vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,583 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
6
+ #
7
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
8
+ # and OPT implementations in this library. It has been modified from its
9
+ # original forms to accommodate minor architectural differences compared
10
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
11
+ #
12
+ # Licensed under the Apache License, Version 2.0 (the "License");
13
+ # you may not use this file except in compliance with the License.
14
+ # You may obtain a copy of the License at
15
+ #
16
+ # http://www.apache.org/licenses/LICENSE-2.0
17
+ #
18
+ # Unless required by applicable law or agreed to in writing, software
19
+ # distributed under the License is distributed on an "AS IS" BASIS,
20
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
+ # See the License for the specific language governing permissions and
22
+ # limitations under the License.
23
+ """Inference-only Mixtral model."""
24
+ from typing import Iterable, List, Optional, Tuple
25
+
26
+ import torch
27
+ from torch import nn
28
+ from transformers import MixtralConfig
29
+
30
+ from vllm import _custom_ops as ops
31
+ from vllm.attention import Attention, AttentionMetadata
32
+ from vllm.config import LoRAConfig
33
+ from vllm.distributed import (get_tensor_model_parallel_rank,
34
+ get_tensor_model_parallel_world_size,
35
+ tensor_model_parallel_all_reduce)
36
+ from vllm.model_executor.layers.fused_moe import fused_moe
37
+ from vllm.model_executor.layers.layernorm import RMSNorm
38
+ from vllm.model_executor.layers.linear import (QKVParallelLinear,
39
+ ReplicatedLinear,
40
+ RowParallelLinear)
41
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
42
+ from vllm.model_executor.layers.quantization.base_config import (
43
+ QuantizationConfig)
44
+ from vllm.model_executor.layers.quantization.fp8 import Fp8Config
45
+ from vllm.model_executor.layers.rotary_embedding import get_rope
46
+ from vllm.model_executor.layers.sampler import Sampler
47
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
48
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
49
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
50
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
51
+ from vllm.model_executor.utils import set_weight_attrs
52
+ from vllm.sequence import SamplerOutput
53
+ from vllm.utils import print_warning_once
54
+
55
+
56
+ class MixtralMoE(nn.Module):
57
+ """A tensor-parallel MoE implementation for Mixtral that shards each expert
58
+ across all ranks.
59
+
60
+ Each expert's weights are sharded across all ranks and a fused MoE
61
+ kernel is used for the forward pass, and finally we reduce the outputs
62
+ across ranks.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ num_experts: int,
68
+ top_k: int,
69
+ hidden_size: int,
70
+ intermediate_size: int,
71
+ params_dtype: Optional[torch.dtype] = None,
72
+ tp_size: Optional[int] = None,
73
+ quant_config: Optional[QuantizationConfig] = None,
74
+ ):
75
+ super().__init__()
76
+ self.tp_size = tp_size or get_tensor_model_parallel_world_size()
77
+ self.num_total_experts = num_experts
78
+ self.top_k = top_k
79
+ self.hidden_size = hidden_size
80
+ self.intermediate_size = intermediate_size // self.tp_size
81
+ self.quant_config = quant_config
82
+
83
+ # FIXME(pcmoritz): Make this more general to support different
84
+ # quantization schemes
85
+ self.use_fp8 = isinstance(quant_config, Fp8Config)
86
+
87
+ if params_dtype is None:
88
+ params_dtype = torch.get_default_dtype()
89
+ self.params_dtype = params_dtype
90
+
91
+ # Gate always runs at half / full precision for now.
92
+ self.gate = ReplicatedLinear(self.hidden_size,
93
+ self.num_total_experts,
94
+ bias=False,
95
+ params_dtype=self.params_dtype,
96
+ quant_config=None)
97
+
98
+ if self.use_fp8:
99
+ params_dtype = torch.float8_e4m3fn
100
+
101
+ self.w13_weight = nn.Parameter(
102
+ torch.empty(self.num_total_experts,
103
+ 2 * self.intermediate_size,
104
+ self.hidden_size,
105
+ dtype=params_dtype))
106
+ self.w2_weight = nn.Parameter(
107
+ torch.empty(self.num_total_experts,
108
+ self.hidden_size,
109
+ self.intermediate_size,
110
+ dtype=params_dtype))
111
+
112
+ set_weight_attrs(self.w13_weight, {
113
+ "weight_loader": self.weight_loader,
114
+ })
115
+ set_weight_attrs(self.w2_weight, {
116
+ "weight_loader": self.weight_loader,
117
+ })
118
+
119
+ # Used for fp8.
120
+ self.w13_scale = None
121
+ self.w2_scale = None
122
+ self.a13_scale = None
123
+ self.a2_scale = None
124
+
125
+ if self.use_fp8:
126
+ # WEIGHT_SCALE (for fp8)
127
+ self.w13_scale = nn.Parameter(torch.ones(self.num_total_experts,
128
+ dtype=torch.float32),
129
+ requires_grad=False)
130
+ self.w2_scale = nn.Parameter(torch.ones(self.num_total_experts,
131
+ dtype=torch.float32),
132
+ requires_grad=False)
133
+
134
+ # If loading fp8 checkpoint, pass the weight loaders.
135
+ # If loading an fp16 checkpoint, do not (we will quantize in
136
+ # process_weights_after_loading()
137
+ if quant_config.is_checkpoint_fp8_serialized:
138
+ set_weight_attrs(self.w13_scale, {
139
+ "weight_loader": self.weight_loader,
140
+ })
141
+ set_weight_attrs(self.w2_scale, {
142
+ "weight_loader": self.weight_loader,
143
+ })
144
+
145
+ # ACT_SCALE (for fp8)
146
+ if quant_config.activation_scheme == "static":
147
+ if not quant_config.is_checkpoint_fp8_serialized:
148
+ raise ValueError(
149
+ "Found static activation scheme for checkpoint that "
150
+ "was not serialized fp8.")
151
+ self.a13_scale = nn.Parameter(torch.zeros(
152
+ self.num_total_experts, dtype=torch.float32),
153
+ requires_grad=False)
154
+ self.a2_scale = nn.Parameter(torch.zeros(
155
+ self.num_total_experts, dtype=torch.float32),
156
+ requires_grad=False)
157
+
158
+ set_weight_attrs(self.a13_scale, {
159
+ "weight_loader": self.weight_loader,
160
+ })
161
+ set_weight_attrs(self.a2_scale, {
162
+ "weight_loader": self.weight_loader,
163
+ })
164
+
165
+ def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
166
+ weight_name: str, expert_id: int):
167
+ tp_rank = get_tensor_model_parallel_rank()
168
+ param_data = param.data
169
+ shard_size = self.intermediate_size
170
+ shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
171
+ if weight_name.endswith("w1.weight"):
172
+ param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
173
+ if weight_name.endswith("w3.weight"):
174
+ param_data[expert_id,
175
+ shard_size:2 * shard_size, :] = loaded_weight[shard, :]
176
+ if weight_name.endswith("w2.weight"):
177
+ param_data[expert_id, :, :] = loaded_weight[:, shard]
178
+ if "act_scale" in weight_name or "weight_scale" in weight_name:
179
+ param_data[expert_id] = loaded_weight
180
+
181
+ def process_weights_after_loading(self):
182
+ # Fp8 is the only case where we need to process after loading.
183
+ if not self.use_fp8:
184
+ return
185
+
186
+ # If checkpoint is fp16, quantize here.
187
+ if not self.quant_config.is_checkpoint_fp8_serialized:
188
+ w13_weight = torch.empty_like(self.w13_weight.data,
189
+ dtype=torch.float8_e4m3fn)
190
+ w2_weight = torch.empty_like(self.w2_weight.data,
191
+ dtype=torch.float8_e4m3fn)
192
+ for expert in range(self.num_total_experts):
193
+ w13_weight[expert, :, :], self.w13_scale[
194
+ expert] = ops.scaled_fp8_quant(
195
+ self.w13_weight.data[expert, :, :])
196
+ w2_weight[expert, :, :], self.w2_scale[
197
+ expert] = ops.scaled_fp8_quant(
198
+ self.w2_weight.data[expert, :, :])
199
+ self.w13_weight = nn.Parameter(w13_weight, requires_grad=False)
200
+ self.w2_weight = nn.Parameter(w2_weight, requires_grad=False)
201
+
202
+ # If checkpoint is fp8 + static, cleanup act_scales.
203
+ # Since state_dict has an act_scale per expert but our kernels
204
+ # are passed one act_scale shared across all experts.
205
+ elif self.quant_config.activation_scheme == "static":
206
+ if self.a13_scale is None or self.a2_scale is None:
207
+ raise ValueError(
208
+ "QuantConfig has static quantization, but found "
209
+ "activation scales are None.")
210
+
211
+ if (not all_close_1d(self.a13_scale)
212
+ or not all_close_1d(self.a2_scale)):
213
+ print_warning_once(
214
+ "Found act_scales that are not equal for fp8 MoE layer. "
215
+ "Using the maximum across experts for each layer. ")
216
+
217
+ self.a13_scale = nn.Parameter(self.a13_scale.max(),
218
+ requires_grad=False)
219
+ self.a2_scale = nn.Parameter(self.a2_scale.max(),
220
+ requires_grad=False)
221
+
222
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
223
+ num_tokens, hidden_size = hidden_states.shape
224
+ hidden_states = hidden_states.view(-1, self.hidden_size)
225
+ # router_logits: (num_tokens, n_experts)
226
+ router_logits, _ = self.gate(hidden_states)
227
+ final_hidden_states = fused_moe(hidden_states,
228
+ self.w13_weight,
229
+ self.w2_weight,
230
+ router_logits,
231
+ self.top_k,
232
+ renormalize=True,
233
+ inplace=True,
234
+ use_fp8=self.use_fp8,
235
+ w1_scale=self.w13_scale,
236
+ w2_scale=self.w2_scale,
237
+ a1_scale=self.a13_scale,
238
+ a2_scale=self.a2_scale)
239
+
240
+ if self.tp_size > 1:
241
+ final_hidden_states = tensor_model_parallel_all_reduce(
242
+ final_hidden_states)
243
+
244
+ return final_hidden_states.view(num_tokens, hidden_size)
245
+
246
+
247
+ class MixtralAttention(nn.Module):
248
+
249
+ def __init__(self,
250
+ hidden_size: int,
251
+ num_heads: int,
252
+ num_kv_heads: int,
253
+ max_position: int = 4096 * 32,
254
+ rope_theta: float = 10000,
255
+ quant_config: Optional[QuantizationConfig] = None,
256
+ sliding_window: Optional[int] = None) -> None:
257
+ super().__init__()
258
+ self.hidden_size = hidden_size
259
+ tp_size = get_tensor_model_parallel_world_size()
260
+ self.total_num_heads = num_heads
261
+ assert self.total_num_heads % tp_size == 0
262
+ self.num_heads = self.total_num_heads // tp_size
263
+ self.total_num_kv_heads = num_kv_heads
264
+ if self.total_num_kv_heads >= tp_size:
265
+ # Number of KV heads is greater than TP size, so we partition
266
+ # the KV heads across multiple tensor parallel GPUs.
267
+ assert self.total_num_kv_heads % tp_size == 0
268
+ else:
269
+ # Number of KV heads is less than TP size, so we replicate
270
+ # the KV heads across multiple tensor parallel GPUs.
271
+ assert tp_size % self.total_num_kv_heads == 0
272
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
273
+ self.head_dim = hidden_size // self.total_num_heads
274
+ self.q_size = self.num_heads * self.head_dim
275
+ self.kv_size = self.num_kv_heads * self.head_dim
276
+ self.scaling = self.head_dim**-0.5
277
+ self.rope_theta = rope_theta
278
+ self.sliding_window = sliding_window
279
+
280
+ if isinstance(
281
+ quant_config,
282
+ Fp8Config) and not quant_config.is_checkpoint_fp8_serialized:
283
+ print_warning_once(
284
+ "For Mixtral FP8 quantization, we currently do not quantize "
285
+ "the attention layers until their FP8 performance is improved."
286
+ )
287
+ quant_config = None
288
+
289
+ self.qkv_proj = QKVParallelLinear(
290
+ hidden_size,
291
+ self.head_dim,
292
+ self.total_num_heads,
293
+ self.total_num_kv_heads,
294
+ bias=False,
295
+ quant_config=quant_config,
296
+ )
297
+ self.o_proj = RowParallelLinear(
298
+ self.total_num_heads * self.head_dim,
299
+ hidden_size,
300
+ bias=False,
301
+ quant_config=quant_config,
302
+ )
303
+ self.rotary_emb = get_rope(
304
+ self.head_dim,
305
+ rotary_dim=self.head_dim,
306
+ max_position=max_position,
307
+ base=int(self.rope_theta),
308
+ is_neox_style=True,
309
+ )
310
+ self.attn = Attention(
311
+ self.num_heads,
312
+ self.head_dim,
313
+ self.scaling,
314
+ num_kv_heads=self.num_kv_heads,
315
+ sliding_window=self.sliding_window,
316
+ )
317
+
318
+ def forward(
319
+ self,
320
+ positions: torch.Tensor,
321
+ hidden_states: torch.Tensor,
322
+ kv_cache: torch.Tensor,
323
+ attn_metadata: AttentionMetadata,
324
+ ) -> torch.Tensor:
325
+ qkv, _ = self.qkv_proj(hidden_states)
326
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
327
+ q, k = self.rotary_emb(positions, q, k)
328
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
329
+ output, _ = self.o_proj(attn_output)
330
+ return output
331
+
332
+
333
+ class MixtralDecoderLayer(nn.Module):
334
+
335
+ def __init__(
336
+ self,
337
+ config: MixtralConfig,
338
+ quant_config: Optional[QuantizationConfig] = None,
339
+ ) -> None:
340
+ super().__init__()
341
+ self.hidden_size = config.hidden_size
342
+ # Requires transformers > 4.32.0
343
+ rope_theta = getattr(config, "rope_theta", 10000)
344
+ self.self_attn = MixtralAttention(
345
+ hidden_size=self.hidden_size,
346
+ num_heads=config.num_attention_heads,
347
+ max_position=config.max_position_embeddings,
348
+ num_kv_heads=config.num_key_value_heads,
349
+ rope_theta=rope_theta,
350
+ sliding_window=config.sliding_window,
351
+ quant_config=quant_config)
352
+ self.block_sparse_moe = MixtralMoE(
353
+ num_experts=config.num_local_experts,
354
+ top_k=config.num_experts_per_tok,
355
+ hidden_size=config.hidden_size,
356
+ intermediate_size=config.intermediate_size,
357
+ quant_config=quant_config)
358
+ self.input_layernorm = RMSNorm(config.hidden_size,
359
+ eps=config.rms_norm_eps)
360
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
361
+ eps=config.rms_norm_eps)
362
+
363
+ def forward(
364
+ self,
365
+ positions: torch.Tensor,
366
+ hidden_states: torch.Tensor,
367
+ kv_cache: torch.Tensor,
368
+ attn_metadata: AttentionMetadata,
369
+ residual: Optional[torch.Tensor],
370
+ ) -> torch.Tensor:
371
+ # Self Attention
372
+ if residual is None:
373
+ residual = hidden_states
374
+ hidden_states = self.input_layernorm(hidden_states)
375
+ else:
376
+ hidden_states, residual = self.input_layernorm(
377
+ hidden_states, residual)
378
+ hidden_states = self.self_attn(
379
+ positions=positions,
380
+ hidden_states=hidden_states,
381
+ kv_cache=kv_cache,
382
+ attn_metadata=attn_metadata,
383
+ )
384
+
385
+ # Fully Connected
386
+ hidden_states, residual = self.post_attention_layernorm(
387
+ hidden_states, residual)
388
+ hidden_states = self.block_sparse_moe(hidden_states)
389
+ return hidden_states, residual
390
+
391
+
392
+ class MixtralModel(nn.Module):
393
+
394
+ def __init__(
395
+ self,
396
+ config: MixtralConfig,
397
+ quant_config: Optional[QuantizationConfig] = None,
398
+ lora_config: Optional[LoRAConfig] = None,
399
+ ) -> None:
400
+ super().__init__()
401
+ self.padding_idx = config.pad_token_id
402
+ lora_vocab = (lora_config.lora_extra_vocab_size *
403
+ (lora_config.max_loras or 1)) if lora_config else 0
404
+ self.vocab_size = config.vocab_size + lora_vocab
405
+ self.org_vocab_size = config.vocab_size
406
+
407
+ self.embed_tokens = VocabParallelEmbedding(
408
+ self.vocab_size,
409
+ config.hidden_size,
410
+ org_num_embeddings=config.vocab_size,
411
+ )
412
+ self.layers = nn.ModuleList([
413
+ MixtralDecoderLayer(config, quant_config=quant_config)
414
+ for _ in range(config.num_hidden_layers)
415
+ ])
416
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
417
+
418
+ def forward(
419
+ self,
420
+ input_ids: torch.Tensor,
421
+ positions: torch.Tensor,
422
+ kv_caches: List[torch.Tensor],
423
+ attn_metadata: AttentionMetadata,
424
+ ) -> torch.Tensor:
425
+ hidden_states = self.embed_tokens(input_ids)
426
+ residual = None
427
+ for i in range(len(self.layers)):
428
+ layer = self.layers[i]
429
+ hidden_states, residual = layer(positions, hidden_states,
430
+ kv_caches[i], attn_metadata,
431
+ residual)
432
+ hidden_states, _ = self.norm(hidden_states, residual)
433
+ return hidden_states
434
+
435
+
436
+ class MixtralForCausalLM(nn.Module):
437
+ fall_back_to_pt_during_load = False
438
+
439
+ packed_modules_mapping = {
440
+ "qkv_proj": [
441
+ "q_proj",
442
+ "k_proj",
443
+ "v_proj",
444
+ ],
445
+ }
446
+
447
+ # LoRA specific attributes
448
+ supported_lora_modules = [
449
+ "qkv_proj",
450
+ "o_proj",
451
+ "embed_tokens",
452
+ "lm_head",
453
+ ]
454
+ embedding_modules = {
455
+ "embed_tokens": "input_embeddings",
456
+ "lm_head": "output_embeddings",
457
+ }
458
+ embedding_padding_modules = ["lm_head"]
459
+
460
+ def __init__(
461
+ self,
462
+ config: MixtralConfig,
463
+ quant_config: Optional[QuantizationConfig] = None,
464
+ lora_config: Optional[LoRAConfig] = None,
465
+ ) -> None:
466
+ super().__init__()
467
+ self.config = config
468
+ self.model = MixtralModel(config,
469
+ quant_config,
470
+ lora_config=lora_config)
471
+ self.unpadded_vocab_size = config.vocab_size
472
+ if lora_config:
473
+ self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
474
+ self.lm_head = ParallelLMHead(
475
+ self.unpadded_vocab_size,
476
+ config.hidden_size,
477
+ org_num_embeddings=config.vocab_size,
478
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE
479
+ # We need bigger padding if using lora for kernel
480
+ # compatibility
481
+ if not lora_config else lora_config.lora_vocab_padding_size,
482
+ )
483
+ self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
484
+ config.vocab_size)
485
+ self.sampler = Sampler()
486
+
487
+ def forward(
488
+ self,
489
+ input_ids: torch.Tensor,
490
+ positions: torch.Tensor,
491
+ kv_caches: List[torch.Tensor],
492
+ attn_metadata: AttentionMetadata,
493
+ ) -> torch.Tensor:
494
+ hidden_states = self.model(input_ids, positions, kv_caches,
495
+ attn_metadata)
496
+ return hidden_states
497
+
498
+ def compute_logits(self, hidden_states: torch.Tensor,
499
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
500
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
501
+ sampling_metadata)
502
+ return logits
503
+
504
+ def sample(
505
+ self,
506
+ logits: Optional[torch.Tensor],
507
+ sampling_metadata: SamplingMetadata,
508
+ ) -> Optional[SamplerOutput]:
509
+ next_tokens = self.sampler(logits, sampling_metadata)
510
+ return next_tokens
511
+
512
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
513
+ stacked_params_mapping = [
514
+ # (param_name, shard_name, shard_id)
515
+ ("qkv_proj", "q_proj", "q"),
516
+ ("qkv_proj", "k_proj", "k"),
517
+ ("qkv_proj", "v_proj", "v"),
518
+ ]
519
+
520
+ expert_params_mapping = [
521
+ # These are the weight scales for the experts
522
+ # (param_name, weight_name, expert_id)
523
+ ("w13_scale" if weight_name in ["w1", "w3"] else "w2_scale",
524
+ f"experts.{expert_id}.{weight_name}.weight_scale", expert_id)
525
+ for expert_id in range(self.config.num_local_experts)
526
+ for weight_name in ["w1", "w2", "w3"]
527
+ ] + [
528
+ # These are the weights for the experts
529
+ # (param_name, weight_name, expert_id)
530
+ ("w13_weight" if weight_name in ["w1", "w3"] else "w2_weight",
531
+ f"experts.{expert_id}.{weight_name}.weight", expert_id)
532
+ for expert_id in range(self.config.num_local_experts)
533
+ for weight_name in ["w1", "w2", "w3"]
534
+ ] + [
535
+ # These are the activation scales for the experts
536
+ # (param_name, weight_name, expert_id)
537
+ ("a13_scale" if weight_name in ["w1", "w3"] else "a2_scale",
538
+ f"experts.{expert_id}.{weight_name}.act_scale", expert_id)
539
+ for expert_id in range(self.config.num_local_experts)
540
+ for weight_name in ["w1", "w2", "w3"]
541
+ ]
542
+
543
+ params_dict = dict(self.named_parameters())
544
+ for name, loaded_weight in weights:
545
+ if "rotary_emb.inv_freq" in name:
546
+ continue
547
+
548
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
549
+ if weight_name not in name:
550
+ continue
551
+ name = name.replace(weight_name, param_name)
552
+ # Skip loading extra bias for GPTQ models.
553
+ if name.endswith(".bias") and name not in params_dict:
554
+ continue
555
+ param = params_dict[name]
556
+ weight_loader = param.weight_loader
557
+ weight_loader(param, loaded_weight, shard_id)
558
+ break
559
+ else:
560
+ for param_name, weight_name, expert_id in expert_params_mapping:
561
+ if weight_name not in name:
562
+ continue
563
+ name = name.replace(weight_name, param_name)
564
+ param = params_dict[name]
565
+ weight_loader = param.weight_loader
566
+ weight_loader(param,
567
+ loaded_weight,
568
+ weight_name,
569
+ expert_id=expert_id)
570
+ break
571
+ else:
572
+ # Skip loading extra bias for GPTQ models.
573
+ if name.endswith(".bias") and name not in params_dict:
574
+ continue
575
+ param = params_dict[name]
576
+ weight_loader = getattr(param, "weight_loader",
577
+ default_weight_loader)
578
+ weight_loader(param, loaded_weight)
579
+
580
+
581
+ def all_close_1d(x: torch.Tensor) -> bool:
582
+ assert len(x.shape) == 1
583
+ return all(torch.allclose(x[0], x[i]) for i in range(x.shape[0]))