vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,262 @@
1
+ # pylint: disable=unused-argument
2
+ from typing import TYPE_CHECKING, List, Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import PretrainedConfig
7
+
8
+ from vllm.config import LoRAConfig
9
+ from vllm.distributed.communication_op import (
10
+ tensor_model_parallel_all_gather, tensor_model_parallel_all_reduce)
11
+ from vllm.distributed.parallel_state import get_tensor_model_parallel_rank
12
+ from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
13
+ MergedColumnParallelLinearWithLoRA,
14
+ MergedQKVParallelLinearWithLora,
15
+ RowParallelLinearWithLoRA)
16
+ from vllm.lora.punica import bgmv, dispatch_bgmv_low_level
17
+
18
+ if TYPE_CHECKING:
19
+ pass
20
+
21
+
22
+ def _fully_sharded_can_replace(can_replace):
23
+ """
24
+ decorator which adds the condition of fully sharded loras
25
+ intended to wrap can_replace_layer()
26
+ """
27
+
28
+ def dec(*args, **kwargs):
29
+ return (can_replace(*args, **kwargs)
30
+ and kwargs['lora_config'].fully_sharded_loras)
31
+
32
+ return dec
33
+
34
+
35
+ # these layers are based on the tensor parallelism strategy given in
36
+ # Y. Sheng et al., S-LoRA: Serving Thousands of Concurrent LoRA Adapters. 2023,
37
+ # https://arxiv.org/abs/2311.03285.
38
+
39
+
40
+ class ColumnParallelLinearWithShardedLoRA(ColumnParallelLinearWithLoRA):
41
+ """
42
+ Differs from ColumnParallelLinearWithLoRA by slicing LoRA A also.
43
+
44
+ Based on S-LoRA, slicing happens along the rank dim.
45
+ """
46
+
47
+ def slice_lora_a(self, lora_a: torch.Tensor) -> torch.Tensor:
48
+ tp_rank = get_tensor_model_parallel_rank()
49
+ shard_size = self.lora_a_stacked.shape[2]
50
+ start_idx = tp_rank * shard_size
51
+ lora_a = lora_a[:, start_idx:start_idx + shard_size]
52
+ return lora_a
53
+
54
+ def apply_weights(self, x: torch.Tensor,
55
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
56
+ output = self.base_layer.linear_method.apply_weights(
57
+ self.base_layer, x, bias)
58
+
59
+ x = x.view(-1, x.shape[-1])
60
+ output, out_orig_shape = output.view(-1,
61
+ output.shape[-1]), output.shape
62
+ buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]),
63
+ dtype=torch.float32,
64
+ device=x.device)
65
+
66
+ bgmv(buffer, x, self.lora_a_stacked,
67
+ self.indices[:self.indices_len[0]], 0, 1.0)
68
+ buffer = tensor_model_parallel_all_gather(buffer)
69
+ bgmv(output, buffer, self.lora_b_stacked,
70
+ self.indices[:self.indices_len[0]], 0, 1.0)
71
+ # now have column partitioned output
72
+
73
+ output = output.view(*out_orig_shape)
74
+ return output
75
+
76
+ @classmethod
77
+ @_fully_sharded_can_replace
78
+ def can_replace_layer(cls, source_layer: nn.Module,
79
+ lora_config: LoRAConfig, packed_modules_list: List,
80
+ model_config: Optional[PretrainedConfig]) -> bool:
81
+ # specifying kwargs so they can be easily accessed in decorator
82
+ return super().can_replace_layer(
83
+ source_layer=source_layer,
84
+ lora_config=lora_config,
85
+ packed_modules_list=packed_modules_list,
86
+ model_config=model_config,
87
+ decorate=False,
88
+ )
89
+
90
+
91
+ def _mcp_apply_weights(x, bias, layer):
92
+ """
93
+ MergedColumnParallelLinearWithShardedLoRA and
94
+ QKVParallelLinearWithShardedLora share the same
95
+ LoRa weight application method.
96
+
97
+ The main difference is the step by shard_size for lora_b which can
98
+ vary for QKVParallelLinearWithShardedLora but is constant for
99
+ MergedColumnParallelLinearWithShardedLoRA.
100
+ """
101
+ # expecting 2 for column parallel and 3 for qkv
102
+ n = len(layer.lora_a_stacked)
103
+ output = layer.base_layer.linear_method.apply_weights(
104
+ layer.base_layer, x, bias)
105
+
106
+ x = x.view(-1, x.shape[-1])
107
+ output, out_orig_shape = output.view(-1, output.shape[-1]), output.shape
108
+ buffers = torch.zeros((n, x.shape[0], layer.lora_a_stacked[0].shape[2]),
109
+ dtype=torch.float32,
110
+ device=x.device)
111
+ for idx in range(n):
112
+ bgmv(buffers[idx], x, layer.lora_a_stacked[idx],
113
+ layer.indices[:layer.indices_len[0]], 0, 1.0)
114
+
115
+ buffers = tensor_model_parallel_all_gather(buffers)
116
+ left_offset = 0
117
+ for idx in range(n):
118
+ shard_size = layer.lora_b_stacked[idx].shape[2]
119
+ dispatch_bgmv_low_level(output, buffers[idx],
120
+ layer.lora_b_stacked[idx],
121
+ layer.indices[:layer.indices_len[0]], 0, 1.0,
122
+ left_offset, shard_size)
123
+ left_offset += shard_size
124
+
125
+ output = output.view(*out_orig_shape)
126
+ # now have column partitioned and packed output
127
+ return output
128
+
129
+
130
+ class MergedColumnParallelLinearWithShardedLoRA(
131
+ MergedColumnParallelLinearWithLoRA):
132
+ """
133
+ Differs from MergedColumnParallelLinearWithLoRA by slicing the
134
+ LoRA A's also.
135
+
136
+ Based on S-LoRA, slicing happens along the rank dim.
137
+ """
138
+
139
+ def slice_lora_a(self, lora_a: List[torch.Tensor]) -> List[torch.Tensor]:
140
+ output_shard_size = self.lora_a_stacked[0].shape[2]
141
+ output_start_idx = self.tp_rank * output_shard_size
142
+ lora_a = [
143
+ lora_a[i][:, output_start_idx:output_start_idx + output_shard_size]
144
+ for i in range(2)
145
+ ]
146
+ return lora_a
147
+
148
+ def apply_weights(self, x: torch.Tensor,
149
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
150
+ return _mcp_apply_weights(x, bias, self)
151
+
152
+ @classmethod
153
+ @_fully_sharded_can_replace
154
+ def can_replace_layer(cls, source_layer: nn.Module,
155
+ lora_config: LoRAConfig, packed_modules_list: List,
156
+ model_config: Optional[PretrainedConfig]) -> bool:
157
+ # specifying kwargs so they can be easily accessed in decorator
158
+ return super().can_replace_layer(
159
+ source_layer=source_layer,
160
+ lora_config=lora_config,
161
+ packed_modules_list=packed_modules_list,
162
+ model_config=model_config,
163
+ decorate=False,
164
+ )
165
+
166
+
167
+ class MergedQKVParallelLinearWithShardedLora(MergedQKVParallelLinearWithLora):
168
+ """
169
+ Differs from QKVParallelLinearWithLora by slicing the
170
+ LoRA A's also.
171
+
172
+ Based on S-LoRA, slicing happens along the rank dim.
173
+ """
174
+
175
+ def slice_lora_a(self, lora_a: List[torch.Tensor]) -> List[torch.Tensor]:
176
+ shard_size = [self.lora_a_stacked[i].shape[2] for i in range(3)]
177
+ start_idx = [self.tp_rank * shard_size[i] for i in range(3)]
178
+ lora_a = [
179
+ lora_a[i][:, start_idx[i]:start_idx[i] +
180
+ shard_size[i]] if lora_a[i] is not None else None
181
+ for i in range(3)
182
+ ]
183
+ return lora_a
184
+
185
+ def apply_weights(self, x: torch.Tensor,
186
+ bias: Optional[torch.Tensor]) -> torch.Tensor:
187
+ return _mcp_apply_weights(x, bias, self)
188
+
189
+ @classmethod
190
+ @_fully_sharded_can_replace
191
+ def can_replace_layer(cls, source_layer: nn.Module,
192
+ lora_config: LoRAConfig, packed_modules_list: List,
193
+ model_config: Optional[PretrainedConfig]) -> bool:
194
+ # specifying kwargs so they can be easily accessed in decorator
195
+ return super().can_replace_layer(
196
+ source_layer=source_layer,
197
+ lora_config=lora_config,
198
+ packed_modules_list=packed_modules_list,
199
+ model_config=model_config,
200
+ decorate=False,
201
+ )
202
+
203
+
204
+ class RowParallelLinearWithShardedLoRA(RowParallelLinearWithLoRA):
205
+ """
206
+ Differs from RowParallelLinearWithLoRA by slicing the
207
+ LoRA B's also.
208
+
209
+ Based on S-LoRA, slicing happens along the output dim.
210
+ This yields a combined partial sum from the row parallel base
211
+ layer and column partitioned output from the LoRA.
212
+ """
213
+
214
+ def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
215
+ shard_size = self.lora_b_stacked.shape[2]
216
+ start_idx = self.tp_rank * shard_size
217
+ end_idx = (self.tp_rank + 1) * shard_size
218
+ lora_b = lora_b[:, start_idx:end_idx]
219
+ return lora_b
220
+
221
+ def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
222
+ output = self.base_layer.linear_method.apply_weights(
223
+ self.base_layer, x)
224
+
225
+ x = x.view(-1, x.shape[-1])
226
+ output, out_orig_shape = output.view(-1,
227
+ output.shape[-1]), output.shape
228
+ buffer = torch.zeros((x.shape[0], self.lora_a_stacked.shape[2]),
229
+ dtype=torch.float32,
230
+ device=x.device)
231
+ bgmv(buffer, x, self.lora_a_stacked,
232
+ self.indices[:self.indices_len[0]], 0, 1.0)
233
+ buffer = tensor_model_parallel_all_reduce(buffer)
234
+
235
+ # following S-LoRA, allows the fusing of all_gather and all_reduce
236
+ # by adding the column partitioned lora output to a slice of output
237
+ # tensor, which is a partial sum due to row parallel. All that
238
+ # remains is a standard all_reduce. User should be aware though that
239
+ # the output is not the same as a normal row_parallel, it should be
240
+ # reduced before being used
241
+ shard_size = self.lora_b_stacked.shape[2]
242
+ start_idx = self.tp_rank * shard_size
243
+ dispatch_bgmv_low_level(output, buffer, self.lora_b_stacked,
244
+ self.indices[:self.indices_len[0]], 0, 1.0,
245
+ start_idx, shard_size)
246
+
247
+ output = output.view(*out_orig_shape)
248
+ return output
249
+
250
+ @classmethod
251
+ @_fully_sharded_can_replace
252
+ def can_replace_layer(cls, source_layer: nn.Module,
253
+ lora_config: LoRAConfig, packed_modules_list: List,
254
+ model_config: Optional[PretrainedConfig]) -> bool:
255
+ # specifying kwargs so they can be easily accessed in decorator
256
+ return super().can_replace_layer(
257
+ source_layer=source_layer,
258
+ lora_config=lora_config,
259
+ packed_modules_list=packed_modules_list,
260
+ model_config=model_config,
261
+ decorate=False,
262
+ )