_tokens_post_pad
|
221
|
+
|
222
|
+
|
223
|
+
def invoke_fused_moe_kernel(A: torch.Tensor, B: torch.Tensor, C: torch.Tensor,
|
224
|
+
A_scale: Optional[torch.Tensor],
|
225
|
+
B_scale: Optional[torch.Tensor],
|
226
|
+
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
|
227
|
+
sorted_token_ids: torch.Tensor,
|
228
|
+
expert_ids: torch.Tensor,
|
229
|
+
num_tokens_post_padded: torch.Tensor,
|
230
|
+
mul_routed_weight: bool, top_k: int,
|
231
|
+
config: Dict[str, Any], compute_type: tl.dtype,
|
232
|
+
use_fp8: bool) -> None:
|
233
|
+
assert topk_weights.stride(1) == 1
|
234
|
+
assert sorted_token_ids.stride(0) == 1
|
235
|
+
|
236
|
+
if not use_fp8:
|
237
|
+
assert A_scale is None
|
238
|
+
assert B_scale is None
|
239
|
+
else:
|
240
|
+
A, A_scale = ops.scaled_fp8_quant(A, A_scale)
|
241
|
+
assert B_scale is not None
|
242
|
+
|
243
|
+
grid = lambda META: (triton.cdiv(sorted_token_ids.shape[0], META[
|
244
|
+
'BLOCK_SIZE_M']) * triton.cdiv(B.shape[1], META['BLOCK_SIZE_N']), )
|
245
|
+
|
246
|
+
fused_moe_kernel[grid](
|
247
|
+
A,
|
248
|
+
B,
|
249
|
+
C,
|
250
|
+
A_scale,
|
251
|
+
B_scale,
|
252
|
+
topk_weights,
|
253
|
+
sorted_token_ids,
|
254
|
+
expert_ids,
|
255
|
+
num_tokens_post_padded,
|
256
|
+
B.shape[1],
|
257
|
+
B.shape[2],
|
258
|
+
sorted_token_ids.shape[0],
|
259
|
+
topk_ids.numel(),
|
260
|
+
A.stride(0),
|
261
|
+
A.stride(1),
|
262
|
+
B.stride(0),
|
263
|
+
B.stride(2),
|
264
|
+
B.stride(1),
|
265
|
+
C.stride(1),
|
266
|
+
C.stride(2),
|
267
|
+
MUL_ROUTED_WEIGHT=mul_routed_weight,
|
268
|
+
top_k=top_k,
|
269
|
+
compute_type=compute_type,
|
270
|
+
use_fp8=use_fp8,
|
271
|
+
**config,
|
272
|
+
)
|
273
|
+
|
274
|
+
|
275
|
+
def get_config_file_name(E: int, N: int, dtype: Optional[str]) -> str:
|
276
|
+
device_name = torch.cuda.get_device_name().replace(" ", "_")
|
277
|
+
dtype_selector = "" if not dtype else f",dtype={dtype}"
|
278
|
+
return f"E={E},N={N},device_name={device_name}{dtype_selector}.json"
|
279
|
+
|
280
|
+
|
281
|
+
@functools.lru_cache
|
282
|
+
def get_moe_configs(E: int, N: int,
|
283
|
+
dtype: Optional[str]) -> Optional[Dict[int, Any]]:
|
284
|
+
"""
|
285
|
+
Return optimized configurations for the fused MoE kernel.
|
286
|
+
|
287
|
+
The return value will be a dictionary that maps an irregular grid of
|
288
|
+
batch sizes to configurations of the fused_moe kernel. To evaluate the
|
289
|
+
kernel on a given batch size bs, the closest batch size in the grid should
|
290
|
+
be picked and the associated configuration chosen to invoke the kernel.
|
291
|
+
"""
|
292
|
+
|
293
|
+
# First look up if an optimized configuration is available in the configs
|
294
|
+
# directory
|
295
|
+
json_file_name = get_config_file_name(E, N, dtype)
|
296
|
+
|
297
|
+
config_file_path = os.path.join(
|
298
|
+
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
|
299
|
+
if os.path.exists(config_file_path):
|
300
|
+
with open(config_file_path) as f:
|
301
|
+
logger.info("Using configuration from %s for MoE layer.",
|
302
|
+
config_file_path)
|
303
|
+
# If a configuration has been found, return it
|
304
|
+
return {int(key): val for key, val in json.load(f).items()}
|
305
|
+
|
306
|
+
# If no optimized configuration is available, we will use the default
|
307
|
+
# configuration
|
308
|
+
return None
|
309
|
+
|
310
|
+
|
311
|
+
def fused_moe(
|
312
|
+
hidden_states: torch.Tensor,
|
313
|
+
w1: torch.Tensor,
|
314
|
+
w2: torch.Tensor,
|
315
|
+
gating_output: torch.Tensor,
|
316
|
+
topk: int,
|
317
|
+
renormalize: bool,
|
318
|
+
inplace: bool = False,
|
319
|
+
override_config: Optional[Dict[str, Any]] = None,
|
320
|
+
use_fp8: bool = False,
|
321
|
+
w1_scale: Optional[torch.Tensor] = None,
|
322
|
+
w2_scale: Optional[torch.Tensor] = None,
|
323
|
+
a1_scale: Optional[torch.Tensor] = None,
|
324
|
+
a2_scale: Optional[torch.Tensor] = None,
|
325
|
+
) -> torch.Tensor:
|
326
|
+
"""
|
327
|
+
This function computes a Mixture of Experts (MoE) layer using two sets of
|
328
|
+
weights, w1 and w2, and top-k gating mechanism.
|
329
|
+
|
330
|
+
Parameters:
|
331
|
+
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
|
332
|
+
- w1 (torch.Tensor): The first set of expert weights.
|
333
|
+
- w2 (torch.Tensor): The second set of expert weights.
|
334
|
+
- gating_output (torch.Tensor): The output of the gating operation
|
335
|
+
(before softmax).
|
336
|
+
- topk (int): The number of top-k experts to select.
|
337
|
+
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
338
|
+
- inplace (bool): If True, perform the operation in-place.
|
339
|
+
Defaults to False.
|
340
|
+
- override_config (Optional[Dict[str, Any]]): Optional override
|
341
|
+
for the kernel configuration.
|
342
|
+
- use_fp8 (bool): If True, use fp8 arithmetic to compute the inner
|
343
|
+
products for w1 and w2. Defaults to False.
|
344
|
+
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
345
|
+
w1.
|
346
|
+
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
347
|
+
w2.
|
348
|
+
|
349
|
+
Returns:
|
350
|
+
- torch.Tensor: The output tensor after applying the MoE layer.
|
351
|
+
"""
|
352
|
+
# Check constraints.
|
353
|
+
assert hidden_states.shape[0] == gating_output.shape[0], (
|
354
|
+
"Number of tokens mismatch")
|
355
|
+
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
356
|
+
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
|
357
|
+
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
358
|
+
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
359
|
+
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
360
|
+
assert hidden_states.dtype in [
|
361
|
+
torch.float32, torch.float16, torch.bfloat16
|
362
|
+
]
|
363
|
+
M, _ = hidden_states.shape
|
364
|
+
E, N, _ = w1.shape
|
365
|
+
|
366
|
+
if is_hip():
|
367
|
+
# The MoE kernels are not yet supported on ROCm.
|
368
|
+
routing_weights = torch.softmax(gating_output,
|
369
|
+
dim=-1,
|
370
|
+
dtype=torch.float32)
|
371
|
+
topk_weights, topk_ids = torch.topk(routing_weights, topk, dim=-1)
|
372
|
+
else:
|
373
|
+
import vllm._moe_C as moe_kernels
|
374
|
+
|
375
|
+
topk_weights = torch.empty(M,
|
376
|
+
topk,
|
377
|
+
dtype=torch.float32,
|
378
|
+
device=hidden_states.device)
|
379
|
+
topk_ids = torch.empty(M,
|
380
|
+
topk,
|
381
|
+
dtype=torch.int32,
|
382
|
+
device=hidden_states.device)
|
383
|
+
token_expert_indicies = torch.empty(M,
|
384
|
+
topk,
|
385
|
+
dtype=torch.int32,
|
386
|
+
device=hidden_states.device)
|
387
|
+
moe_kernels.topk_softmax(
|
388
|
+
topk_weights,
|
389
|
+
topk_ids,
|
390
|
+
token_expert_indicies,
|
391
|
+
gating_output.float(), # TODO(woosuk): Optimize this.
|
392
|
+
)
|
393
|
+
del token_expert_indicies # Not used. Will be used in the future.
|
394
|
+
if renormalize:
|
395
|
+
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
396
|
+
|
397
|
+
if override_config:
|
398
|
+
config = override_config
|
399
|
+
else:
|
400
|
+
# First try to load optimal config from the file
|
401
|
+
configs = get_moe_configs(E, w2.shape[2],
|
402
|
+
"float8" if use_fp8 else None)
|
403
|
+
|
404
|
+
if configs:
|
405
|
+
# If an optimal configuration map has been found, look up the
|
406
|
+
# optimal config
|
407
|
+
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
|
408
|
+
else:
|
409
|
+
# Else use the default config
|
410
|
+
config = {
|
411
|
+
'BLOCK_SIZE_M': 64,
|
412
|
+
'BLOCK_SIZE_N': 64,
|
413
|
+
'BLOCK_SIZE_K': 32,
|
414
|
+
'GROUP_SIZE_M': 8
|
415
|
+
}
|
416
|
+
|
417
|
+
if M <= E:
|
418
|
+
config = {
|
419
|
+
'BLOCK_SIZE_M': 16,
|
420
|
+
'BLOCK_SIZE_N': 32,
|
421
|
+
'BLOCK_SIZE_K': 64,
|
422
|
+
'GROUP_SIZE_M': 1
|
423
|
+
}
|
424
|
+
|
425
|
+
intermediate_cache1 = torch.empty((M, topk_ids.shape[1], N),
|
426
|
+
device=hidden_states.device,
|
427
|
+
dtype=hidden_states.dtype)
|
428
|
+
intermediate_cache2 = torch.empty((M * topk_ids.shape[1], N // 2),
|
429
|
+
device=hidden_states.device,
|
430
|
+
dtype=hidden_states.dtype)
|
431
|
+
intermediate_cache3 = torch.empty((M, topk_ids.shape[1], w2.shape[1]),
|
432
|
+
device=hidden_states.device,
|
433
|
+
dtype=hidden_states.dtype)
|
434
|
+
|
435
|
+
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
|
436
|
+
topk_ids, config['BLOCK_SIZE_M'], E)
|
437
|
+
compute_type = (tl.bfloat16
|
438
|
+
if hidden_states.dtype == torch.bfloat16 else tl.float16)
|
439
|
+
|
440
|
+
invoke_fused_moe_kernel(hidden_states,
|
441
|
+
w1,
|
442
|
+
intermediate_cache1,
|
443
|
+
a1_scale,
|
444
|
+
w1_scale,
|
445
|
+
topk_weights,
|
446
|
+
topk_ids,
|
447
|
+
sorted_token_ids,
|
448
|
+
expert_ids,
|
449
|
+
num_tokens_post_padded,
|
450
|
+
False,
|
451
|
+
topk_ids.shape[1],
|
452
|
+
config,
|
453
|
+
compute_type=compute_type,
|
454
|
+
use_fp8=use_fp8)
|
455
|
+
|
456
|
+
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
|
457
|
+
|
458
|
+
invoke_fused_moe_kernel(intermediate_cache2,
|
459
|
+
w2,
|
460
|
+
intermediate_cache3,
|
461
|
+
a2_scale,
|
462
|
+
w2_scale,
|
463
|
+
topk_weights,
|
464
|
+
topk_ids,
|
465
|
+
sorted_token_ids,
|
466
|
+
expert_ids,
|
467
|
+
num_tokens_post_padded,
|
468
|
+
True,
|
469
|
+
1,
|
470
|
+
config,
|
471
|
+
compute_type=compute_type,
|
472
|
+
use_fp8=use_fp8)
|
473
|
+
|
474
|
+
if inplace:
|
475
|
+
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape),
|
476
|
+
dim=1,
|
477
|
+
out=hidden_states)
|
478
|
+
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape),
|
479
|
+
dim=1)
|
@@ -0,0 +1,71 @@
|
|
1
|
+
"""Custom normalization layers."""
|
2
|
+
from typing import Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.nn as nn
|
6
|
+
|
7
|
+
from vllm import _custom_ops as ops
|
8
|
+
|
9
|
+
|
10
|
+
class RMSNorm(nn.Module):
|
11
|
+
"""Root mean square normalization.
|
12
|
+
|
13
|
+
Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
|
14
|
+
Refer to https://arxiv.org/abs/1910.07467
|
15
|
+
"""
|
16
|
+
|
17
|
+
def __init__(
|
18
|
+
self,
|
19
|
+
hidden_size: int,
|
20
|
+
eps: float = 1e-6,
|
21
|
+
) -> None:
|
22
|
+
super().__init__()
|
23
|
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
24
|
+
self.variance_epsilon = eps
|
25
|
+
|
26
|
+
def _forward(
|
27
|
+
self,
|
28
|
+
x: torch.Tensor,
|
29
|
+
residual: Optional[torch.Tensor] = None,
|
30
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
31
|
+
"""PyTorch-native implementation equivalent to forward()."""
|
32
|
+
orig_dtype = x.dtype
|
33
|
+
x = x.to(torch.float32)
|
34
|
+
if residual is not None:
|
35
|
+
x = x + residual.to(torch.float32)
|
36
|
+
residual = x.to(orig_dtype)
|
37
|
+
|
38
|
+
variance = x.pow(2).mean(dim=-1, keepdim=True)
|
39
|
+
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
40
|
+
x = x.to(orig_dtype) * self.weight
|
41
|
+
if residual is None:
|
42
|
+
return x
|
43
|
+
else:
|
44
|
+
return x, residual
|
45
|
+
|
46
|
+
def forward(
|
47
|
+
self,
|
48
|
+
x: torch.Tensor,
|
49
|
+
residual: Optional[torch.Tensor] = None,
|
50
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
51
|
+
if residual is not None:
|
52
|
+
ops.fused_add_rms_norm(
|
53
|
+
x,
|
54
|
+
residual,
|
55
|
+
self.weight.data,
|
56
|
+
self.variance_epsilon,
|
57
|
+
)
|
58
|
+
return x, residual
|
59
|
+
out = torch.empty_like(x)
|
60
|
+
ops.rms_norm(
|
61
|
+
out,
|
62
|
+
x,
|
63
|
+
self.weight.data,
|
64
|
+
self.variance_epsilon,
|
65
|
+
)
|
66
|
+
return out
|
67
|
+
|
68
|
+
def extra_repr(self) -> str:
|
69
|
+
s = f"hidden_size={self.weight.data.size(0)}"
|
70
|
+
s += f", eps={self.variance_epsilon}"
|
71
|
+
return s
|