vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,250 @@
|
|
1
|
+
""" Attention layer with torch scaled_dot_product_attention
|
2
|
+
and PagedAttention."""
|
3
|
+
from dataclasses import dataclass
|
4
|
+
from typing import Dict, List, Optional, Tuple, Type
|
5
|
+
|
6
|
+
import torch
|
7
|
+
from torch.nn.functional import scaled_dot_product_attention
|
8
|
+
|
9
|
+
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
10
|
+
AttentionMetadata,
|
11
|
+
AttentionMetadataPerStage)
|
12
|
+
from vllm.attention.ops.paged_attn import (PagedAttention,
|
13
|
+
PagedAttentionMetadata)
|
14
|
+
|
15
|
+
|
16
|
+
class TorchSDPABackend(AttentionBackend):
|
17
|
+
|
18
|
+
@staticmethod
|
19
|
+
def get_impl_cls() -> Type["TorchSDPABackendImpl"]:
|
20
|
+
return TorchSDPABackendImpl
|
21
|
+
|
22
|
+
@staticmethod
|
23
|
+
def make_metadata(*args, **kwargs) -> "TorchSDPAMetadata":
|
24
|
+
return TorchSDPAMetadata(*args, **kwargs)
|
25
|
+
|
26
|
+
@staticmethod
|
27
|
+
def get_kv_cache_shape(
|
28
|
+
num_blocks: int,
|
29
|
+
block_size: int,
|
30
|
+
num_kv_heads: int,
|
31
|
+
head_size: int,
|
32
|
+
) -> Tuple[int, ...]:
|
33
|
+
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
34
|
+
num_kv_heads, head_size)
|
35
|
+
|
36
|
+
@staticmethod
|
37
|
+
def swap_blocks(
|
38
|
+
src_kv_cache: torch.Tensor,
|
39
|
+
dst_kv_cache: torch.Tensor,
|
40
|
+
src_to_dst: Dict[int, int],
|
41
|
+
) -> None:
|
42
|
+
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
43
|
+
|
44
|
+
@staticmethod
|
45
|
+
def copy_blocks(
|
46
|
+
kv_caches: List[torch.Tensor],
|
47
|
+
src_to_dists: Dict[int, List[int]],
|
48
|
+
) -> None:
|
49
|
+
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
50
|
+
|
51
|
+
|
52
|
+
@dataclass
|
53
|
+
class TorchSDPAMetadata(AttentionMetadata, PagedAttentionMetadata,
|
54
|
+
AttentionMetadataPerStage):
|
55
|
+
"""Metadata for TorchSDPABackend.
|
56
|
+
"""
|
57
|
+
# Currently, input sequences can only contain all prompts
|
58
|
+
# or all decoding. True if all sequences are prompts.
|
59
|
+
is_prompt: bool
|
60
|
+
slot_mapping: torch.Tensor
|
61
|
+
seq_lens: Optional[List[int]]
|
62
|
+
|
63
|
+
def __post_init__(self):
|
64
|
+
# Set during the execution of the first attention op.
|
65
|
+
# It is a list because it is needed to set per prompt
|
66
|
+
# when alibi slopes is used. It is because of the limitation
|
67
|
+
# from xformer API.
|
68
|
+
# will not appear in the __repr__ and __init__
|
69
|
+
self.attn_bias: Optional[List[torch.Tensor]] = None
|
70
|
+
|
71
|
+
|
72
|
+
class TorchSDPABackendImpl(AttentionImpl):
|
73
|
+
|
74
|
+
def __init__(
|
75
|
+
self,
|
76
|
+
num_heads: int,
|
77
|
+
head_size: int,
|
78
|
+
scale: float,
|
79
|
+
num_kv_heads: Optional[int] = None,
|
80
|
+
alibi_slopes: Optional[List[float]] = None,
|
81
|
+
sliding_window: Optional[int] = None,
|
82
|
+
) -> None:
|
83
|
+
self.num_heads = num_heads
|
84
|
+
self.head_size = head_size
|
85
|
+
self.scale = float(scale)
|
86
|
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
87
|
+
self.sliding_window = sliding_window
|
88
|
+
if alibi_slopes is not None:
|
89
|
+
assert len(alibi_slopes) == num_heads
|
90
|
+
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
91
|
+
self.alibi_slopes = alibi_slopes
|
92
|
+
self.need_mask = (self.alibi_slopes is not None
|
93
|
+
or self.sliding_window is not None)
|
94
|
+
|
95
|
+
assert self.num_heads % self.num_kv_heads == 0
|
96
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
97
|
+
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
98
|
+
if head_size not in suppored_head_sizes:
|
99
|
+
raise ValueError(
|
100
|
+
f"Head size {head_size} is not supported by PagedAttention. "
|
101
|
+
f"Supported head sizes are: {suppored_head_sizes}.")
|
102
|
+
|
103
|
+
def forward(
|
104
|
+
self,
|
105
|
+
query: torch.Tensor,
|
106
|
+
key: torch.Tensor,
|
107
|
+
value: torch.Tensor,
|
108
|
+
kv_cache: Optional[torch.Tensor],
|
109
|
+
attn_metadata: TorchSDPAMetadata, # type: ignore
|
110
|
+
kv_scale: float,
|
111
|
+
) -> torch.Tensor:
|
112
|
+
"""Forward pass with torch SDPA and PagedAttention.
|
113
|
+
|
114
|
+
Args:
|
115
|
+
query: shape = [num_tokens, num_heads * head_size]
|
116
|
+
key: shape = [num_tokens, num_kv_heads * head_size]
|
117
|
+
value: shape = [num_tokens, num_kv_heads * head_size]
|
118
|
+
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
119
|
+
attn_metadata: Metadata for attention.
|
120
|
+
Returns:
|
121
|
+
shape = [num_tokens, num_heads * head_size]
|
122
|
+
"""
|
123
|
+
num_tokens, hidden_size = query.shape
|
124
|
+
# Reshape the query, key, and value tensors.
|
125
|
+
query = query.view(-1, self.num_heads, self.head_size)
|
126
|
+
key = key.view(-1, self.num_kv_heads, self.head_size)
|
127
|
+
value = value.view(-1, self.num_kv_heads, self.head_size)
|
128
|
+
|
129
|
+
if kv_cache is not None:
|
130
|
+
key_cache, value_cache = PagedAttention.split_kv_cache(
|
131
|
+
kv_cache, self.num_kv_heads, self.head_size)
|
132
|
+
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
133
|
+
value_cache,
|
134
|
+
attn_metadata.slot_mapping,
|
135
|
+
attn_metadata.kv_cache_dtype,
|
136
|
+
kv_scale)
|
137
|
+
|
138
|
+
if attn_metadata.is_prompt:
|
139
|
+
assert attn_metadata.seq_lens is not None
|
140
|
+
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
|
141
|
+
if self.num_kv_heads != self.num_heads:
|
142
|
+
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
|
143
|
+
value = value.repeat_interleave(self.num_queries_per_kv,
|
144
|
+
dim=1)
|
145
|
+
|
146
|
+
if attn_metadata.attn_bias is None:
|
147
|
+
if self.alibi_slopes is not None:
|
148
|
+
att_masks = _make_alibi_bias(
|
149
|
+
self.alibi_slopes, query.dtype,
|
150
|
+
attn_metadata.seq_lens) # type: ignore
|
151
|
+
elif self.sliding_window is not None:
|
152
|
+
att_masks = _make_sliding_window_bias(
|
153
|
+
attn_metadata.seq_lens, self.sliding_window,
|
154
|
+
query.dtype) # type: ignore
|
155
|
+
else:
|
156
|
+
att_masks = [None] * len(attn_metadata.seq_lens)
|
157
|
+
attn_metadata.attn_bias = att_masks
|
158
|
+
|
159
|
+
query = query.movedim(0, query.dim() - 2)
|
160
|
+
key = key.movedim(0, key.dim() - 2)
|
161
|
+
value = value.movedim(0, value.dim() - 2)
|
162
|
+
|
163
|
+
start = 0
|
164
|
+
output = torch.empty(
|
165
|
+
(num_tokens, self.num_heads, self.head_size),
|
166
|
+
dtype=query.dtype)
|
167
|
+
for seq_len, mask in zip(attn_metadata.seq_lens,
|
168
|
+
attn_metadata.attn_bias):
|
169
|
+
end = start + seq_len
|
170
|
+
sub_out = scaled_dot_product_attention(
|
171
|
+
query[:, start:end, :],
|
172
|
+
key[:, start:end, :],
|
173
|
+
value[:, start:end, :],
|
174
|
+
attn_mask=mask,
|
175
|
+
dropout_p=0.0,
|
176
|
+
is_causal=not self.need_mask,
|
177
|
+
scale=self.scale).movedim(query.dim() - 2, 0)
|
178
|
+
output[start:end, :, :] = sub_out
|
179
|
+
start = end
|
180
|
+
else:
|
181
|
+
# prefix-enabled attention
|
182
|
+
raise RuntimeError(
|
183
|
+
"Torch SDPA backend doesn't support prefix decoding.")
|
184
|
+
|
185
|
+
else:
|
186
|
+
# Decoding run.
|
187
|
+
output = PagedAttention.forward_decode(
|
188
|
+
query,
|
189
|
+
key_cache,
|
190
|
+
value_cache,
|
191
|
+
attn_metadata.block_tables,
|
192
|
+
attn_metadata.seq_lens_tensor,
|
193
|
+
attn_metadata.max_seq_len,
|
194
|
+
attn_metadata.kv_cache_dtype,
|
195
|
+
self.num_kv_heads,
|
196
|
+
self.scale,
|
197
|
+
self.alibi_slopes,
|
198
|
+
kv_scale,
|
199
|
+
)
|
200
|
+
|
201
|
+
# Reshape the output tensor.
|
202
|
+
return output.view(-1, self.num_heads * self.head_size)
|
203
|
+
|
204
|
+
|
205
|
+
def _make_alibi_bias(
|
206
|
+
alibi_slopes: torch.Tensor,
|
207
|
+
dtype: torch.dtype,
|
208
|
+
seq_lens: List[int],
|
209
|
+
) -> List[torch.Tensor]:
|
210
|
+
attn_biases = []
|
211
|
+
for seq_len in seq_lens:
|
212
|
+
bias = torch.arange(seq_len, dtype=dtype)
|
213
|
+
# NOTE(zhuohan): HF uses
|
214
|
+
# `bias = bias[None, :].repeat(seq_len, 1)`
|
215
|
+
# here. We find that both biases give the same results, but
|
216
|
+
# the bias below more accurately follows the original ALiBi
|
217
|
+
# paper.
|
218
|
+
bias = bias[None, :] - bias[:, None]
|
219
|
+
|
220
|
+
num_heads = alibi_slopes.shape[0]
|
221
|
+
bias = bias[None, :].repeat((num_heads, 1, 1))
|
222
|
+
bias.mul_(alibi_slopes[:, None, None])
|
223
|
+
inf_mask = torch.empty(
|
224
|
+
(1, seq_len, seq_len),
|
225
|
+
dtype=bias.dtype).fill_(-torch.inf).triu_(diagonal=1)
|
226
|
+
attn_biases.append((bias + inf_mask).to(dtype))
|
227
|
+
|
228
|
+
return attn_biases
|
229
|
+
|
230
|
+
|
231
|
+
def _make_sliding_window_bias(
|
232
|
+
seq_lens: List[int],
|
233
|
+
window_size: Optional[int],
|
234
|
+
dtype: torch.dtype,
|
235
|
+
) -> List[torch.Tensor]:
|
236
|
+
attn_biases = []
|
237
|
+
for seq_len in seq_lens:
|
238
|
+
tensor = torch.full(
|
239
|
+
(1, seq_len, seq_len),
|
240
|
+
dtype=dtype,
|
241
|
+
fill_value=1,
|
242
|
+
)
|
243
|
+
shift = 0
|
244
|
+
mask = torch.tril(tensor, diagonal=shift).to(dtype) # type: ignore
|
245
|
+
if window_size is not None:
|
246
|
+
mask = torch.triu(mask, diagonal=shift - window_size + 1)
|
247
|
+
mask = torch.log(mask)
|
248
|
+
attn_biases.append(mask.to(dtype))
|
249
|
+
|
250
|
+
return attn_biases
|
@@ -0,0 +1,393 @@
|
|
1
|
+
"""Attention layer with xFormers and PagedAttention."""
|
2
|
+
from dataclasses import dataclass
|
3
|
+
from typing import Dict, List, Optional, Tuple, Type
|
4
|
+
|
5
|
+
import torch
|
6
|
+
from xformers import ops as xops
|
7
|
+
from xformers.ops.fmha.attn_bias import (AttentionBias,
|
8
|
+
BlockDiagonalCausalMask,
|
9
|
+
LowerTriangularMaskWithTensorBias)
|
10
|
+
|
11
|
+
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
12
|
+
AttentionMetadata,
|
13
|
+
AttentionMetadataPerStage)
|
14
|
+
from vllm.attention.ops.paged_attn import (PagedAttention,
|
15
|
+
PagedAttentionMetadata)
|
16
|
+
from vllm.logger import init_logger
|
17
|
+
|
18
|
+
logger = init_logger(__name__)
|
19
|
+
|
20
|
+
|
21
|
+
class XFormersBackend(AttentionBackend):
|
22
|
+
|
23
|
+
@staticmethod
|
24
|
+
def get_impl_cls() -> Type["XFormersImpl"]:
|
25
|
+
return XFormersImpl
|
26
|
+
|
27
|
+
@staticmethod
|
28
|
+
def make_metadata(*args, **kwargs) -> "XFormersMetadata":
|
29
|
+
return XFormersMetadata(*args, **kwargs)
|
30
|
+
|
31
|
+
@staticmethod
|
32
|
+
def get_kv_cache_shape(
|
33
|
+
num_blocks: int,
|
34
|
+
block_size: int,
|
35
|
+
num_kv_heads: int,
|
36
|
+
head_size: int,
|
37
|
+
) -> Tuple[int, ...]:
|
38
|
+
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
39
|
+
num_kv_heads, head_size)
|
40
|
+
|
41
|
+
@staticmethod
|
42
|
+
def swap_blocks(
|
43
|
+
src_kv_cache: torch.Tensor,
|
44
|
+
dst_kv_cache: torch.Tensor,
|
45
|
+
src_to_dst: Dict[int, int],
|
46
|
+
) -> None:
|
47
|
+
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
48
|
+
|
49
|
+
@staticmethod
|
50
|
+
def copy_blocks(
|
51
|
+
kv_caches: List[torch.Tensor],
|
52
|
+
src_to_dists: Dict[int, List[int]],
|
53
|
+
) -> None:
|
54
|
+
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
55
|
+
|
56
|
+
|
57
|
+
@dataclass
|
58
|
+
class XFormersMetadata(AttentionMetadataPerStage, PagedAttentionMetadata):
|
59
|
+
"""Metadata for XFormersbackend.
|
60
|
+
|
61
|
+
NOTE: Any python object stored here is not updated when it is
|
62
|
+
cuda-graph replayed. If you have values that need to be changed
|
63
|
+
dynamically, it should be stored in tensor. The tensor has to be
|
64
|
+
updated from `CUDAGraphRunner.forward` API.
|
65
|
+
"""
|
66
|
+
# Currently, input sequences can only contain all prompts
|
67
|
+
# or all decoding. True if all sequences are prompts.
|
68
|
+
is_prompt: bool
|
69
|
+
# (batch_size,). The sequence length per sequence. Sequence length means
|
70
|
+
# the computed tokens + new tokens None if it is a decoding.
|
71
|
+
seq_lens: Optional[List[int]]
|
72
|
+
# seq_lens stored as a tensor.
|
73
|
+
seq_lens_tensor: Optional[torch.Tensor]
|
74
|
+
|
75
|
+
# |---------- N-1 iteration --------|
|
76
|
+
# |---------------- N iteration ---------------------|
|
77
|
+
# |- tokenA -|......................|-- newTokens ---|
|
78
|
+
# |---------- context_len ----------|
|
79
|
+
# |-------------------- seq_len ----------------------|
|
80
|
+
# |-- query_len ---|
|
81
|
+
|
82
|
+
# Maximum query length in the batch.
|
83
|
+
max_query_len: Optional[int]
|
84
|
+
# FIXME: It is for flash attn.
|
85
|
+
# Maximum sequence length in the batch.
|
86
|
+
max_seq_len: Optional[int]
|
87
|
+
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
88
|
+
# the batch, used to index into subquery. E.g., if the subquery length
|
89
|
+
# is [4, 6], it is [0, 4, 10].
|
90
|
+
subquery_start_loc: Optional[torch.Tensor]
|
91
|
+
# FIXME: It is for flash attn.
|
92
|
+
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
93
|
+
# the batch, used to index into sequence. E.g., if the sequence length is
|
94
|
+
# [4, 6], it is [0, 4, 10].
|
95
|
+
seq_start_loc: Optional[torch.Tensor]
|
96
|
+
# (batch_size,) A tensor of context lengths (tokens that are computed
|
97
|
+
# so far).
|
98
|
+
context_lens_tensor: Optional[torch.Tensor]
|
99
|
+
|
100
|
+
# Whether or not if cuda graph is enabled.
|
101
|
+
# Cuda-graph is currently enabled for decoding only.
|
102
|
+
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
103
|
+
use_cuda_graph: bool
|
104
|
+
|
105
|
+
def __post_init__(self):
|
106
|
+
# Set during the execution of the first attention op.
|
107
|
+
# It is a list because it is needed to set per prompt
|
108
|
+
# when alibi slopes is used. It is because of the limitation
|
109
|
+
# from xformer API.
|
110
|
+
# will not appear in the __repr__ and __init__
|
111
|
+
self.attn_bias: Optional[List[AttentionBias]] = None
|
112
|
+
|
113
|
+
|
114
|
+
class XFormersImpl(AttentionImpl):
|
115
|
+
"""
|
116
|
+
If the input tensors contain prompt tokens, the layout is as follows:
|
117
|
+
|<--------------- num_prefill_tokens ----------------->|
|
118
|
+
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
119
|
+
|
120
|
+
Otherwise, the layout is as follows:
|
121
|
+
|<----------------- num_decode_tokens ------------------>|
|
122
|
+
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
123
|
+
|
124
|
+
Generation tokens can contain padding when cuda-graph is used.
|
125
|
+
Currently, prompt tokens don't contain any padding.
|
126
|
+
|
127
|
+
The prompts might have different lengths, while the generation tokens
|
128
|
+
always have length 1.
|
129
|
+
|
130
|
+
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
131
|
+
batched together in a flattened 1D query.
|
132
|
+
|
133
|
+
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
134
|
+
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
135
|
+
|
136
|
+
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
137
|
+
padding between prefill and decode tokens.
|
138
|
+
"""
|
139
|
+
|
140
|
+
def __init__(
|
141
|
+
self,
|
142
|
+
num_heads: int,
|
143
|
+
head_size: int,
|
144
|
+
scale: float,
|
145
|
+
num_kv_heads: Optional[int] = None,
|
146
|
+
alibi_slopes: Optional[List[float]] = None,
|
147
|
+
sliding_window: Optional[int] = None,
|
148
|
+
) -> None:
|
149
|
+
self.num_heads = num_heads
|
150
|
+
self.head_size = head_size
|
151
|
+
self.scale = float(scale)
|
152
|
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
153
|
+
self.sliding_window = sliding_window
|
154
|
+
if alibi_slopes is not None:
|
155
|
+
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
156
|
+
self.alibi_slopes = alibi_slopes
|
157
|
+
|
158
|
+
assert self.num_heads % self.num_kv_heads == 0
|
159
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
160
|
+
|
161
|
+
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
162
|
+
if head_size not in suppored_head_sizes:
|
163
|
+
raise ValueError(
|
164
|
+
f"Head size {head_size} is not supported by PagedAttention. "
|
165
|
+
f"Supported head sizes are: {suppored_head_sizes}.")
|
166
|
+
|
167
|
+
def forward(
|
168
|
+
self,
|
169
|
+
query: torch.Tensor,
|
170
|
+
key: torch.Tensor,
|
171
|
+
value: torch.Tensor,
|
172
|
+
kv_cache: Optional[torch.Tensor],
|
173
|
+
attn_metadata: AttentionMetadata[XFormersMetadata],
|
174
|
+
kv_scale: float,
|
175
|
+
) -> torch.Tensor:
|
176
|
+
"""Forward pass with xFormers and PagedAttention.
|
177
|
+
|
178
|
+
Args:
|
179
|
+
query: shape = [num_tokens, num_heads * head_size]
|
180
|
+
key: shape = [num_tokens, num_kv_heads * head_size]
|
181
|
+
value: shape = [num_tokens, num_kv_heads * head_size]
|
182
|
+
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
183
|
+
attn_metadata: Metadata for attention.
|
184
|
+
Returns:
|
185
|
+
shape = [num_tokens, num_heads * head_size]
|
186
|
+
"""
|
187
|
+
num_tokens, hidden_size = query.shape
|
188
|
+
query = query.view(-1, self.num_heads, self.head_size)
|
189
|
+
key = key.view(-1, self.num_kv_heads, self.head_size)
|
190
|
+
value = value.view(-1, self.num_kv_heads, self.head_size)
|
191
|
+
|
192
|
+
if kv_cache is not None:
|
193
|
+
key_cache, value_cache = PagedAttention.split_kv_cache(
|
194
|
+
kv_cache, self.num_kv_heads, self.head_size)
|
195
|
+
|
196
|
+
# Reshape the input keys and values and store them in the cache.
|
197
|
+
# If kv_cache is not provided, the new key and value tensors are
|
198
|
+
# not cached. This happens during the initial memory profiling run.
|
199
|
+
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
200
|
+
value_cache,
|
201
|
+
attn_metadata.slot_mapping,
|
202
|
+
attn_metadata.kv_cache_dtype,
|
203
|
+
kv_scale)
|
204
|
+
|
205
|
+
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
206
|
+
num_decode_tokens = attn_metadata.num_decode_tokens
|
207
|
+
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
208
|
+
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
209
|
+
|
210
|
+
output = torch.empty_like(query)
|
211
|
+
# Query for decode. KV is not needed because it is already cached.
|
212
|
+
decode_query = query[num_prefill_tokens:]
|
213
|
+
# QKV for prefill.
|
214
|
+
query = query[:num_prefill_tokens]
|
215
|
+
key = key[:num_prefill_tokens]
|
216
|
+
value = value[:num_prefill_tokens]
|
217
|
+
|
218
|
+
assert query.shape[0] == num_prefill_tokens
|
219
|
+
assert decode_query.shape[0] == num_decode_tokens
|
220
|
+
|
221
|
+
if prefill_meta := attn_metadata.prefill_metadata:
|
222
|
+
# Prompt run.
|
223
|
+
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
|
224
|
+
# normal attention.
|
225
|
+
# block tables are empty if the prompt does not have a cached
|
226
|
+
# prefix.
|
227
|
+
out = self._run_memory_efficient_xformers_forward(
|
228
|
+
query, key, value, prefill_meta)
|
229
|
+
assert out.shape == output[:num_prefill_tokens].shape
|
230
|
+
output[:num_prefill_tokens] = out
|
231
|
+
else:
|
232
|
+
# prefix-enabled attention
|
233
|
+
# TODO(Hai) this triton kernel has regression issue (broke) to
|
234
|
+
# deal with different data types between KV and FP8 KV cache,
|
235
|
+
# to be addressed separately.
|
236
|
+
out = PagedAttention.forward_prefix(
|
237
|
+
query,
|
238
|
+
key,
|
239
|
+
value,
|
240
|
+
key_cache,
|
241
|
+
value_cache,
|
242
|
+
prefill_meta.block_tables,
|
243
|
+
prefill_meta.subquery_start_loc,
|
244
|
+
prefill_meta.seq_lens_tensor,
|
245
|
+
prefill_meta.context_lens_tensor,
|
246
|
+
prefill_meta.max_query_len,
|
247
|
+
self.alibi_slopes,
|
248
|
+
self.sliding_window,
|
249
|
+
)
|
250
|
+
assert output[:num_prefill_tokens].shape == out.shape
|
251
|
+
output[:num_prefill_tokens] = out
|
252
|
+
|
253
|
+
if decode_meta := attn_metadata.decode_metadata:
|
254
|
+
output[num_prefill_tokens:] = PagedAttention.forward_decode(
|
255
|
+
decode_query,
|
256
|
+
key_cache,
|
257
|
+
value_cache,
|
258
|
+
decode_meta.block_tables,
|
259
|
+
decode_meta.seq_lens_tensor,
|
260
|
+
decode_meta.max_seq_len,
|
261
|
+
attn_metadata.kv_cache_dtype,
|
262
|
+
self.num_kv_heads,
|
263
|
+
self.scale,
|
264
|
+
self.alibi_slopes,
|
265
|
+
kv_scale,
|
266
|
+
)
|
267
|
+
|
268
|
+
# Reshape the output tensor.
|
269
|
+
return output.view(-1, self.num_heads * self.head_size)
|
270
|
+
|
271
|
+
def _run_memory_efficient_xformers_forward(
|
272
|
+
self,
|
273
|
+
query: torch.Tensor,
|
274
|
+
key: torch.Tensor,
|
275
|
+
value: torch.Tensor,
|
276
|
+
attn_metadata: XFormersMetadata,
|
277
|
+
) -> torch.Tensor:
|
278
|
+
"""Attention for 1D query of multiple prompts. Multiple prompt
|
279
|
+
tokens are flattened in to `query` input.
|
280
|
+
|
281
|
+
See https://facebookresearch.github.io/xformers/components/ops.html
|
282
|
+
for API spec.
|
283
|
+
|
284
|
+
Args:
|
285
|
+
output: shape = [num_prefill_tokens, num_heads, head_size]
|
286
|
+
query: shape = [num_prefill_tokens, num_heads, head_size]
|
287
|
+
key: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
288
|
+
value: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
289
|
+
attn_metadata: Metadata for attention.
|
290
|
+
"""
|
291
|
+
assert attn_metadata.seq_lens is not None
|
292
|
+
original_query = query
|
293
|
+
if self.num_kv_heads != self.num_heads:
|
294
|
+
# GQA/MQA requires the shape [B, M, G, H, K].
|
295
|
+
# Note that the output also has the same shape (which is different
|
296
|
+
# from a spec from the doc).
|
297
|
+
query = query.view(query.shape[0], self.num_kv_heads,
|
298
|
+
self.num_queries_per_kv, query.shape[-1])
|
299
|
+
key = key[:, :,
|
300
|
+
None, :].expand(key.shape[0], self.num_kv_heads,
|
301
|
+
self.num_queries_per_kv, key.shape[-1])
|
302
|
+
value = value[:, :,
|
303
|
+
None, :].expand(value.shape[0], self.num_kv_heads,
|
304
|
+
self.num_queries_per_kv,
|
305
|
+
value.shape[-1])
|
306
|
+
# Set attention bias if not provided. This typically happens at
|
307
|
+
# the very attention layer of every iteration.
|
308
|
+
# FIXME(woosuk): This is a hack.
|
309
|
+
if attn_metadata.attn_bias is None:
|
310
|
+
if self.alibi_slopes is None:
|
311
|
+
attn_bias = BlockDiagonalCausalMask.from_seqlens(
|
312
|
+
attn_metadata.seq_lens)
|
313
|
+
if self.sliding_window is not None:
|
314
|
+
attn_bias = attn_bias.make_local_attention(
|
315
|
+
self.sliding_window)
|
316
|
+
attn_metadata.attn_bias = [attn_bias]
|
317
|
+
else:
|
318
|
+
attn_metadata.attn_bias = _make_alibi_bias(
|
319
|
+
self.alibi_slopes, self.num_kv_heads, query.dtype,
|
320
|
+
attn_metadata.seq_lens)
|
321
|
+
|
322
|
+
# No alibi slopes.
|
323
|
+
# TODO(woosuk): Too many view operations. Let's try to reduce
|
324
|
+
# them in the future for code readability.
|
325
|
+
if self.alibi_slopes is None:
|
326
|
+
# Add the batch dimension.
|
327
|
+
query = query.unsqueeze(0)
|
328
|
+
key = key.unsqueeze(0)
|
329
|
+
value = value.unsqueeze(0)
|
330
|
+
out = xops.memory_efficient_attention_forward(
|
331
|
+
query,
|
332
|
+
key,
|
333
|
+
value,
|
334
|
+
attn_bias=attn_metadata.attn_bias[0],
|
335
|
+
p=0.0,
|
336
|
+
scale=self.scale)
|
337
|
+
return out.view_as(original_query)
|
338
|
+
|
339
|
+
# Attention with alibi slopes.
|
340
|
+
# FIXME(woosuk): Because xformers does not support dynamic sequence
|
341
|
+
# lengths with custom attention bias, we process each prompt one by
|
342
|
+
# one. This is inefficient, especially when we have many short prompts.
|
343
|
+
output = torch.empty_like(original_query)
|
344
|
+
start = 0
|
345
|
+
for i, seq_len in enumerate(attn_metadata.seq_lens):
|
346
|
+
end = start + seq_len
|
347
|
+
out = xops.memory_efficient_attention_forward(
|
348
|
+
query[None, start:end],
|
349
|
+
key[None, start:end],
|
350
|
+
value[None, start:end],
|
351
|
+
attn_bias=attn_metadata.attn_bias[i],
|
352
|
+
p=0.0,
|
353
|
+
scale=self.scale)
|
354
|
+
# TODO(woosuk): Unnecessary copy. Optimize.
|
355
|
+
output[start:end].copy_(out.view_as(original_query[start:end]))
|
356
|
+
start += seq_len
|
357
|
+
return output
|
358
|
+
|
359
|
+
|
360
|
+
def _make_alibi_bias(
|
361
|
+
alibi_slopes: torch.Tensor,
|
362
|
+
num_kv_heads: int,
|
363
|
+
dtype: torch.dtype,
|
364
|
+
seq_lens: List[int],
|
365
|
+
) -> LowerTriangularMaskWithTensorBias:
|
366
|
+
attn_biases = []
|
367
|
+
for seq_len in seq_lens:
|
368
|
+
bias = torch.arange(seq_len, dtype=dtype)
|
369
|
+
# NOTE(zhuohan): HF uses
|
370
|
+
# `bias = bias[None, :].repeat(seq_len, 1)`
|
371
|
+
# here. We find that both biases give the same results, but
|
372
|
+
# the bias below more accurately follows the original ALiBi
|
373
|
+
# paper.
|
374
|
+
# Calculate a matrix where each element represents ith element- jth
|
375
|
+
# element.
|
376
|
+
bias = bias[None, :] - bias[:, None]
|
377
|
+
|
378
|
+
padded_len = (seq_len + 7) // 8 * 8
|
379
|
+
num_heads = alibi_slopes.shape[0]
|
380
|
+
bias = torch.empty(
|
381
|
+
1, # batch size
|
382
|
+
num_heads,
|
383
|
+
seq_len,
|
384
|
+
padded_len,
|
385
|
+
device=alibi_slopes.device,
|
386
|
+
dtype=dtype,
|
387
|
+
)[:, :, :, :seq_len].copy_(bias)
|
388
|
+
bias.mul_(alibi_slopes[:, None, None])
|
389
|
+
if num_heads != num_kv_heads:
|
390
|
+
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
|
391
|
+
attn_biases.append(LowerTriangularMaskWithTensorBias(bias))
|
392
|
+
|
393
|
+
return attn_biases
|
vllm/attention/layer.py
ADDED
@@ -0,0 +1,56 @@
|
|
1
|
+
"""Attention layer."""
|
2
|
+
from typing import List, Optional
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.nn as nn
|
6
|
+
|
7
|
+
from vllm.attention.backends.abstract import (AttentionMetadata,
|
8
|
+
AttentionMetadataPerStage)
|
9
|
+
from vllm.attention.selector import get_attn_backend
|
10
|
+
|
11
|
+
|
12
|
+
class Attention(nn.Module):
|
13
|
+
"""Attention layer.
|
14
|
+
|
15
|
+
This class takes query, key, and value tensors as input. The input tensors
|
16
|
+
can either contain prompt tokens or generation tokens.
|
17
|
+
The class does the following:
|
18
|
+
|
19
|
+
1. Store the input key and value tensors in the KV cache.
|
20
|
+
2. Perform (multi-head/multi-query/grouped-query) attention.
|
21
|
+
3. Return the output tensor.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def __init__(
|
25
|
+
self,
|
26
|
+
num_heads: int,
|
27
|
+
head_size: int,
|
28
|
+
scale: float,
|
29
|
+
num_kv_heads: Optional[int] = None,
|
30
|
+
alibi_slopes: Optional[List[float]] = None,
|
31
|
+
sliding_window: Optional[int] = None,
|
32
|
+
) -> None:
|
33
|
+
super().__init__()
|
34
|
+
self.backend = get_attn_backend(torch.get_default_dtype())
|
35
|
+
impl_cls = self.backend.get_impl_cls()
|
36
|
+
self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads,
|
37
|
+
alibi_slopes, sliding_window)
|
38
|
+
|
39
|
+
def forward(
|
40
|
+
self,
|
41
|
+
query: torch.Tensor,
|
42
|
+
key: torch.Tensor,
|
43
|
+
value: torch.Tensor,
|
44
|
+
kv_cache: Optional[torch.Tensor],
|
45
|
+
attn_metadata: AttentionMetadata[AttentionMetadataPerStage],
|
46
|
+
kv_scale: float = 1.0,
|
47
|
+
) -> torch.Tensor:
|
48
|
+
return self.impl.forward(query, key, value, kv_cache, attn_metadata,
|
49
|
+
kv_scale)
|
50
|
+
|
51
|
+
def extra_repr(self) -> str:
|
52
|
+
s = f"head_size={self.impl.head_size}" # type: ignore
|
53
|
+
s += f", num_heads={self.impl.num_heads}" # type: ignore
|
54
|
+
s += f", num_kv_heads={self.impl.num_kv_heads}" # type: ignore
|
55
|
+
s += f", scale={self.impl.scale}" # type: ignore
|
56
|
+
return s
|
File without changes
|