vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,333 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://huggingface.co/core42/jais-30b-chat-v3/blob/main/modeling_jais.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights
6
+ # reserved.
7
+ # Copyright 2023 Cerebras Systems.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Inference-only Jais model compatible with HuggingFace weights."""
21
+
22
+ import math
23
+ from typing import Iterable, List, Optional, Tuple
24
+
25
+ import torch
26
+ from torch import nn
27
+
28
+ from vllm.attention import Attention, AttentionMetadata
29
+ from vllm.distributed import (get_tensor_model_parallel_rank,
30
+ get_tensor_model_parallel_world_size)
31
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
32
+ QKVParallelLinear,
33
+ RowParallelLinear)
34
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
35
+ from vllm.model_executor.layers.quantization.base_config import (
36
+ QuantizationConfig)
37
+ from vllm.model_executor.layers.sampler import Sampler
38
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
39
+ VocabParallelEmbedding)
40
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
41
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
42
+ from vllm.sequence import SamplerOutput
43
+ from vllm.transformers_utils.configs import JAISConfig
44
+
45
+
46
+ class SwiGLUActivation(nn.Module):
47
+
48
+ def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
49
+ return x1 * nn.functional.silu(x2)
50
+
51
+
52
+ def _get_alibi_slopes(n):
53
+
54
+ def get_slopes_power_of_2(n):
55
+ start = 2**(-(2**-(math.log2(n) - 3)))
56
+ ratio = start
57
+ return [start * ratio**i for i in range(n)]
58
+
59
+ if math.log2(n).is_integer():
60
+ return get_slopes_power_of_2(n)
61
+ else:
62
+ closest_power_of_2 = 2**math.floor(math.log2(n))
63
+ return (get_slopes_power_of_2(closest_power_of_2) + _get_alibi_slopes(
64
+ 2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
65
+
66
+
67
+ class JAISAttention(nn.Module):
68
+
69
+ def __init__(
70
+ self,
71
+ config: JAISConfig,
72
+ quant_config: Optional[QuantizationConfig] = None,
73
+ ):
74
+ super().__init__()
75
+ self.hidden_size = config.hidden_size
76
+ total_num_heads = config.num_attention_heads
77
+ tensor_model_parallel_world_size = (
78
+ get_tensor_model_parallel_world_size())
79
+ assert total_num_heads % tensor_model_parallel_world_size == 0
80
+ self.num_heads = total_num_heads // tensor_model_parallel_world_size
81
+ self.head_dim = self.hidden_size // total_num_heads
82
+ if hasattr(config, "scale_qk_dot_by_d"):
83
+ config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d
84
+ self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
85
+ self.scale = self.head_dim**-self.attn_scale_power
86
+
87
+ self.c_attn = QKVParallelLinear(
88
+ self.hidden_size,
89
+ self.head_dim,
90
+ total_num_heads,
91
+ bias=True,
92
+ quant_config=quant_config,
93
+ )
94
+ self.c_proj = RowParallelLinear(
95
+ self.hidden_size,
96
+ self.hidden_size,
97
+ bias=True,
98
+ quant_config=quant_config,
99
+ )
100
+
101
+ tp_rank = get_tensor_model_parallel_rank()
102
+ head_start = tp_rank * self.num_heads
103
+ head_end = (tp_rank + 1) * self.num_heads
104
+ alibi_slopes = _get_alibi_slopes(total_num_heads)
105
+ alibi_slopes = alibi_slopes[head_start:head_end]
106
+ self.attn = Attention(
107
+ self.num_heads,
108
+ self.head_dim,
109
+ scale=self.scale,
110
+ alibi_slopes=alibi_slopes,
111
+ )
112
+
113
+ def forward(
114
+ self,
115
+ hidden_states: torch.Tensor,
116
+ kv_cache: torch.Tensor,
117
+ attn_metadata: AttentionMetadata,
118
+ ) -> torch.Tensor:
119
+ qkv, _ = self.c_attn(hidden_states)
120
+ q, k, v = qkv.chunk(chunks=3, dim=-1)
121
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
122
+ attn_output, _ = self.c_proj(attn_output)
123
+ return attn_output
124
+
125
+
126
+ class JAISMLP(nn.Module):
127
+
128
+ def __init__(
129
+ self,
130
+ intermediate_size: int,
131
+ config: JAISConfig,
132
+ quant_config: Optional[QuantizationConfig] = None,
133
+ ):
134
+ super().__init__()
135
+ hidden_size = config.hidden_size
136
+ self.swiglu = config.activation_function == "swiglu"
137
+ self.c_fc = ColumnParallelLinear(
138
+ hidden_size,
139
+ intermediate_size,
140
+ bias=True,
141
+ quant_config=quant_config,
142
+ )
143
+ self.c_fc2 = (ColumnParallelLinear(
144
+ hidden_size,
145
+ intermediate_size,
146
+ bias=True,
147
+ quant_config=quant_config,
148
+ ) if self.swiglu else None)
149
+ self.c_proj = RowParallelLinear(
150
+ intermediate_size,
151
+ hidden_size,
152
+ bias=True,
153
+ quant_config=quant_config,
154
+ )
155
+
156
+ self.act = SwiGLUActivation()
157
+
158
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
159
+ if self.swiglu:
160
+ hidden_states2, _ = self.c_fc2(hidden_states)
161
+ hidden_states, _ = self.c_fc(hidden_states)
162
+ hidden_states = (self.act(hidden_states, hidden_states2)
163
+ if self.swiglu else self.act(hidden_states))
164
+ hidden_states, _ = self.c_proj(hidden_states)
165
+ return hidden_states
166
+
167
+
168
+ class JAISBlock(nn.Module):
169
+
170
+ def __init__(
171
+ self,
172
+ config: JAISConfig,
173
+ quant_config: Optional[QuantizationConfig] = None,
174
+ ):
175
+ super().__init__()
176
+ hidden_size = config.hidden_size
177
+ inner_dim = (config.n_inner if config.n_inner is not None else 4 *
178
+ hidden_size)
179
+
180
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
181
+ self.attn = JAISAttention(config, quant_config)
182
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
183
+ self.mlp = JAISMLP(inner_dim, config, quant_config)
184
+
185
+ def forward(
186
+ self,
187
+ hidden_states: torch.Tensor,
188
+ kv_cache: torch.Tensor,
189
+ attn_metadata: AttentionMetadata,
190
+ ) -> torch.Tensor:
191
+ residual = hidden_states
192
+ hidden_states = self.ln_1(hidden_states)
193
+ attn_output = self.attn(
194
+ hidden_states=hidden_states,
195
+ kv_cache=kv_cache,
196
+ attn_metadata=attn_metadata,
197
+ )
198
+ # residual connection
199
+ hidden_states = attn_output + residual
200
+
201
+ residual = hidden_states
202
+ hidden_states = self.ln_2(hidden_states)
203
+ feed_forward_hidden_states = self.mlp(hidden_states)
204
+ # residual connection
205
+ hidden_states = residual + feed_forward_hidden_states
206
+ return hidden_states
207
+
208
+
209
+ class JAISModel(nn.Module):
210
+
211
+ def __init__(
212
+ self,
213
+ config: JAISConfig,
214
+ quant_config: Optional[QuantizationConfig] = None,
215
+ ):
216
+ super().__init__()
217
+ self.config = config
218
+ assert not config.add_cross_attention
219
+ assert not config.scale_attn_by_inverse_layer_idx
220
+ assert not config.reorder_and_upcast_attn
221
+ self.embed_dim = config.hidden_size
222
+ self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
223
+ self.wpe = (nn.Embedding(config.max_position_embeddings,
224
+ self.embed_dim)
225
+ if config.position_embedding_type != "alibi" else None)
226
+ if hasattr(config, "embeddings_scale"):
227
+ self.embeddings_scale = config.embeddings_scale
228
+ else:
229
+ self.embeddings_scale = config.mup_embeddings_scale
230
+ self.h = nn.ModuleList([
231
+ JAISBlock(config, quant_config)
232
+ for _ in range(config.num_hidden_layers)
233
+ ])
234
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
235
+
236
+ def forward(
237
+ self,
238
+ input_ids: torch.Tensor,
239
+ position_ids: torch.Tensor,
240
+ kv_caches: List[torch.Tensor],
241
+ attn_metadata: AttentionMetadata,
242
+ ) -> torch.Tensor:
243
+ inputs_embeds = self.wte(input_ids)
244
+ if self.wpe is not None:
245
+ position_embeds = self.wpe(position_ids)
246
+ hidden_states = inputs_embeds + position_embeds
247
+ else:
248
+ hidden_states = inputs_embeds
249
+ hidden_states *= torch.tensor(float(self.embeddings_scale),
250
+ dtype=hidden_states.dtype)
251
+
252
+ for i in range(len(self.h)):
253
+ layer = self.h[i]
254
+ hidden_states = layer(hidden_states, kv_caches[i], attn_metadata)
255
+
256
+ hidden_states = self.ln_f(hidden_states)
257
+ return hidden_states
258
+
259
+
260
+ class JAISLMHeadModel(nn.Module):
261
+
262
+ def __init__(
263
+ self,
264
+ config: JAISConfig,
265
+ quant_config: Optional[QuantizationConfig] = None,
266
+ ):
267
+ super().__init__()
268
+ self.config = config
269
+ self.quant_config = quant_config
270
+ self.transformer = JAISModel(config, quant_config)
271
+ self.lm_head_weight = self.transformer.wte.weight
272
+ if hasattr(config, "width_scale"):
273
+ self.output_logits_scale = config.width_scale
274
+ else:
275
+ self.output_logits_scale = (config.mup_output_alpha *
276
+ config.mup_width_scale)
277
+ self.logits_processor = LogitsProcessor(vocab_size=config.vocab_size,
278
+ scale=self.output_logits_scale)
279
+ self.sampler = Sampler()
280
+
281
+ def forward(
282
+ self,
283
+ input_ids: torch.Tensor,
284
+ positions: torch.Tensor,
285
+ kv_caches: List[torch.Tensor],
286
+ attn_metadata: AttentionMetadata,
287
+ ) -> torch.Tensor:
288
+ hidden_states = self.transformer(input_ids, positions, kv_caches,
289
+ attn_metadata)
290
+ return hidden_states
291
+
292
+ def compute_logits(self, hidden_states: torch.Tensor,
293
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
294
+ logits = self.logits_processor(self.lm_head_weight, hidden_states,
295
+ sampling_metadata)
296
+ return logits
297
+
298
+ def sample(
299
+ self,
300
+ logits: torch.Tensor,
301
+ sampling_metadata: SamplingMetadata,
302
+ ) -> Optional[SamplerOutput]:
303
+ next_tokens = self.sampler(logits, sampling_metadata)
304
+ return next_tokens
305
+
306
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
307
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
308
+ for name, loaded_weight in weights:
309
+ if "lm_head.weight" in name:
310
+ # GPT-2 ties the weights of the embedding layer and the final
311
+ # linear layer.
312
+ continue
313
+ if ".attn.bias" in name or ".attn.masked_bias" in name:
314
+ # Skip attention mask.
315
+ # NOTE: "c_attn.bias" should not be skipped.
316
+ continue
317
+ if "relative_pe" in name:
318
+ continue
319
+ if not name.startswith("transformer."):
320
+ name = "transformer." + name
321
+ param = params_dict[name]
322
+ # The HF's GPT-2 implementation uses Conv1D instead of Linear.
323
+ # Because of this, we need to transpose the weights.
324
+ # Note(zhuohan): the logic below might break quantized models.
325
+ for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
326
+ if conv1d_weight_name not in name:
327
+ continue
328
+ if not name.endswith(".weight"):
329
+ continue
330
+ loaded_weight = loaded_weight.t()
331
+ weight_loader = getattr(param, "weight_loader",
332
+ default_weight_loader)
333
+ weight_loader(param, loaded_weight)