vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,410 @@
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Inference-only BaiChuan model compatible with HuggingFace weights."""
21
+ import math
22
+ from typing import Iterable, List, Optional, Tuple
23
+
24
+ import torch
25
+ from torch import nn
26
+ from transformers import PretrainedConfig
27
+
28
+ from vllm.attention import Attention, AttentionMetadata
29
+ from vllm.config import LoRAConfig
30
+ from vllm.distributed import (get_tensor_model_parallel_rank,
31
+ get_tensor_model_parallel_world_size)
32
+ from vllm.model_executor.layers.activation import SiluAndMul
33
+ from vllm.model_executor.layers.layernorm import RMSNorm
34
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
35
+ QKVParallelLinear,
36
+ RowParallelLinear)
37
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
38
+ from vllm.model_executor.layers.quantization.base_config import (
39
+ QuantizationConfig)
40
+ from vllm.model_executor.layers.rotary_embedding import get_rope
41
+ from vllm.model_executor.layers.sampler import Sampler
42
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
43
+ ParallelLMHead, VocabParallelEmbedding)
44
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
45
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
46
+ from vllm.sequence import SamplerOutput
47
+
48
+
49
+ def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
50
+ closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
51
+ base = torch.tensor(
52
+ 2**(-(2**-(math.log2(closest_power_of_2) - 3))),
53
+ dtype=torch.float32,
54
+ )
55
+ powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
56
+ slopes = torch.pow(base, powers)
57
+
58
+ if closest_power_of_2 != total_num_heads:
59
+ extra_base = torch.tensor(
60
+ 2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
61
+ dtype=torch.float32,
62
+ )
63
+ num_remaining_heads = min(closest_power_of_2,
64
+ total_num_heads - closest_power_of_2)
65
+ extra_powers = torch.arange(start=1,
66
+ end=1 + 2 * num_remaining_heads,
67
+ step=2,
68
+ dtype=torch.int32)
69
+ slopes = torch.cat(
70
+ [slopes, torch.pow(extra_base, extra_powers)], dim=0)
71
+ return slopes
72
+
73
+
74
+ class BaiChuanMLP(nn.Module):
75
+
76
+ def __init__(
77
+ self,
78
+ hidden_size: int,
79
+ intermediate_size: int,
80
+ hidden_act: str,
81
+ quant_config: Optional[QuantizationConfig] = None,
82
+ ):
83
+ super().__init__()
84
+ self.gate_up_proj = MergedColumnParallelLinear(
85
+ hidden_size, [intermediate_size] * 2,
86
+ bias=False,
87
+ quant_config=quant_config)
88
+ self.down_proj = RowParallelLinear(intermediate_size,
89
+ hidden_size,
90
+ bias=False,
91
+ quant_config=quant_config)
92
+ if hidden_act != "silu":
93
+ raise ValueError(f"Unsupported activation: {hidden_act}. "
94
+ "Only silu is supported for now.")
95
+ self.act_fn = SiluAndMul()
96
+
97
+ def forward(self, x):
98
+ gate_up, _ = self.gate_up_proj(x)
99
+ x = self.act_fn(gate_up)
100
+ x, _ = self.down_proj(x)
101
+ return x
102
+
103
+
104
+ class BaiChuanAttention(nn.Module):
105
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
106
+
107
+ def __init__(
108
+ self,
109
+ hidden_size: int,
110
+ num_heads: int,
111
+ position_embedding: str,
112
+ rope_theta: float = 10000,
113
+ max_position_embeddings: int = 8192,
114
+ quant_config: Optional[QuantizationConfig] = None,
115
+ ):
116
+ super().__init__()
117
+ self.hidden_size = hidden_size
118
+ tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
119
+ )
120
+ self.total_num_heads = num_heads
121
+ assert self.total_num_heads % tensor_model_parallel_world_size == 0
122
+ self.num_heads = (self.total_num_heads //
123
+ tensor_model_parallel_world_size)
124
+ self.head_dim = hidden_size // self.total_num_heads
125
+ self.postion_embedding = position_embedding
126
+ self.rope_theta = rope_theta
127
+ self.max_position_embeddings = max_position_embeddings
128
+
129
+ # pylint: disable=invalid-name
130
+ self.W_pack = QKVParallelLinear(
131
+ hidden_size,
132
+ self.head_dim,
133
+ self.total_num_heads,
134
+ self.total_num_heads,
135
+ bias=False,
136
+ quant_config=quant_config,
137
+ )
138
+ self.o_proj = RowParallelLinear(
139
+ self.total_num_heads * self.head_dim,
140
+ hidden_size,
141
+ bias=False,
142
+ quant_config=quant_config,
143
+ )
144
+ # Create the alibi slopes and slice them.
145
+ if self.postion_embedding == "ALIBI":
146
+ tp_rank = get_tensor_model_parallel_rank()
147
+ head_start = tp_rank * self.num_heads
148
+ head_end = (tp_rank + 1) * self.num_heads
149
+ alibi_slopes = _get_alibi_slopes(self.total_num_heads)
150
+ alibi_slopes = alibi_slopes[head_start:head_end].tolist()
151
+
152
+ scaling = self.head_dim**-0.5
153
+ self.attn = Attention(self.num_heads,
154
+ self.head_dim,
155
+ scaling,
156
+ alibi_slopes=alibi_slopes)
157
+ else:
158
+ self.rotary_emb = get_rope(
159
+ self.head_dim,
160
+ rotary_dim=self.head_dim,
161
+ max_position=self.max_position_embeddings,
162
+ base=self.rope_theta,
163
+ )
164
+ self.scaling = self.head_dim**-0.5
165
+ self.attn = Attention(self.num_heads, self.head_dim, self.scaling)
166
+
167
+ def forward(
168
+ self,
169
+ positions: torch.Tensor,
170
+ hidden_states: torch.Tensor,
171
+ kv_cache: torch.Tensor,
172
+ attn_metadata: AttentionMetadata,
173
+ ) -> torch.Tensor:
174
+ qkv, _ = self.W_pack(hidden_states)
175
+ q, k, v = qkv.chunk(chunks=3, dim=-1)
176
+ if self.postion_embedding != "ALIBI":
177
+ q, k = self.rotary_emb(positions, q, k)
178
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
179
+ output, _ = self.o_proj(attn_output)
180
+ return output
181
+
182
+
183
+ class BaiChuanDecoderLayer(nn.Module):
184
+
185
+ def __init__(self,
186
+ config: PretrainedConfig,
187
+ position_embedding: str,
188
+ quant_config: Optional[QuantizationConfig] = None):
189
+ super().__init__()
190
+ self.hidden_size = config.hidden_size
191
+ rope_theta = getattr(config, "rope_theta", 10000)
192
+ max_position_embeddings = getattr(config, "max_position_embeddings",
193
+ 8192)
194
+ self.self_attn = BaiChuanAttention(
195
+ hidden_size=self.hidden_size,
196
+ num_heads=config.num_attention_heads,
197
+ position_embedding=position_embedding,
198
+ rope_theta=rope_theta,
199
+ max_position_embeddings=max_position_embeddings,
200
+ quant_config=quant_config,
201
+ )
202
+ self.mlp = BaiChuanMLP(
203
+ hidden_size=self.hidden_size,
204
+ intermediate_size=config.intermediate_size,
205
+ hidden_act=config.hidden_act,
206
+ quant_config=quant_config,
207
+ )
208
+ self.input_layernorm = RMSNorm(config.hidden_size,
209
+ eps=config.rms_norm_eps)
210
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
211
+ eps=config.rms_norm_eps)
212
+
213
+ def forward(
214
+ self,
215
+ positions: torch.Tensor,
216
+ hidden_states: torch.Tensor,
217
+ kv_cache: torch.Tensor,
218
+ attn_metadata: AttentionMetadata,
219
+ residual: Optional[torch.Tensor],
220
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
221
+ # Self Attention
222
+ if residual is None:
223
+ residual = hidden_states
224
+ hidden_states = self.input_layernorm(hidden_states)
225
+ else:
226
+ hidden_states, residual = self.input_layernorm(
227
+ hidden_states, residual)
228
+ hidden_states = self.self_attn(
229
+ positions=positions,
230
+ hidden_states=hidden_states,
231
+ kv_cache=kv_cache,
232
+ attn_metadata=attn_metadata,
233
+ )
234
+
235
+ # Fully Connected
236
+ hidden_states, residual = self.post_attention_layernorm(
237
+ hidden_states, residual)
238
+ hidden_states = self.mlp(hidden_states)
239
+ return hidden_states, residual
240
+
241
+
242
+ class BaiChuanModel(nn.Module):
243
+
244
+ def __init__(self,
245
+ config: PretrainedConfig,
246
+ position_embedding: str,
247
+ quant_config: Optional[QuantizationConfig] = None):
248
+ super().__init__()
249
+ self.config = config
250
+ self.padding_idx = config.pad_token_id
251
+ self.vocab_size = config.vocab_size
252
+
253
+ self.embed_tokens = VocabParallelEmbedding(
254
+ config.vocab_size,
255
+ config.hidden_size,
256
+ )
257
+ self.layers = nn.ModuleList([
258
+ BaiChuanDecoderLayer(config, position_embedding, quant_config)
259
+ for _ in range(config.num_hidden_layers)
260
+ ])
261
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
262
+
263
+ def forward(
264
+ self,
265
+ input_ids: torch.Tensor,
266
+ positions: torch.Tensor,
267
+ kv_caches: List[torch.Tensor],
268
+ attn_metadata: AttentionMetadata,
269
+ ) -> torch.Tensor:
270
+ hidden_states = self.embed_tokens(input_ids)
271
+ residual = None
272
+ for i in range(len(self.layers)):
273
+ layer = self.layers[i]
274
+ hidden_states, residual = layer(
275
+ positions,
276
+ hidden_states,
277
+ kv_caches[i],
278
+ attn_metadata,
279
+ residual,
280
+ )
281
+ hidden_states, _ = self.norm(hidden_states, residual)
282
+ return hidden_states
283
+
284
+
285
+ class BaiChuanBaseForCausalLM(nn.Module):
286
+ packed_modules_mapping = {
287
+ "W_pack": ["W_pack"],
288
+ "gate_up_proj": [
289
+ "gate_proj",
290
+ "up_proj",
291
+ ],
292
+ }
293
+ # LoRA specific attributes
294
+ supported_lora_modules = [
295
+ "W_pack",
296
+ "o_proj",
297
+ "gate_up_proj",
298
+ "down_proj",
299
+ ]
300
+ embedding_modules = {}
301
+ embedding_padding_modules = []
302
+
303
+ def __init__(
304
+ self,
305
+ config,
306
+ position_embedding: str,
307
+ quant_config: Optional[QuantizationConfig] = None,
308
+ lora_config: Optional[LoRAConfig] = None,
309
+ ):
310
+ super().__init__()
311
+ self.config = config
312
+ self.quant_config = quant_config
313
+ self.model = BaiChuanModel(config, position_embedding, quant_config)
314
+ self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
315
+ self.logits_processor = LogitsProcessor(config.vocab_size)
316
+ self.sampler = Sampler()
317
+
318
+ def forward(
319
+ self,
320
+ input_ids: torch.Tensor,
321
+ positions: torch.Tensor,
322
+ kv_caches: List[torch.Tensor],
323
+ attn_metadata: AttentionMetadata,
324
+ ) -> torch.Tensor:
325
+ hidden_states = self.model(input_ids, positions, kv_caches,
326
+ attn_metadata)
327
+ return hidden_states
328
+
329
+ def compute_logits(self, hidden_states: torch.Tensor,
330
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
331
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
332
+ sampling_metadata)
333
+ return logits
334
+
335
+ def sample(
336
+ self,
337
+ logits: torch.Tensor,
338
+ sampling_metadata: SamplingMetadata,
339
+ ) -> Optional[SamplerOutput]:
340
+ next_tokens = self.sampler(logits, sampling_metadata)
341
+ return next_tokens
342
+
343
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
344
+ stacked_params_mapping = [
345
+ # (param_name, shard_name, shard_id)
346
+ ("gate_up_proj", "gate_proj", 0),
347
+ ("gate_up_proj", "up_proj", 1),
348
+ ]
349
+ params_dict = dict(self.named_parameters())
350
+ for name, loaded_weight in weights:
351
+ if "rotary_emb.inv_freq" in name:
352
+ continue
353
+ if name == "lm_head.weight":
354
+ # Unlike Baichuan, Baichuan2 normalizes the head weights.
355
+ # Refer to:
356
+ # https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/84603cde5ebffb6084e476cfaeceaf0b8b91fe54/modeling_baichuan.py#L508
357
+ # Distinguish between Baichuan and Baichuan2 by checking the
358
+ # vocab size. This is suggested by
359
+ # https://github.com/vllm-project/vllm/pull/1022#discussion_r1325652704
360
+ is_baichuan2 = self.config.vocab_size == 125696
361
+ if is_baichuan2:
362
+ loaded_weight = torch.nn.functional.normalize(
363
+ loaded_weight)
364
+
365
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
366
+ if weight_name not in name:
367
+ continue
368
+ name = name.replace(weight_name, param_name)
369
+ # Skip loading extra bias for GPTQ models.
370
+ if name.endswith(".bias") and name not in params_dict:
371
+ continue
372
+ param = params_dict[name]
373
+ weight_loader = param.weight_loader
374
+ weight_loader(param, loaded_weight, shard_id)
375
+ break
376
+ else:
377
+ # Skip loading extra bias for GPTQ models.
378
+ if name.endswith(".bias") and name not in params_dict:
379
+ continue
380
+ param = params_dict[name]
381
+ weight_loader = getattr(param, "weight_loader",
382
+ default_weight_loader)
383
+ weight_loader(param, loaded_weight)
384
+
385
+
386
+ class BaichuanForCausalLM(BaiChuanBaseForCausalLM):
387
+ """Baichuan 13B and Baichuan2 7B/13B."""
388
+
389
+ def __init__(
390
+ self,
391
+ config,
392
+ quant_config: Optional[QuantizationConfig] = None,
393
+ lora_config: Optional[LoRAConfig] = None,
394
+ ):
395
+ if config.hidden_size == 4096: # baichuan2 7b
396
+ super().__init__(config, "ROPE", quant_config, lora_config)
397
+ else: # baichuan 13b, baichuan2 13b
398
+ super().__init__(config, "ALIBI", quant_config, lora_config)
399
+
400
+
401
+ class BaiChuanForCausalLM(BaiChuanBaseForCausalLM):
402
+ """Baichuan 7B."""
403
+
404
+ def __init__(
405
+ self,
406
+ config,
407
+ quant_config: Optional[QuantizationConfig] = None,
408
+ lora_config: Optional[LoRAConfig] = None,
409
+ ):
410
+ super().__init__(config, "ROPE", quant_config, lora_config)