vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
vllm/engine/arg_utils.py
ADDED
@@ -0,0 +1,649 @@
|
|
1
|
+
import argparse
|
2
|
+
import dataclasses
|
3
|
+
from dataclasses import dataclass
|
4
|
+
from typing import List, Optional, Union
|
5
|
+
|
6
|
+
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig,
|
7
|
+
EngineConfig, LoadConfig, LoRAConfig, ModelConfig,
|
8
|
+
ParallelConfig, SchedulerConfig, SpeculativeConfig,
|
9
|
+
TokenizerPoolConfig, VisionLanguageConfig)
|
10
|
+
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
|
11
|
+
from vllm.utils import str_to_int_tuple
|
12
|
+
|
13
|
+
|
14
|
+
def nullable_str(val: str):
|
15
|
+
if not val or val == "None":
|
16
|
+
return None
|
17
|
+
return val
|
18
|
+
|
19
|
+
|
20
|
+
@dataclass
|
21
|
+
class EngineArgs:
|
22
|
+
"""Arguments for vLLM engine."""
|
23
|
+
model: str
|
24
|
+
served_model_name: Optional[Union[List[str]]] = None
|
25
|
+
tokenizer: Optional[str] = None
|
26
|
+
skip_tokenizer_init: bool = False
|
27
|
+
tokenizer_mode: str = 'auto'
|
28
|
+
trust_remote_code: bool = False
|
29
|
+
download_dir: Optional[str] = None
|
30
|
+
load_format: str = 'auto'
|
31
|
+
dtype: str = 'auto'
|
32
|
+
kv_cache_dtype: str = 'auto'
|
33
|
+
quantization_param_path: Optional[str] = None
|
34
|
+
seed: int = 0
|
35
|
+
max_model_len: Optional[int] = None
|
36
|
+
worker_use_ray: bool = False
|
37
|
+
pipeline_parallel_size: int = 1
|
38
|
+
tensor_parallel_size: int = 1
|
39
|
+
max_parallel_loading_workers: Optional[int] = None
|
40
|
+
block_size: int = 16
|
41
|
+
enable_prefix_caching: bool = False
|
42
|
+
use_v2_block_manager: bool = False
|
43
|
+
swap_space: int = 4 # GiB
|
44
|
+
gpu_memory_utilization: float = 0.90
|
45
|
+
max_num_batched_tokens: Optional[int] = None
|
46
|
+
max_num_seqs: int = 256
|
47
|
+
max_logprobs: int = 5 # OpenAI default value
|
48
|
+
disable_log_stats: bool = False
|
49
|
+
revision: Optional[str] = None
|
50
|
+
code_revision: Optional[str] = None
|
51
|
+
tokenizer_revision: Optional[str] = None
|
52
|
+
quantization: Optional[str] = None
|
53
|
+
enforce_eager: bool = False
|
54
|
+
max_context_len_to_capture: Optional[int] = None
|
55
|
+
max_seq_len_to_capture: int = 8192
|
56
|
+
disable_custom_all_reduce: bool = False
|
57
|
+
tokenizer_pool_size: int = 0
|
58
|
+
tokenizer_pool_type: str = "ray"
|
59
|
+
tokenizer_pool_extra_config: Optional[dict] = None
|
60
|
+
enable_lora: bool = False
|
61
|
+
max_loras: int = 1
|
62
|
+
max_lora_rank: int = 16
|
63
|
+
fully_sharded_loras: bool = False
|
64
|
+
lora_extra_vocab_size: int = 256
|
65
|
+
lora_dtype = 'auto'
|
66
|
+
max_cpu_loras: Optional[int] = None
|
67
|
+
device: str = 'auto'
|
68
|
+
ray_workers_use_nsight: bool = False
|
69
|
+
num_gpu_blocks_override: Optional[int] = None
|
70
|
+
num_lookahead_slots: int = 0
|
71
|
+
model_loader_extra_config: Optional[dict] = None
|
72
|
+
|
73
|
+
# Related to Vision-language models such as llava
|
74
|
+
image_input_type: Optional[str] = None
|
75
|
+
image_token_id: Optional[int] = None
|
76
|
+
image_input_shape: Optional[str] = None
|
77
|
+
image_feature_size: Optional[int] = None
|
78
|
+
scheduler_delay_factor: float = 0.0
|
79
|
+
enable_chunked_prefill: bool = False
|
80
|
+
|
81
|
+
guided_decoding_backend: str = 'outlines'
|
82
|
+
# Speculative decoding configuration.
|
83
|
+
speculative_model: Optional[str] = None
|
84
|
+
num_speculative_tokens: Optional[int] = None
|
85
|
+
speculative_max_model_len: Optional[int] = None
|
86
|
+
ngram_prompt_lookup_max: Optional[int] = None
|
87
|
+
ngram_prompt_lookup_min: Optional[int] = None
|
88
|
+
|
89
|
+
def __post_init__(self):
|
90
|
+
if self.tokenizer is None:
|
91
|
+
self.tokenizer = self.model
|
92
|
+
|
93
|
+
@staticmethod
|
94
|
+
def add_cli_args(
|
95
|
+
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
|
96
|
+
"""Shared CLI arguments for vLLM engine."""
|
97
|
+
|
98
|
+
# Model arguments
|
99
|
+
parser.add_argument(
|
100
|
+
'--model',
|
101
|
+
type=str,
|
102
|
+
default='facebook/opt-125m',
|
103
|
+
help='Name or path of the huggingface model to use.')
|
104
|
+
parser.add_argument(
|
105
|
+
'--tokenizer',
|
106
|
+
type=nullable_str,
|
107
|
+
default=EngineArgs.tokenizer,
|
108
|
+
help='Name or path of the huggingface tokenizer to use.')
|
109
|
+
parser.add_argument(
|
110
|
+
'--skip-tokenizer-init',
|
111
|
+
action='store_true',
|
112
|
+
help='Skip initialization of tokenizer and detokenizer')
|
113
|
+
parser.add_argument(
|
114
|
+
'--revision',
|
115
|
+
type=nullable_str,
|
116
|
+
default=None,
|
117
|
+
help='The specific model version to use. It can be a branch '
|
118
|
+
'name, a tag name, or a commit id. If unspecified, will use '
|
119
|
+
'the default version.')
|
120
|
+
parser.add_argument(
|
121
|
+
'--code-revision',
|
122
|
+
type=nullable_str,
|
123
|
+
default=None,
|
124
|
+
help='The specific revision to use for the model code on '
|
125
|
+
'Hugging Face Hub. It can be a branch name, a tag name, or a '
|
126
|
+
'commit id. If unspecified, will use the default version.')
|
127
|
+
parser.add_argument(
|
128
|
+
'--tokenizer-revision',
|
129
|
+
type=nullable_str,
|
130
|
+
default=None,
|
131
|
+
help='The specific tokenizer version to use. It can be a branch '
|
132
|
+
'name, a tag name, or a commit id. If unspecified, will use '
|
133
|
+
'the default version.')
|
134
|
+
parser.add_argument(
|
135
|
+
'--tokenizer-mode',
|
136
|
+
type=str,
|
137
|
+
default=EngineArgs.tokenizer_mode,
|
138
|
+
choices=['auto', 'slow'],
|
139
|
+
help='The tokenizer mode.\n\n* "auto" will use the '
|
140
|
+
'fast tokenizer if available.\n* "slow" will '
|
141
|
+
'always use the slow tokenizer.')
|
142
|
+
parser.add_argument('--trust-remote-code',
|
143
|
+
action='store_true',
|
144
|
+
help='Trust remote code from huggingface.')
|
145
|
+
parser.add_argument('--download-dir',
|
146
|
+
type=nullable_str,
|
147
|
+
default=EngineArgs.download_dir,
|
148
|
+
help='Directory to download and load the weights, '
|
149
|
+
'default to the default cache dir of '
|
150
|
+
'huggingface.')
|
151
|
+
parser.add_argument(
|
152
|
+
'--load-format',
|
153
|
+
type=str,
|
154
|
+
default=EngineArgs.load_format,
|
155
|
+
choices=[
|
156
|
+
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer'
|
157
|
+
],
|
158
|
+
help='The format of the model weights to load.\n\n'
|
159
|
+
'* "auto" will try to load the weights in the safetensors format '
|
160
|
+
'and fall back to the pytorch bin format if safetensors format '
|
161
|
+
'is not available.\n'
|
162
|
+
'* "pt" will load the weights in the pytorch bin format.\n'
|
163
|
+
'* "safetensors" will load the weights in the safetensors format.\n'
|
164
|
+
'* "npcache" will load the weights in pytorch format and store '
|
165
|
+
'a numpy cache to speed up the loading.\n'
|
166
|
+
'* "dummy" will initialize the weights with random values, '
|
167
|
+
'which is mainly for profiling.\n'
|
168
|
+
'* "tensorizer" will load the weights using tensorizer from '
|
169
|
+
'CoreWeave which assumes tensorizer_uri is set to the location of '
|
170
|
+
'the serialized weights.')
|
171
|
+
parser.add_argument(
|
172
|
+
'--dtype',
|
173
|
+
type=str,
|
174
|
+
default=EngineArgs.dtype,
|
175
|
+
choices=[
|
176
|
+
'auto', 'half', 'float16', 'bfloat16', 'float', 'float32'
|
177
|
+
],
|
178
|
+
help='Data type for model weights and activations.\n\n'
|
179
|
+
'* "auto" will use FP16 precision for FP32 and FP16 models, and '
|
180
|
+
'BF16 precision for BF16 models.\n'
|
181
|
+
'* "half" for FP16. Recommended for AWQ quantization.\n'
|
182
|
+
'* "float16" is the same as "half".\n'
|
183
|
+
'* "bfloat16" for a balance between precision and range.\n'
|
184
|
+
'* "float" is shorthand for FP32 precision.\n'
|
185
|
+
'* "float32" for FP32 precision.')
|
186
|
+
parser.add_argument(
|
187
|
+
'--kv-cache-dtype',
|
188
|
+
type=str,
|
189
|
+
choices=['auto', 'fp8'],
|
190
|
+
default=EngineArgs.kv_cache_dtype,
|
191
|
+
help='Data type for kv cache storage. If "auto", will use model '
|
192
|
+
'data type. FP8_E5M2 (without scaling) is only supported on cuda '
|
193
|
+
'version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead '
|
194
|
+
'supported for common inference criteria.')
|
195
|
+
parser.add_argument(
|
196
|
+
'--quantization-param-path',
|
197
|
+
type=nullable_str,
|
198
|
+
default=None,
|
199
|
+
help='Path to the JSON file containing the KV cache '
|
200
|
+
'scaling factors. This should generally be supplied, when '
|
201
|
+
'KV cache dtype is FP8. Otherwise, KV cache scaling factors '
|
202
|
+
'default to 1.0, which may cause accuracy issues. '
|
203
|
+
'FP8_E5M2 (without scaling) is only supported on cuda version'
|
204
|
+
'greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is instead '
|
205
|
+
'supported for common inference criteria.')
|
206
|
+
parser.add_argument('--max-model-len',
|
207
|
+
type=int,
|
208
|
+
default=EngineArgs.max_model_len,
|
209
|
+
help='Model context length. If unspecified, will '
|
210
|
+
'be automatically derived from the model config.')
|
211
|
+
parser.add_argument(
|
212
|
+
'--guided-decoding-backend',
|
213
|
+
type=str,
|
214
|
+
default='outlines',
|
215
|
+
choices=['outlines', 'lm-format-enforcer'],
|
216
|
+
help='Which engine will be used for guided decoding'
|
217
|
+
' (JSON schema / regex etc) by default. Currently support '
|
218
|
+
'https://github.com/outlines-dev/outlines and '
|
219
|
+
'https://github.com/noamgat/lm-format-enforcer.'
|
220
|
+
' Can be overridden per request via guided_decoding_backend'
|
221
|
+
' parameter.')
|
222
|
+
# Parallel arguments
|
223
|
+
parser.add_argument('--worker-use-ray',
|
224
|
+
action='store_true',
|
225
|
+
help='Use Ray for distributed serving, will be '
|
226
|
+
'automatically set when using more than 1 GPU.')
|
227
|
+
parser.add_argument('--pipeline-parallel-size',
|
228
|
+
'-pp',
|
229
|
+
type=int,
|
230
|
+
default=EngineArgs.pipeline_parallel_size,
|
231
|
+
help='Number of pipeline stages.')
|
232
|
+
parser.add_argument('--tensor-parallel-size',
|
233
|
+
'-tp',
|
234
|
+
type=int,
|
235
|
+
default=EngineArgs.tensor_parallel_size,
|
236
|
+
help='Number of tensor parallel replicas.')
|
237
|
+
parser.add_argument(
|
238
|
+
'--max-parallel-loading-workers',
|
239
|
+
type=int,
|
240
|
+
default=EngineArgs.max_parallel_loading_workers,
|
241
|
+
help='Load model sequentially in multiple batches, '
|
242
|
+
'to avoid RAM OOM when using tensor '
|
243
|
+
'parallel and large models.')
|
244
|
+
parser.add_argument(
|
245
|
+
'--ray-workers-use-nsight',
|
246
|
+
action='store_true',
|
247
|
+
help='If specified, use nsight to profile Ray workers.')
|
248
|
+
# KV cache arguments
|
249
|
+
parser.add_argument('--block-size',
|
250
|
+
type=int,
|
251
|
+
default=EngineArgs.block_size,
|
252
|
+
choices=[8, 16, 32],
|
253
|
+
help='Token block size for contiguous chunks of '
|
254
|
+
'tokens.')
|
255
|
+
|
256
|
+
parser.add_argument('--enable-prefix-caching',
|
257
|
+
action='store_true',
|
258
|
+
help='Enables automatic prefix caching.')
|
259
|
+
parser.add_argument('--use-v2-block-manager',
|
260
|
+
action='store_true',
|
261
|
+
help='Use BlockSpaceMangerV2.')
|
262
|
+
parser.add_argument(
|
263
|
+
'--num-lookahead-slots',
|
264
|
+
type=int,
|
265
|
+
default=EngineArgs.num_lookahead_slots,
|
266
|
+
help='Experimental scheduling config necessary for '
|
267
|
+
'speculative decoding. This will be replaced by '
|
268
|
+
'speculative config in the future; it is present '
|
269
|
+
'to enable correctness tests until then.')
|
270
|
+
|
271
|
+
parser.add_argument('--seed',
|
272
|
+
type=int,
|
273
|
+
default=EngineArgs.seed,
|
274
|
+
help='Random seed for operations.')
|
275
|
+
parser.add_argument('--swap-space',
|
276
|
+
type=int,
|
277
|
+
default=EngineArgs.swap_space,
|
278
|
+
help='CPU swap space size (GiB) per GPU.')
|
279
|
+
parser.add_argument(
|
280
|
+
'--gpu-memory-utilization',
|
281
|
+
type=float,
|
282
|
+
default=EngineArgs.gpu_memory_utilization,
|
283
|
+
help='The fraction of GPU memory to be used for the model '
|
284
|
+
'executor, which can range from 0 to 1. For example, a value of '
|
285
|
+
'0.5 would imply 50%% GPU memory utilization. If unspecified, '
|
286
|
+
'will use the default value of 0.9.')
|
287
|
+
parser.add_argument(
|
288
|
+
'--num-gpu-blocks-override',
|
289
|
+
type=int,
|
290
|
+
default=None,
|
291
|
+
help='If specified, ignore GPU profiling result and use this number'
|
292
|
+
'of GPU blocks. Used for testing preemption.')
|
293
|
+
parser.add_argument('--max-num-batched-tokens',
|
294
|
+
type=int,
|
295
|
+
default=EngineArgs.max_num_batched_tokens,
|
296
|
+
help='Maximum number of batched tokens per '
|
297
|
+
'iteration.')
|
298
|
+
parser.add_argument('--max-num-seqs',
|
299
|
+
type=int,
|
300
|
+
default=EngineArgs.max_num_seqs,
|
301
|
+
help='Maximum number of sequences per iteration.')
|
302
|
+
parser.add_argument(
|
303
|
+
'--max-logprobs',
|
304
|
+
type=int,
|
305
|
+
default=EngineArgs.max_logprobs,
|
306
|
+
help=('Max number of log probs to return logprobs is specified in'
|
307
|
+
' SamplingParams.'))
|
308
|
+
parser.add_argument('--disable-log-stats',
|
309
|
+
action='store_true',
|
310
|
+
help='Disable logging statistics.')
|
311
|
+
# Quantization settings.
|
312
|
+
parser.add_argument('--quantization',
|
313
|
+
'-q',
|
314
|
+
type=nullable_str,
|
315
|
+
choices=[*QUANTIZATION_METHODS, None],
|
316
|
+
default=EngineArgs.quantization,
|
317
|
+
help='Method used to quantize the weights. If '
|
318
|
+
'None, we first check the `quantization_config` '
|
319
|
+
'attribute in the model config file. If that is '
|
320
|
+
'None, we assume the model weights are not '
|
321
|
+
'quantized and use `dtype` to determine the data '
|
322
|
+
'type of the weights.')
|
323
|
+
parser.add_argument('--enforce-eager',
|
324
|
+
action='store_true',
|
325
|
+
help='Always use eager-mode PyTorch. If False, '
|
326
|
+
'will use eager mode and CUDA graph in hybrid '
|
327
|
+
'for maximal performance and flexibility.')
|
328
|
+
parser.add_argument('--max-context-len-to-capture',
|
329
|
+
type=int,
|
330
|
+
default=EngineArgs.max_context_len_to_capture,
|
331
|
+
help='Maximum context length covered by CUDA '
|
332
|
+
'graphs. When a sequence has context length '
|
333
|
+
'larger than this, we fall back to eager mode. '
|
334
|
+
'(DEPRECATED. Use --max-seq_len-to-capture instead'
|
335
|
+
')')
|
336
|
+
parser.add_argument('--max-seq_len-to-capture',
|
337
|
+
type=int,
|
338
|
+
default=EngineArgs.max_seq_len_to_capture,
|
339
|
+
help='Maximum sequence length covered by CUDA '
|
340
|
+
'graphs. When a sequence has context length '
|
341
|
+
'larger than this, we fall back to eager mode.')
|
342
|
+
parser.add_argument('--disable-custom-all-reduce',
|
343
|
+
action='store_true',
|
344
|
+
default=EngineArgs.disable_custom_all_reduce,
|
345
|
+
help='See ParallelConfig.')
|
346
|
+
parser.add_argument('--tokenizer-pool-size',
|
347
|
+
type=int,
|
348
|
+
default=EngineArgs.tokenizer_pool_size,
|
349
|
+
help='Size of tokenizer pool to use for '
|
350
|
+
'asynchronous tokenization. If 0, will '
|
351
|
+
'use synchronous tokenization.')
|
352
|
+
parser.add_argument('--tokenizer-pool-type',
|
353
|
+
type=str,
|
354
|
+
default=EngineArgs.tokenizer_pool_type,
|
355
|
+
help='Type of tokenizer pool to use for '
|
356
|
+
'asynchronous tokenization. Ignored '
|
357
|
+
'if tokenizer_pool_size is 0.')
|
358
|
+
parser.add_argument('--tokenizer-pool-extra-config',
|
359
|
+
type=nullable_str,
|
360
|
+
default=EngineArgs.tokenizer_pool_extra_config,
|
361
|
+
help='Extra config for tokenizer pool. '
|
362
|
+
'This should be a JSON string that will be '
|
363
|
+
'parsed into a dictionary. Ignored if '
|
364
|
+
'tokenizer_pool_size is 0.')
|
365
|
+
# LoRA related configs
|
366
|
+
parser.add_argument('--enable-lora',
|
367
|
+
action='store_true',
|
368
|
+
help='If True, enable handling of LoRA adapters.')
|
369
|
+
parser.add_argument('--max-loras',
|
370
|
+
type=int,
|
371
|
+
default=EngineArgs.max_loras,
|
372
|
+
help='Max number of LoRAs in a single batch.')
|
373
|
+
parser.add_argument('--max-lora-rank',
|
374
|
+
type=int,
|
375
|
+
default=EngineArgs.max_lora_rank,
|
376
|
+
help='Max LoRA rank.')
|
377
|
+
parser.add_argument(
|
378
|
+
'--lora-extra-vocab-size',
|
379
|
+
type=int,
|
380
|
+
default=EngineArgs.lora_extra_vocab_size,
|
381
|
+
help=('Maximum size of extra vocabulary that can be '
|
382
|
+
'present in a LoRA adapter (added to the base '
|
383
|
+
'model vocabulary).'))
|
384
|
+
parser.add_argument(
|
385
|
+
'--lora-dtype',
|
386
|
+
type=str,
|
387
|
+
default=EngineArgs.lora_dtype,
|
388
|
+
choices=['auto', 'float16', 'bfloat16', 'float32'],
|
389
|
+
help=('Data type for LoRA. If auto, will default to '
|
390
|
+
'base model dtype.'))
|
391
|
+
parser.add_argument(
|
392
|
+
'--max-cpu-loras',
|
393
|
+
type=int,
|
394
|
+
default=EngineArgs.max_cpu_loras,
|
395
|
+
help=('Maximum number of LoRAs to store in CPU memory. '
|
396
|
+
'Must be >= than max_num_seqs. '
|
397
|
+
'Defaults to max_num_seqs.'))
|
398
|
+
parser.add_argument(
|
399
|
+
'--fully-sharded-loras',
|
400
|
+
action='store_true',
|
401
|
+
help=('By default, only half of the LoRA computation is '
|
402
|
+
'sharded with tensor parallelism. '
|
403
|
+
'Enabling this will use the fully sharded layers. '
|
404
|
+
'At high sequence length, max rank or '
|
405
|
+
'tensor parallel size, this is likely faster.'))
|
406
|
+
parser.add_argument("--device",
|
407
|
+
type=str,
|
408
|
+
default=EngineArgs.device,
|
409
|
+
choices=["auto", "cuda", "neuron", "cpu"],
|
410
|
+
help='Device type for vLLM execution.')
|
411
|
+
# Related to Vision-language models such as llava
|
412
|
+
parser.add_argument(
|
413
|
+
'--image-input-type',
|
414
|
+
type=nullable_str,
|
415
|
+
default=None,
|
416
|
+
choices=[
|
417
|
+
t.name.lower() for t in VisionLanguageConfig.ImageInputType
|
418
|
+
],
|
419
|
+
help=('The image input type passed into vLLM. '
|
420
|
+
'Should be one of "pixel_values" or "image_features".'))
|
421
|
+
parser.add_argument('--image-token-id',
|
422
|
+
type=int,
|
423
|
+
default=None,
|
424
|
+
help=('Input id for image token.'))
|
425
|
+
parser.add_argument(
|
426
|
+
'--image-input-shape',
|
427
|
+
type=nullable_str,
|
428
|
+
default=None,
|
429
|
+
help=('The biggest image input shape (worst for memory footprint) '
|
430
|
+
'given an input type. Only used for vLLM\'s profile_run.'))
|
431
|
+
parser.add_argument(
|
432
|
+
'--image-feature-size',
|
433
|
+
type=int,
|
434
|
+
default=None,
|
435
|
+
help=('The image feature size along the context dimension.'))
|
436
|
+
parser.add_argument(
|
437
|
+
'--scheduler-delay-factor',
|
438
|
+
type=float,
|
439
|
+
default=EngineArgs.scheduler_delay_factor,
|
440
|
+
help='Apply a delay (of delay factor multiplied by previous'
|
441
|
+
'prompt latency) before scheduling next prompt.')
|
442
|
+
parser.add_argument(
|
443
|
+
'--enable-chunked-prefill',
|
444
|
+
action='store_true',
|
445
|
+
help='If set, the prefill requests can be chunked based on the '
|
446
|
+
'max_num_batched_tokens.')
|
447
|
+
|
448
|
+
parser.add_argument(
|
449
|
+
'--speculative-model',
|
450
|
+
type=nullable_str,
|
451
|
+
default=EngineArgs.speculative_model,
|
452
|
+
help=
|
453
|
+
'The name of the draft model to be used in speculative decoding.')
|
454
|
+
|
455
|
+
parser.add_argument(
|
456
|
+
'--num-speculative-tokens',
|
457
|
+
type=int,
|
458
|
+
default=EngineArgs.num_speculative_tokens,
|
459
|
+
help='The number of speculative tokens to sample from '
|
460
|
+
'the draft model in speculative decoding.')
|
461
|
+
|
462
|
+
parser.add_argument(
|
463
|
+
'--speculative-max-model-len',
|
464
|
+
type=int,
|
465
|
+
default=EngineArgs.speculative_max_model_len,
|
466
|
+
help='The maximum sequence length supported by the '
|
467
|
+
'draft model. Sequences over this length will skip '
|
468
|
+
'speculation.')
|
469
|
+
|
470
|
+
parser.add_argument(
|
471
|
+
'--ngram-prompt-lookup-max',
|
472
|
+
type=int,
|
473
|
+
default=EngineArgs.ngram_prompt_lookup_max,
|
474
|
+
help='Max size of window for ngram prompt lookup in speculative '
|
475
|
+
'decoding.')
|
476
|
+
|
477
|
+
parser.add_argument(
|
478
|
+
'--ngram-prompt-lookup-min',
|
479
|
+
type=int,
|
480
|
+
default=EngineArgs.ngram_prompt_lookup_min,
|
481
|
+
help='Min size of window for ngram prompt lookup in speculative '
|
482
|
+
'decoding.')
|
483
|
+
|
484
|
+
parser.add_argument('--model-loader-extra-config',
|
485
|
+
type=nullable_str,
|
486
|
+
default=EngineArgs.model_loader_extra_config,
|
487
|
+
help='Extra config for model loader. '
|
488
|
+
'This will be passed to the model loader '
|
489
|
+
'corresponding to the chosen load_format. '
|
490
|
+
'This should be a JSON string that will be '
|
491
|
+
'parsed into a dictionary.')
|
492
|
+
|
493
|
+
parser.add_argument(
|
494
|
+
"--served-model-name",
|
495
|
+
nargs="+",
|
496
|
+
type=str,
|
497
|
+
default=None,
|
498
|
+
help="The model name(s) used in the API. If multiple "
|
499
|
+
"names are provided, the server will respond to any "
|
500
|
+
"of the provided names. The model name in the model "
|
501
|
+
"field of a response will be the first name in this "
|
502
|
+
"list. If not specified, the model name will be the "
|
503
|
+
"same as the `--model` argument. Noted that this name(s)"
|
504
|
+
"will also be used in `model_name` tag content of "
|
505
|
+
"prometheus metrics, if multiple names provided, metrics"
|
506
|
+
"tag will take the first one.")
|
507
|
+
|
508
|
+
return parser
|
509
|
+
|
510
|
+
@classmethod
|
511
|
+
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
|
512
|
+
# Get the list of attributes of this dataclass.
|
513
|
+
attrs = [attr.name for attr in dataclasses.fields(cls)]
|
514
|
+
# Set the attributes from the parsed arguments.
|
515
|
+
engine_args = cls(**{attr: getattr(args, attr) for attr in attrs})
|
516
|
+
return engine_args
|
517
|
+
|
518
|
+
def create_engine_config(self, ) -> EngineConfig:
|
519
|
+
device_config = DeviceConfig(self.device)
|
520
|
+
model_config = ModelConfig(
|
521
|
+
self.model, self.tokenizer, self.tokenizer_mode,
|
522
|
+
self.trust_remote_code, self.dtype, self.seed, self.revision,
|
523
|
+
self.code_revision, self.tokenizer_revision, self.max_model_len,
|
524
|
+
self.quantization, self.quantization_param_path,
|
525
|
+
self.enforce_eager, self.max_context_len_to_capture,
|
526
|
+
self.max_seq_len_to_capture, self.max_logprobs,
|
527
|
+
self.skip_tokenizer_init, self.served_model_name)
|
528
|
+
cache_config = CacheConfig(self.block_size,
|
529
|
+
self.gpu_memory_utilization,
|
530
|
+
self.swap_space, self.kv_cache_dtype,
|
531
|
+
self.num_gpu_blocks_override,
|
532
|
+
model_config.get_sliding_window(),
|
533
|
+
self.enable_prefix_caching)
|
534
|
+
parallel_config = ParallelConfig(
|
535
|
+
self.pipeline_parallel_size, self.tensor_parallel_size,
|
536
|
+
self.worker_use_ray, self.max_parallel_loading_workers,
|
537
|
+
self.disable_custom_all_reduce,
|
538
|
+
TokenizerPoolConfig.create_config(
|
539
|
+
self.tokenizer_pool_size,
|
540
|
+
self.tokenizer_pool_type,
|
541
|
+
self.tokenizer_pool_extra_config,
|
542
|
+
), self.ray_workers_use_nsight)
|
543
|
+
|
544
|
+
speculative_config = SpeculativeConfig.maybe_create_spec_config(
|
545
|
+
target_model_config=model_config,
|
546
|
+
target_parallel_config=parallel_config,
|
547
|
+
target_dtype=self.dtype,
|
548
|
+
speculative_model=self.speculative_model,
|
549
|
+
num_speculative_tokens=self.num_speculative_tokens,
|
550
|
+
speculative_max_model_len=self.speculative_max_model_len,
|
551
|
+
enable_chunked_prefill=self.enable_chunked_prefill,
|
552
|
+
use_v2_block_manager=self.use_v2_block_manager,
|
553
|
+
ngram_prompt_lookup_max=self.ngram_prompt_lookup_max,
|
554
|
+
ngram_prompt_lookup_min=self.ngram_prompt_lookup_min,
|
555
|
+
)
|
556
|
+
|
557
|
+
scheduler_config = SchedulerConfig(
|
558
|
+
self.max_num_batched_tokens,
|
559
|
+
self.max_num_seqs,
|
560
|
+
model_config.max_model_len,
|
561
|
+
self.use_v2_block_manager,
|
562
|
+
num_lookahead_slots=(self.num_lookahead_slots
|
563
|
+
if speculative_config is None else
|
564
|
+
speculative_config.num_lookahead_slots),
|
565
|
+
delay_factor=self.scheduler_delay_factor,
|
566
|
+
enable_chunked_prefill=self.enable_chunked_prefill,
|
567
|
+
)
|
568
|
+
lora_config = LoRAConfig(
|
569
|
+
max_lora_rank=self.max_lora_rank,
|
570
|
+
max_loras=self.max_loras,
|
571
|
+
fully_sharded_loras=self.fully_sharded_loras,
|
572
|
+
lora_extra_vocab_size=self.lora_extra_vocab_size,
|
573
|
+
lora_dtype=self.lora_dtype,
|
574
|
+
max_cpu_loras=self.max_cpu_loras if self.max_cpu_loras
|
575
|
+
and self.max_cpu_loras > 0 else None) if self.enable_lora else None
|
576
|
+
|
577
|
+
load_config = LoadConfig(
|
578
|
+
load_format=self.load_format,
|
579
|
+
download_dir=self.download_dir,
|
580
|
+
model_loader_extra_config=self.model_loader_extra_config,
|
581
|
+
)
|
582
|
+
|
583
|
+
if self.image_input_type:
|
584
|
+
if (not self.image_token_id or not self.image_input_shape
|
585
|
+
or not self.image_feature_size):
|
586
|
+
raise ValueError(
|
587
|
+
'Specify `image_token_id`, `image_input_shape` and '
|
588
|
+
'`image_feature_size` together with `image_input_type`.')
|
589
|
+
vision_language_config = VisionLanguageConfig(
|
590
|
+
image_input_type=VisionLanguageConfig.
|
591
|
+
get_image_input_enum_type(self.image_input_type),
|
592
|
+
image_token_id=self.image_token_id,
|
593
|
+
image_input_shape=str_to_int_tuple(self.image_input_shape),
|
594
|
+
image_feature_size=self.image_feature_size,
|
595
|
+
)
|
596
|
+
else:
|
597
|
+
vision_language_config = None
|
598
|
+
|
599
|
+
decoding_config = DecodingConfig(
|
600
|
+
guided_decoding_backend=self.guided_decoding_backend)
|
601
|
+
|
602
|
+
return EngineConfig(model_config=model_config,
|
603
|
+
cache_config=cache_config,
|
604
|
+
parallel_config=parallel_config,
|
605
|
+
scheduler_config=scheduler_config,
|
606
|
+
device_config=device_config,
|
607
|
+
lora_config=lora_config,
|
608
|
+
vision_language_config=vision_language_config,
|
609
|
+
speculative_config=speculative_config,
|
610
|
+
load_config=load_config,
|
611
|
+
decoding_config=decoding_config)
|
612
|
+
|
613
|
+
|
614
|
+
@dataclass
|
615
|
+
class AsyncEngineArgs(EngineArgs):
|
616
|
+
"""Arguments for asynchronous vLLM engine."""
|
617
|
+
engine_use_ray: bool = False
|
618
|
+
disable_log_requests: bool = False
|
619
|
+
max_log_len: Optional[int] = None
|
620
|
+
|
621
|
+
@staticmethod
|
622
|
+
def add_cli_args(parser: argparse.ArgumentParser,
|
623
|
+
async_args_only: bool = False) -> argparse.ArgumentParser:
|
624
|
+
if not async_args_only:
|
625
|
+
parser = EngineArgs.add_cli_args(parser)
|
626
|
+
parser.add_argument('--engine-use-ray',
|
627
|
+
action='store_true',
|
628
|
+
help='Use Ray to start the LLM engine in a '
|
629
|
+
'separate process as the server process.')
|
630
|
+
parser.add_argument('--disable-log-requests',
|
631
|
+
action='store_true',
|
632
|
+
help='Disable logging requests.')
|
633
|
+
parser.add_argument('--max-log-len',
|
634
|
+
type=int,
|
635
|
+
default=None,
|
636
|
+
help='Max number of prompt characters or prompt '
|
637
|
+
'ID numbers being printed in log.'
|
638
|
+
'\n\nDefault: Unlimited')
|
639
|
+
return parser
|
640
|
+
|
641
|
+
|
642
|
+
# These functions are used by sphinx to build the documentation
|
643
|
+
def _engine_args_parser():
|
644
|
+
return EngineArgs.add_cli_args(argparse.ArgumentParser())
|
645
|
+
|
646
|
+
|
647
|
+
def _async_engine_args_parser():
|
648
|
+
return AsyncEngineArgs.add_cli_args(argparse.ArgumentParser(),
|
649
|
+
async_args_only=True)
|