vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,366 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://huggingface.co/xverse/XVERSE-7B/blob/main/modeling_xverse.py
4
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
7
+ # and OPT implementations in this library. It has been modified from its
8
+ # original forms to accommodate minor architectural differences compared
9
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ """Inference-only Xverse model compatible with HuggingFace weights."""
23
+ from typing import Any, Dict, Iterable, List, Optional, Tuple
24
+
25
+ import torch
26
+ from torch import nn
27
+ from transformers import PretrainedConfig
28
+
29
+ from vllm.attention import Attention, AttentionMetadata
30
+ from vllm.config import LoRAConfig
31
+ from vllm.distributed import get_tensor_model_parallel_world_size
32
+ from vllm.model_executor.layers.activation import SiluAndMul
33
+ from vllm.model_executor.layers.layernorm import RMSNorm
34
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
35
+ QKVParallelLinear,
36
+ RowParallelLinear)
37
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
38
+ from vllm.model_executor.layers.quantization.base_config import (
39
+ QuantizationConfig)
40
+ from vllm.model_executor.layers.rotary_embedding import get_rope
41
+ from vllm.model_executor.layers.sampler import Sampler
42
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
43
+ ParallelLMHead, VocabParallelEmbedding)
44
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
45
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
46
+ from vllm.sequence import SamplerOutput
47
+
48
+
49
+ class XverseMLP(nn.Module):
50
+
51
+ def __init__(
52
+ self,
53
+ hidden_size: int,
54
+ intermediate_size: int,
55
+ hidden_act: str,
56
+ quant_config: Optional[QuantizationConfig] = None,
57
+ ) -> None:
58
+ super().__init__()
59
+ self.gate_up_proj = MergedColumnParallelLinear(
60
+ hidden_size, [intermediate_size] * 2,
61
+ bias=False,
62
+ quant_config=quant_config)
63
+ self.down_proj = RowParallelLinear(intermediate_size,
64
+ hidden_size,
65
+ bias=False,
66
+ quant_config=quant_config)
67
+ if hidden_act != "silu":
68
+ raise ValueError(f"Unsupported activation: {hidden_act}. "
69
+ "Only silu is supported for now.")
70
+ self.act_fn = SiluAndMul()
71
+
72
+ def forward(self, x):
73
+ gate, _ = self.gate_up_proj(x)
74
+ x = self.act_fn(gate)
75
+ x, _ = self.down_proj(x)
76
+ return x
77
+
78
+
79
+ class XverseAttention(nn.Module):
80
+
81
+ def __init__(
82
+ self,
83
+ hidden_size: int,
84
+ num_heads: int,
85
+ num_kv_heads: int,
86
+ rope_theta: float = 10000,
87
+ rope_scaling: Optional[Dict[str, Any]] = None,
88
+ max_position_embeddings: int = 8192,
89
+ quant_config: Optional[QuantizationConfig] = None,
90
+ bias: bool = False,
91
+ sliding_window: Optional[int] = None,
92
+ ) -> None:
93
+ super().__init__()
94
+ self.hidden_size = hidden_size
95
+ tp_size = get_tensor_model_parallel_world_size()
96
+ self.total_num_heads = num_heads
97
+ assert self.total_num_heads % tp_size == 0
98
+ self.num_heads = self.total_num_heads // tp_size
99
+ self.total_num_kv_heads = num_kv_heads
100
+ # partition the KV heads across multiple tensor parallel GPUs.
101
+ assert self.total_num_kv_heads % tp_size == 0
102
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
103
+ self.head_dim = hidden_size // self.total_num_heads
104
+ self.q_size = self.num_heads * self.head_dim
105
+ self.kv_size = self.num_kv_heads * self.head_dim
106
+ self.scaling = self.head_dim**-0.5
107
+ self.rope_theta = rope_theta
108
+ self.max_position_embeddings = max_position_embeddings
109
+
110
+ self.qkv_proj = QKVParallelLinear(
111
+ hidden_size,
112
+ self.head_dim,
113
+ self.total_num_heads,
114
+ self.total_num_kv_heads,
115
+ bias=bias,
116
+ quant_config=quant_config,
117
+ )
118
+ self.o_proj = RowParallelLinear(
119
+ self.total_num_heads * self.head_dim,
120
+ hidden_size,
121
+ bias=bias,
122
+ quant_config=quant_config,
123
+ )
124
+
125
+ self.rotary_emb = get_rope(
126
+ self.head_dim,
127
+ rotary_dim=self.head_dim,
128
+ max_position=max_position_embeddings,
129
+ base=rope_theta,
130
+ rope_scaling=rope_scaling,
131
+ )
132
+ self.attn = Attention(self.num_heads,
133
+ self.head_dim,
134
+ self.scaling,
135
+ num_kv_heads=self.num_kv_heads,
136
+ sliding_window=sliding_window)
137
+
138
+ def forward(
139
+ self,
140
+ positions: torch.Tensor,
141
+ hidden_states: torch.Tensor,
142
+ kv_cache: torch.Tensor,
143
+ attn_metadata: AttentionMetadata,
144
+ ) -> torch.Tensor:
145
+ qkv, _ = self.qkv_proj(hidden_states)
146
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
147
+ q, k = self.rotary_emb(positions, q, k)
148
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
149
+ output, _ = self.o_proj(attn_output)
150
+ return output
151
+
152
+
153
+ class XverseDecoderLayer(nn.Module):
154
+
155
+ def __init__(
156
+ self,
157
+ config: PretrainedConfig,
158
+ quant_config: Optional[QuantizationConfig] = None,
159
+ ) -> None:
160
+ super().__init__()
161
+ self.hidden_size = config.hidden_size
162
+ rope_theta = getattr(config, "rope_theta", 10000)
163
+ rope_scaling = getattr(config, "rope_scaling", None)
164
+ max_position_embeddings = getattr(config, "max_position_embeddings",
165
+ 8192)
166
+ sliding_window = getattr(config, "sliding_window", None)
167
+ self.self_attn = XverseAttention(
168
+ hidden_size=self.hidden_size,
169
+ num_heads=config.num_attention_heads,
170
+ num_kv_heads=getattr(config, "num_key_value_heads",
171
+ config.num_attention_heads),
172
+ rope_theta=rope_theta,
173
+ rope_scaling=rope_scaling,
174
+ max_position_embeddings=max_position_embeddings,
175
+ quant_config=quant_config,
176
+ bias=getattr(config, "bias", False),
177
+ sliding_window=sliding_window,
178
+ )
179
+ self.mlp = XverseMLP(
180
+ hidden_size=self.hidden_size,
181
+ intermediate_size=config.intermediate_size,
182
+ hidden_act=config.hidden_act,
183
+ quant_config=quant_config,
184
+ )
185
+ self.input_layernorm = RMSNorm(config.hidden_size,
186
+ eps=config.rms_norm_eps)
187
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
188
+ eps=config.rms_norm_eps)
189
+
190
+ def forward(
191
+ self,
192
+ positions: torch.Tensor,
193
+ hidden_states: torch.Tensor,
194
+ kv_cache: torch.Tensor,
195
+ attn_metadata: AttentionMetadata,
196
+ residual: Optional[torch.Tensor],
197
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
198
+ # Self Attention
199
+ if residual is None:
200
+ residual = hidden_states
201
+ hidden_states = self.input_layernorm(hidden_states)
202
+ else:
203
+ hidden_states, residual = self.input_layernorm(
204
+ hidden_states, residual)
205
+ hidden_states = self.self_attn(
206
+ positions=positions,
207
+ hidden_states=hidden_states,
208
+ kv_cache=kv_cache,
209
+ attn_metadata=attn_metadata,
210
+ )
211
+
212
+ # Fully Connected
213
+ hidden_states, residual = self.post_attention_layernorm(
214
+ hidden_states, residual)
215
+ hidden_states = self.mlp(hidden_states)
216
+ return hidden_states, residual
217
+
218
+
219
+ class XverseModel(nn.Module):
220
+
221
+ def __init__(
222
+ self,
223
+ config: PretrainedConfig,
224
+ quant_config: Optional[QuantizationConfig] = None,
225
+ lora_config: Optional[LoRAConfig] = None,
226
+ ) -> None:
227
+ super().__init__()
228
+ self.config = config
229
+ self.padding_idx = config.pad_token_id
230
+ lora_vocab = (lora_config.lora_extra_vocab_size *
231
+ (lora_config.max_loras or 1)) if lora_config else 0
232
+ self.vocab_size = config.vocab_size + lora_vocab
233
+ self.org_vocab_size = config.vocab_size
234
+ self.embed_tokens = VocabParallelEmbedding(
235
+ self.vocab_size,
236
+ config.hidden_size,
237
+ org_num_embeddings=config.vocab_size,
238
+ )
239
+ self.layers = nn.ModuleList([
240
+ XverseDecoderLayer(config, quant_config)
241
+ for _ in range(config.num_hidden_layers)
242
+ ])
243
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
244
+
245
+ def forward(
246
+ self,
247
+ input_ids: torch.Tensor,
248
+ positions: torch.Tensor,
249
+ kv_caches: List[torch.Tensor],
250
+ attn_metadata: AttentionMetadata,
251
+ ) -> torch.Tensor:
252
+ hidden_states = self.embed_tokens(input_ids)
253
+ residual = None
254
+ for i in range(len(self.layers)):
255
+ layer = self.layers[i]
256
+ hidden_states, residual = layer(
257
+ positions,
258
+ hidden_states,
259
+ kv_caches[i],
260
+ attn_metadata,
261
+ residual,
262
+ )
263
+ hidden_states, _ = self.norm(hidden_states, residual)
264
+ return hidden_states
265
+
266
+
267
+ class XverseForCausalLM(nn.Module):
268
+ packed_modules_mapping = {
269
+ "qkv_proj": [
270
+ "q_proj",
271
+ "k_proj",
272
+ "v_proj",
273
+ ],
274
+ "gate_up_proj": [
275
+ "gate_proj",
276
+ "up_proj",
277
+ ],
278
+ }
279
+
280
+ # LoRA specific attributes
281
+ supported_lora_modules = [
282
+ "qkv_proj",
283
+ "o_proj",
284
+ "gate_up_proj",
285
+ "down_proj",
286
+ "embed_tokens",
287
+ "lm_head",
288
+ ]
289
+ embedding_modules = {
290
+ "embed_tokens": "input_embeddings",
291
+ "lm_head": "output_embeddings",
292
+ }
293
+ embedding_padding_modules = ["lm_head"]
294
+
295
+ def __init__(
296
+ self,
297
+ config: PretrainedConfig,
298
+ quant_config: Optional[QuantizationConfig] = None,
299
+ lora_config=None,
300
+ ) -> None:
301
+ super().__init__()
302
+ self.config = config
303
+ self.quant_config = quant_config
304
+ self.model = XverseModel(config, quant_config)
305
+ self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
306
+ self.logits_processor = LogitsProcessor(config.vocab_size)
307
+ self.sampler = Sampler()
308
+
309
+ def forward(
310
+ self,
311
+ input_ids: torch.Tensor,
312
+ positions: torch.Tensor,
313
+ kv_caches: List[torch.Tensor],
314
+ attn_metadata: AttentionMetadata,
315
+ ) -> torch.Tensor:
316
+ hidden_states = self.model(input_ids, positions, kv_caches,
317
+ attn_metadata)
318
+ return hidden_states
319
+
320
+ def compute_logits(self, hidden_states: torch.Tensor,
321
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
322
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
323
+ sampling_metadata)
324
+ return logits
325
+
326
+ def sample(
327
+ self,
328
+ logits: torch.Tensor,
329
+ sampling_metadata: SamplingMetadata,
330
+ ) -> Optional[SamplerOutput]:
331
+ next_tokens = self.sampler(logits, sampling_metadata)
332
+ return next_tokens
333
+
334
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
335
+ stacked_params_mapping = [
336
+ ("qkv_proj", "q_proj", "q"),
337
+ ("qkv_proj", "k_proj", "k"),
338
+ ("qkv_proj", "v_proj", "v"),
339
+ ("gate_up_proj", "gate_proj", 0),
340
+ ("gate_up_proj", "up_proj", 1),
341
+ ]
342
+ params_dict = dict(self.named_parameters())
343
+ for name, loaded_weight in weights:
344
+ if ("rotary_emb.inv_freq" in name
345
+ or "rotary_emb.cos_cached" in name
346
+ or "rotary_emb.sin_cached" in name):
347
+ continue
348
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
349
+ if weight_name not in name:
350
+ continue
351
+ name = name.replace(weight_name, param_name)
352
+ # Skip loading extra bias for GPTQ models.
353
+ if name.endswith(".bias") and name not in params_dict:
354
+ continue
355
+ param = params_dict[name]
356
+ weight_loader = param.weight_loader
357
+ weight_loader(param, loaded_weight, shard_id)
358
+ break
359
+ else:
360
+ # Skip loading extra bias for GPTQ models.
361
+ if name.endswith(".bias") and name not in params_dict:
362
+ continue
363
+ param = params_dict[name]
364
+ weight_loader = getattr(param, "weight_loader",
365
+ default_weight_loader)
366
+ weight_loader(param, loaded_weight)