vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,258 @@
|
|
1
|
+
"""A block manager that manages token blocks."""
|
2
|
+
from typing import Dict, List, Optional
|
3
|
+
from typing import Sequence as GenericSequence
|
4
|
+
|
5
|
+
from vllm.core.block.block_table import BlockTable
|
6
|
+
from vllm.core.block.cpu_gpu_block_allocator import CpuGpuBlockAllocator
|
7
|
+
from vllm.core.interfaces import AllocStatus, BlockSpaceManager
|
8
|
+
from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
|
9
|
+
from vllm.utils import Device
|
10
|
+
|
11
|
+
SeqId = int
|
12
|
+
|
13
|
+
|
14
|
+
class BlockSpaceManagerV2(BlockSpaceManager):
|
15
|
+
"""BlockSpaceManager which manages the allocation of KV cache.
|
16
|
+
|
17
|
+
It owns responsibility for allocation, swapping, allocating memory for
|
18
|
+
autoregressively-generated tokens, and other advanced features such as
|
19
|
+
prefix caching, forking/copy-on-write, and sliding-window memory allocation.
|
20
|
+
|
21
|
+
The current implementation is partial; in particular prefix caching and
|
22
|
+
sliding-window are not feature complete. This class implements the design
|
23
|
+
described in https://github.com/vllm-project/vllm/pull/3492.
|
24
|
+
|
25
|
+
Lookahead slots
|
26
|
+
The block manager has the notion of a "lookahead slot". These are slots
|
27
|
+
in the KV cache that are allocated for a sequence. Unlike the other
|
28
|
+
allocated slots, the content of these slots is undefined -- the worker
|
29
|
+
may use the memory allocations in any way.
|
30
|
+
|
31
|
+
In practice, a worker could use these lookahead slots to run multiple
|
32
|
+
forward passes for a single scheduler invocation. Each successive
|
33
|
+
forward pass would write KV activations to the corresponding lookahead
|
34
|
+
slot. This allows low inter-token latency use-cases, where the overhead
|
35
|
+
of continuous batching scheduling is amortized over >1 generated tokens.
|
36
|
+
|
37
|
+
Speculative decoding uses lookahead slots to store KV activations of
|
38
|
+
proposal tokens.
|
39
|
+
|
40
|
+
See https://github.com/vllm-project/vllm/pull/3250 for more information
|
41
|
+
on lookahead scheduling.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
block_size (int): The size of each memory block.
|
45
|
+
num_gpu_blocks (int): The number of memory blocks allocated on GPU.
|
46
|
+
num_cpu_blocks (int): The number of memory blocks allocated on CPU.
|
47
|
+
watermark (float, optional): The threshold used for memory swapping.
|
48
|
+
Defaults to 0.01.
|
49
|
+
sliding_window (Optional[int], optional): The size of the sliding
|
50
|
+
window. Defaults to None.
|
51
|
+
enable_caching (bool, optional): Flag indicating whether caching is
|
52
|
+
enabled. Defaults to False.
|
53
|
+
"""
|
54
|
+
|
55
|
+
def __init__(
|
56
|
+
self,
|
57
|
+
block_size: int,
|
58
|
+
num_gpu_blocks: int,
|
59
|
+
num_cpu_blocks: int,
|
60
|
+
watermark: float = 0.01,
|
61
|
+
sliding_window: Optional[int] = None,
|
62
|
+
enable_caching: bool = False,
|
63
|
+
) -> None:
|
64
|
+
self.block_size = block_size
|
65
|
+
self.num_total_gpu_blocks = num_gpu_blocks
|
66
|
+
self.num_total_cpu_blocks = num_cpu_blocks
|
67
|
+
|
68
|
+
assert sliding_window is None, "Sliding window not yet supported"
|
69
|
+
|
70
|
+
self.block_sliding_window = None
|
71
|
+
|
72
|
+
self.watermark = watermark
|
73
|
+
assert watermark >= 0.0
|
74
|
+
|
75
|
+
self.enable_caching = enable_caching
|
76
|
+
|
77
|
+
self.watermark_blocks = int(watermark * num_gpu_blocks)
|
78
|
+
|
79
|
+
self.block_allocator = CpuGpuBlockAllocator.create(
|
80
|
+
allocator_type="prefix_caching" if enable_caching else "naive",
|
81
|
+
num_gpu_blocks=num_gpu_blocks,
|
82
|
+
num_cpu_blocks=num_cpu_blocks,
|
83
|
+
block_size=block_size,
|
84
|
+
)
|
85
|
+
|
86
|
+
self.block_tables: Dict[SeqId, BlockTable] = {}
|
87
|
+
|
88
|
+
def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
|
89
|
+
# FIXME(woosuk): Here we assume that all sequences in the group share
|
90
|
+
# the same prompt. This may not be true for preempted sequences.
|
91
|
+
seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]
|
92
|
+
|
93
|
+
num_required_blocks = BlockTable.get_num_required_blocks(
|
94
|
+
seq.get_token_ids(),
|
95
|
+
block_size=self.block_size,
|
96
|
+
)
|
97
|
+
|
98
|
+
assert self.block_sliding_window is None
|
99
|
+
if self.block_sliding_window is not None:
|
100
|
+
num_required_blocks = min(num_required_blocks,
|
101
|
+
self.block_sliding_window)
|
102
|
+
|
103
|
+
num_free_gpu_blocks = self.block_allocator.get_num_free_blocks(
|
104
|
+
device=Device.GPU)
|
105
|
+
|
106
|
+
# Use watermark to avoid frequent cache eviction.
|
107
|
+
if (self.num_total_gpu_blocks - num_required_blocks <
|
108
|
+
self.watermark_blocks):
|
109
|
+
return AllocStatus.NEVER
|
110
|
+
if num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks:
|
111
|
+
return AllocStatus.OK
|
112
|
+
else:
|
113
|
+
return AllocStatus.LATER
|
114
|
+
|
115
|
+
def allocate(self, seq_group: SequenceGroup) -> None:
|
116
|
+
waiting_seqs = seq_group.get_seqs(status=SequenceStatus.WAITING)
|
117
|
+
assert not (set(seq.seq_id for seq in waiting_seqs)
|
118
|
+
& self.block_tables.keys()), "block table already exists"
|
119
|
+
|
120
|
+
# NOTE: Here we assume that all sequences in the group have the same
|
121
|
+
# prompt.
|
122
|
+
seq = waiting_seqs[0]
|
123
|
+
|
124
|
+
block_table = BlockTable(
|
125
|
+
block_size=self.block_size,
|
126
|
+
block_allocator=self.block_allocator,
|
127
|
+
)
|
128
|
+
assert self.block_sliding_window is None
|
129
|
+
block_table.allocate(seq.get_token_ids())
|
130
|
+
self.block_tables[seq.seq_id] = block_table
|
131
|
+
|
132
|
+
# Assign the block table for each sequence.
|
133
|
+
for seq in waiting_seqs[1:]:
|
134
|
+
self.block_tables[seq.seq_id] = block_table.fork()
|
135
|
+
|
136
|
+
def can_append_slots(self, seq_group: SequenceGroup,
|
137
|
+
num_lookahead_slots: int) -> bool:
|
138
|
+
"""Determine if there is enough space in the GPU KV cache to continue
|
139
|
+
generation of the specified sequence group.
|
140
|
+
|
141
|
+
We use a worst-case heuristic: assume each touched block will require a
|
142
|
+
new allocation (either via CoW or new block). We can append slots if the
|
143
|
+
number of touched blocks is less than the number of free blocks.
|
144
|
+
|
145
|
+
"Lookahead slots" are slots that are allocated in addition to the slots
|
146
|
+
for known tokens. The contents of the lookahead slots are not defined.
|
147
|
+
This is used by speculative decoding when speculating future tokens.
|
148
|
+
"""
|
149
|
+
|
150
|
+
num_touched_blocks = 0
|
151
|
+
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
|
152
|
+
block_table = self.block_tables[seq.seq_id]
|
153
|
+
|
154
|
+
num_touched_blocks += (
|
155
|
+
block_table.get_num_blocks_touched_by_append_slots(
|
156
|
+
token_ids=block_table.get_unseen_token_ids(
|
157
|
+
seq.get_token_ids()),
|
158
|
+
num_lookahead_slots=num_lookahead_slots,
|
159
|
+
))
|
160
|
+
|
161
|
+
num_free_gpu_blocks = self.block_allocator.get_num_free_blocks(
|
162
|
+
Device.GPU)
|
163
|
+
return num_touched_blocks <= num_free_gpu_blocks
|
164
|
+
|
165
|
+
def append_slots(
|
166
|
+
self,
|
167
|
+
seq: Sequence,
|
168
|
+
num_lookahead_slots: int,
|
169
|
+
) -> Dict[int, List[int]]:
|
170
|
+
|
171
|
+
block_table = self.block_tables[seq.seq_id]
|
172
|
+
|
173
|
+
block_table.append_token_ids(
|
174
|
+
token_ids=block_table.get_unseen_token_ids(seq.get_token_ids()),
|
175
|
+
num_lookahead_slots=num_lookahead_slots,
|
176
|
+
)
|
177
|
+
|
178
|
+
# Return any new copy-on-writes.
|
179
|
+
new_cows = self.block_allocator.clear_copy_on_writes()
|
180
|
+
return new_cows
|
181
|
+
|
182
|
+
def free(self, seq: Sequence) -> None:
|
183
|
+
if seq.seq_id not in self.block_tables:
|
184
|
+
# Already freed or haven't been scheduled yet.
|
185
|
+
return
|
186
|
+
self.block_tables[seq.seq_id].free()
|
187
|
+
del self.block_tables[seq.seq_id]
|
188
|
+
|
189
|
+
def get_block_table(self, seq: Sequence) -> List[int]:
|
190
|
+
assert seq.seq_id in self.block_tables
|
191
|
+
block_ids = self.block_tables[seq.seq_id].physical_block_ids
|
192
|
+
assert all(b is not None for b in block_ids)
|
193
|
+
return block_ids # type: ignore
|
194
|
+
|
195
|
+
def access_all_blocks_in_seq(self, seq: Sequence, now: float):
|
196
|
+
# Update the last accessed time of all the blocks accessed
|
197
|
+
# in this step.
|
198
|
+
# And the accessed time is only useful for prefix caching now,
|
199
|
+
# as it support internal evictor policy for which cached
|
200
|
+
# block could be refilled, to keep cached content could be reused
|
201
|
+
# at max extend.
|
202
|
+
if self.enable_caching:
|
203
|
+
block_table = self.block_tables[seq.seq_id]
|
204
|
+
block_ids = []
|
205
|
+
for block_id in block_table.physical_block_ids:
|
206
|
+
block_ids.append(block_id)
|
207
|
+
self.block_allocator.mark_blocks_as_accessed(
|
208
|
+
block_ids, # type: ignore
|
209
|
+
now)
|
210
|
+
|
211
|
+
def mark_blocks_as_computed(self, seq_group: SequenceGroup):
|
212
|
+
# The only need for mark block as computed is for prefix caching,
|
213
|
+
# while currently we could determine whether one block is computed
|
214
|
+
# or not by check whether it has content hash.
|
215
|
+
# So this function is useless for block_v2.
|
216
|
+
pass
|
217
|
+
|
218
|
+
def get_common_computed_block_ids(
|
219
|
+
self, seqs: List[Sequence]) -> GenericSequence[int]:
|
220
|
+
"""Determine which blocks for which we skip prefill.
|
221
|
+
|
222
|
+
With prefix caching we can skip prefill for previously-generated blocks.
|
223
|
+
Currently, the attention implementation only supports skipping cached
|
224
|
+
blocks if they are a contiguous prefix of cached blocks.
|
225
|
+
|
226
|
+
This method determines which blocks can be safely skipped for all
|
227
|
+
sequences in the sequence group.
|
228
|
+
"""
|
229
|
+
seq_block_ids = [
|
230
|
+
self.block_tables[seq.seq_id].physical_block_ids for seq in seqs
|
231
|
+
]
|
232
|
+
# NOTE(sang): This assumes seq_block_ids doesn't contain any None.
|
233
|
+
return self.block_allocator.get_common_computed_block_ids(
|
234
|
+
seq_block_ids) # type: ignore
|
235
|
+
|
236
|
+
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
|
237
|
+
src_block_table = self.block_tables[parent_seq.seq_id]
|
238
|
+
self.block_tables[child_seq.seq_id] = src_block_table.fork()
|
239
|
+
|
240
|
+
def can_swap_in(self, seq_group: SequenceGroup,
|
241
|
+
num_lookahead_slots: int) -> AllocStatus:
|
242
|
+
return AllocStatus.LATER
|
243
|
+
|
244
|
+
def swap_in(self, seq_group: SequenceGroup,
|
245
|
+
num_lookahead_slots: int) -> Dict[int, int]:
|
246
|
+
raise NotImplementedError
|
247
|
+
|
248
|
+
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
|
249
|
+
return False
|
250
|
+
|
251
|
+
def swap_out(self, seq_group: SequenceGroup) -> Dict[int, int]:
|
252
|
+
raise NotImplementedError
|
253
|
+
|
254
|
+
def get_num_free_gpu_blocks(self) -> int:
|
255
|
+
return self.block_allocator.get_num_free_blocks(Device.GPU)
|
256
|
+
|
257
|
+
def get_num_free_cpu_blocks(self) -> int:
|
258
|
+
return self.block_allocator.get_num_free_blocks(Device.CPU)
|
vllm/core/evictor_v1.py
ADDED
@@ -0,0 +1,105 @@
|
|
1
|
+
import enum
|
2
|
+
from abc import ABC, abstractmethod, abstractproperty
|
3
|
+
from typing import OrderedDict
|
4
|
+
|
5
|
+
from vllm.block import PhysicalTokenBlock
|
6
|
+
|
7
|
+
|
8
|
+
class EvictionPolicy(enum.Enum):
|
9
|
+
"""Enum for eviction policy used by make_evictor to instantiate the correct
|
10
|
+
Evictor subclass.
|
11
|
+
"""
|
12
|
+
LRU = enum.auto()
|
13
|
+
|
14
|
+
|
15
|
+
class Evictor(ABC):
|
16
|
+
"""The Evictor subclasses should be used by the BlockAllocator class to
|
17
|
+
handle eviction of freed PhysicalTokenBlocks.
|
18
|
+
"""
|
19
|
+
|
20
|
+
@abstractmethod
|
21
|
+
def __init__(self):
|
22
|
+
pass
|
23
|
+
|
24
|
+
@abstractmethod
|
25
|
+
def __contains__(self, block_hash: int) -> bool:
|
26
|
+
pass
|
27
|
+
|
28
|
+
@abstractmethod
|
29
|
+
def evict(self) -> PhysicalTokenBlock:
|
30
|
+
"""Runs the eviction algorithm and returns the evicted block"""
|
31
|
+
pass
|
32
|
+
|
33
|
+
@abstractmethod
|
34
|
+
def add(self, block: PhysicalTokenBlock):
|
35
|
+
"""Adds block to the evictor, making it a candidate for eviction"""
|
36
|
+
pass
|
37
|
+
|
38
|
+
@abstractmethod
|
39
|
+
def remove(self, block_hash: int) -> PhysicalTokenBlock:
|
40
|
+
"""Simply removes the block with the hash value block_hash from the
|
41
|
+
evictor. Caller is responsible for making sure that block_hash is
|
42
|
+
contained in the evictor before calling remove. Should be used to
|
43
|
+
"bring back" blocks that have been freed but not evicted yet.
|
44
|
+
"""
|
45
|
+
pass
|
46
|
+
|
47
|
+
@abstractproperty
|
48
|
+
def num_blocks(self) -> int:
|
49
|
+
pass
|
50
|
+
|
51
|
+
|
52
|
+
class LRUEvictor(Evictor):
|
53
|
+
"""Evicts in a least-recently-used order using the last_accessed timestamp
|
54
|
+
that's recorded in the PhysicalTokenBlock. If there are multiple blocks with
|
55
|
+
the same last_accessed time, then the one with the largest num_hashed_tokens
|
56
|
+
will be evicted. If two blocks each have the lowest last_accessed time and
|
57
|
+
highest num_hashed_tokens value, then one will be chose arbitrarily
|
58
|
+
"""
|
59
|
+
|
60
|
+
def __init__(self):
|
61
|
+
self.free_table: OrderedDict[int, PhysicalTokenBlock] = OrderedDict()
|
62
|
+
|
63
|
+
def __contains__(self, block_hash: int) -> bool:
|
64
|
+
return block_hash in self.free_table
|
65
|
+
|
66
|
+
def evict(self) -> PhysicalTokenBlock:
|
67
|
+
if len(self.free_table) == 0:
|
68
|
+
raise ValueError("No usable cache memory left")
|
69
|
+
|
70
|
+
evicted_block = next(iter(self.free_table.values()))
|
71
|
+
# The blocks with the lowest timestamps should be placed consecutively
|
72
|
+
# at the start of OrderedDict. Loop through all these blocks to
|
73
|
+
# find the one with maximum number of hashed tokens.
|
74
|
+
for _, block in self.free_table.items():
|
75
|
+
if evicted_block.last_accessed < block.last_accessed:
|
76
|
+
break
|
77
|
+
if evicted_block.num_hashed_tokens < block.num_hashed_tokens:
|
78
|
+
evicted_block = block
|
79
|
+
|
80
|
+
self.free_table.pop(evicted_block.block_hash)
|
81
|
+
|
82
|
+
evicted_block.computed = False
|
83
|
+
return evicted_block
|
84
|
+
|
85
|
+
def add(self, block: PhysicalTokenBlock):
|
86
|
+
self.free_table[block.block_hash] = block
|
87
|
+
|
88
|
+
def remove(self, block_hash: int) -> PhysicalTokenBlock:
|
89
|
+
if block_hash not in self.free_table:
|
90
|
+
raise ValueError(
|
91
|
+
"Attempting to remove block that's not in the evictor")
|
92
|
+
block: PhysicalTokenBlock = self.free_table[block_hash]
|
93
|
+
self.free_table.pop(block_hash)
|
94
|
+
return block
|
95
|
+
|
96
|
+
@property
|
97
|
+
def num_blocks(self) -> int:
|
98
|
+
return len(self.free_table)
|
99
|
+
|
100
|
+
|
101
|
+
def make_evictor(eviction_policy: EvictionPolicy) -> Evictor:
|
102
|
+
if eviction_policy == EvictionPolicy.LRU:
|
103
|
+
return LRUEvictor()
|
104
|
+
else:
|
105
|
+
raise ValueError(f"Unknown cache eviction policy: {eviction_policy}")
|
vllm/core/evictor_v2.py
ADDED
@@ -0,0 +1,127 @@
|
|
1
|
+
import enum
|
2
|
+
from abc import ABC, abstractmethod, abstractproperty
|
3
|
+
from typing import OrderedDict, Tuple
|
4
|
+
|
5
|
+
|
6
|
+
class EvictionPolicy(enum.Enum):
|
7
|
+
"""Enum for eviction policy used by make_evictor to instantiate the correct
|
8
|
+
Evictor subclass.
|
9
|
+
"""
|
10
|
+
LRU = enum.auto()
|
11
|
+
|
12
|
+
|
13
|
+
class Evictor(ABC):
|
14
|
+
"""The Evictor subclasses should be used by the BlockAllocator class to
|
15
|
+
handle eviction of freed PhysicalTokenBlocks.
|
16
|
+
"""
|
17
|
+
|
18
|
+
@abstractmethod
|
19
|
+
def __init__(self):
|
20
|
+
pass
|
21
|
+
|
22
|
+
@abstractmethod
|
23
|
+
def __contains__(self, block_id: int) -> bool:
|
24
|
+
pass
|
25
|
+
|
26
|
+
@abstractmethod
|
27
|
+
def evict(self) -> Tuple[int, int]:
|
28
|
+
"""Runs the eviction algorithm and returns the evicted block's
|
29
|
+
content hash along with physical block id along with physical block id
|
30
|
+
"""
|
31
|
+
pass
|
32
|
+
|
33
|
+
@abstractmethod
|
34
|
+
def add(self, block_id: int, content_hash: int, num_hashed_tokens: int,
|
35
|
+
last_accessed: float):
|
36
|
+
"""Adds block to the evictor, making it a candidate for eviction"""
|
37
|
+
pass
|
38
|
+
|
39
|
+
@abstractmethod
|
40
|
+
def update(self, block_id: int, last_accessed: float):
|
41
|
+
"""Update corresponding block's access time in metadata"""
|
42
|
+
pass
|
43
|
+
|
44
|
+
@abstractmethod
|
45
|
+
def remove(self, block_id: int):
|
46
|
+
"""Remove a given block id from the cache."""
|
47
|
+
pass
|
48
|
+
|
49
|
+
@abstractproperty
|
50
|
+
def num_blocks(self) -> int:
|
51
|
+
pass
|
52
|
+
|
53
|
+
|
54
|
+
class BlockMetaData():
|
55
|
+
"""Data structure for storing key data describe cached block, so that
|
56
|
+
evitor could use to make its decision which one to choose for eviction
|
57
|
+
|
58
|
+
Here we use physical block id as the dict key, as there maybe several
|
59
|
+
blocks with the same content hash, but their physical id is unique.
|
60
|
+
"""
|
61
|
+
|
62
|
+
def __init__(self, content_hash: int, num_hashed_tokens: int,
|
63
|
+
last_accessed: float):
|
64
|
+
self.content_hash = content_hash
|
65
|
+
self.num_hashed_tokens = num_hashed_tokens
|
66
|
+
self.last_accessed = last_accessed
|
67
|
+
|
68
|
+
|
69
|
+
class LRUEvictor(Evictor):
|
70
|
+
"""Evicts in a least-recently-used order using the last_accessed timestamp
|
71
|
+
that's recorded in the PhysicalTokenBlock. If there are multiple blocks with
|
72
|
+
the same last_accessed time, then the one with the largest num_hashed_tokens
|
73
|
+
will be evicted. If two blocks each have the lowest last_accessed time and
|
74
|
+
highest num_hashed_tokens value, then one will be chose arbitrarily
|
75
|
+
"""
|
76
|
+
|
77
|
+
def __init__(self):
|
78
|
+
self.free_table: OrderedDict[int, BlockMetaData] = OrderedDict()
|
79
|
+
|
80
|
+
def __contains__(self, block_id: int) -> bool:
|
81
|
+
return block_id in self.free_table
|
82
|
+
|
83
|
+
def evict(self) -> Tuple[int, int]:
|
84
|
+
if len(self.free_table) == 0:
|
85
|
+
raise ValueError("No usable cache memory left")
|
86
|
+
|
87
|
+
evicted_block = next(iter(self.free_table.values()))
|
88
|
+
evicted_block_id = next(iter(self.free_table.keys()))
|
89
|
+
# The blocks with the lowest timestamps should be placed consecutively
|
90
|
+
# at the start of OrderedDict. Loop through all these blocks to
|
91
|
+
# find the one with maximum number of hashed tokens.
|
92
|
+
for _id, block in self.free_table.items():
|
93
|
+
if evicted_block.last_accessed > block.last_accessed or (
|
94
|
+
evicted_block.last_accessed == block.last_accessed and
|
95
|
+
evicted_block.num_hashed_tokens < block.num_hashed_tokens):
|
96
|
+
evicted_block = block
|
97
|
+
evicted_block_id = _id
|
98
|
+
|
99
|
+
self.free_table.pop(evicted_block_id)
|
100
|
+
|
101
|
+
return evicted_block_id, evicted_block.content_hash
|
102
|
+
|
103
|
+
def add(self, block_id: int, content_hash: int, num_hashed_tokens: int,
|
104
|
+
last_accessed: float):
|
105
|
+
self.free_table[block_id] = BlockMetaData(content_hash,
|
106
|
+
num_hashed_tokens,
|
107
|
+
last_accessed)
|
108
|
+
|
109
|
+
def update(self, block_id: int, last_accessed: float):
|
110
|
+
self.free_table[block_id].last_accessed = last_accessed
|
111
|
+
|
112
|
+
def remove(self, block_id: int):
|
113
|
+
if block_id not in self.free_table:
|
114
|
+
raise ValueError(
|
115
|
+
"Attempting to remove block that's not in the evictor")
|
116
|
+
self.free_table.pop(block_id)
|
117
|
+
|
118
|
+
@property
|
119
|
+
def num_blocks(self) -> int:
|
120
|
+
return len(self.free_table)
|
121
|
+
|
122
|
+
|
123
|
+
def make_evictor(eviction_policy: EvictionPolicy) -> Evictor:
|
124
|
+
if eviction_policy == EvictionPolicy.LRU:
|
125
|
+
return LRUEvictor()
|
126
|
+
else:
|
127
|
+
raise ValueError(f"Unknown cache eviction policy: {eviction_policy}")
|
vllm/core/interfaces.py
ADDED
@@ -0,0 +1,113 @@
|
|
1
|
+
import enum
|
2
|
+
from abc import ABC, abstractmethod
|
3
|
+
from typing import Dict, List
|
4
|
+
from typing import Sequence as GenericSequence
|
5
|
+
|
6
|
+
from vllm.sequence import Sequence, SequenceGroup
|
7
|
+
|
8
|
+
|
9
|
+
class AllocStatus(enum.Enum):
|
10
|
+
"""Result for BlockSpaceManager.can_allocate
|
11
|
+
|
12
|
+
1. Ok: seq_group can be allocated now.
|
13
|
+
2. Later: seq_group cannot be allocated.
|
14
|
+
The capacity of allocator is larger than seq_group required.
|
15
|
+
3. Never: seq_group can never be allocated.
|
16
|
+
The seq_group is too large to allocated in GPU.
|
17
|
+
"""
|
18
|
+
OK = enum.auto()
|
19
|
+
LATER = enum.auto()
|
20
|
+
NEVER = enum.auto()
|
21
|
+
|
22
|
+
|
23
|
+
class BlockSpaceManager(ABC):
|
24
|
+
|
25
|
+
@staticmethod
|
26
|
+
def get_block_space_manager_class(version: str):
|
27
|
+
version = version.lower()
|
28
|
+
|
29
|
+
if version == "v1":
|
30
|
+
from vllm.core.block_manager_v1 import BlockSpaceManagerV1
|
31
|
+
return BlockSpaceManagerV1
|
32
|
+
|
33
|
+
if version == "v2":
|
34
|
+
from vllm.core.block_manager_v2 import BlockSpaceManagerV2
|
35
|
+
return BlockSpaceManagerV2
|
36
|
+
|
37
|
+
raise ValueError(f"Unknown version {version=}")
|
38
|
+
|
39
|
+
@abstractmethod
|
40
|
+
def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:
|
41
|
+
pass
|
42
|
+
|
43
|
+
@abstractmethod
|
44
|
+
def allocate(self, seq_group: SequenceGroup) -> None:
|
45
|
+
pass
|
46
|
+
|
47
|
+
@abstractmethod
|
48
|
+
def can_append_slots(self, seq_group: SequenceGroup,
|
49
|
+
num_lookahead_slots: int) -> bool:
|
50
|
+
pass
|
51
|
+
|
52
|
+
@abstractmethod
|
53
|
+
def append_slots(
|
54
|
+
self,
|
55
|
+
seq: Sequence,
|
56
|
+
num_lookahead_slots: int,
|
57
|
+
) -> Dict[int, List[int]]:
|
58
|
+
pass
|
59
|
+
|
60
|
+
@abstractmethod
|
61
|
+
def fork(self, parent_seq: Sequence, child_seq: Sequence) -> None:
|
62
|
+
pass
|
63
|
+
|
64
|
+
@abstractmethod
|
65
|
+
def can_swap_in(self, seq_group: SequenceGroup,
|
66
|
+
num_lookahead_slots: int) -> AllocStatus:
|
67
|
+
pass
|
68
|
+
|
69
|
+
@abstractmethod
|
70
|
+
def swap_in(self, seq_group: SequenceGroup,
|
71
|
+
num_lookahead_slots: int) -> Dict[int, int]:
|
72
|
+
pass
|
73
|
+
|
74
|
+
@abstractmethod
|
75
|
+
def can_swap_out(self, seq_group: SequenceGroup) -> bool:
|
76
|
+
pass
|
77
|
+
|
78
|
+
@abstractmethod
|
79
|
+
def swap_out(self, seq_group: SequenceGroup) -> Dict[int, int]:
|
80
|
+
pass
|
81
|
+
|
82
|
+
@abstractmethod
|
83
|
+
def free(self, seq: Sequence) -> None:
|
84
|
+
pass
|
85
|
+
|
86
|
+
@abstractmethod
|
87
|
+
def get_block_table(self, seq: Sequence) -> List[int]:
|
88
|
+
pass
|
89
|
+
|
90
|
+
@abstractmethod
|
91
|
+
def get_num_free_gpu_blocks(self) -> int:
|
92
|
+
pass
|
93
|
+
|
94
|
+
@abstractmethod
|
95
|
+
def get_num_free_cpu_blocks(self) -> int:
|
96
|
+
pass
|
97
|
+
|
98
|
+
@abstractmethod
|
99
|
+
def access_all_blocks_in_seq(
|
100
|
+
self,
|
101
|
+
seq: Sequence,
|
102
|
+
access_time: float,
|
103
|
+
) -> None:
|
104
|
+
pass
|
105
|
+
|
106
|
+
@abstractmethod
|
107
|
+
def get_common_computed_block_ids(
|
108
|
+
self, seqs: List[Sequence]) -> GenericSequence[int]:
|
109
|
+
pass
|
110
|
+
|
111
|
+
@abstractmethod
|
112
|
+
def mark_blocks_as_computed(self, seq_group: SequenceGroup):
|
113
|
+
pass
|
vllm/core/policy.py
ADDED
@@ -0,0 +1,45 @@
|
|
1
|
+
from collections import deque
|
2
|
+
from typing import Deque
|
3
|
+
|
4
|
+
from vllm.sequence import SequenceGroup
|
5
|
+
|
6
|
+
|
7
|
+
class Policy:
|
8
|
+
|
9
|
+
def get_priority(
|
10
|
+
self,
|
11
|
+
now: float,
|
12
|
+
seq_group: SequenceGroup,
|
13
|
+
) -> float:
|
14
|
+
raise NotImplementedError
|
15
|
+
|
16
|
+
def sort_by_priority(
|
17
|
+
self,
|
18
|
+
now: float,
|
19
|
+
seq_groups: Deque[SequenceGroup],
|
20
|
+
) -> Deque[SequenceGroup]:
|
21
|
+
return deque(
|
22
|
+
sorted(
|
23
|
+
seq_groups,
|
24
|
+
key=lambda seq_group: self.get_priority(now, seq_group),
|
25
|
+
reverse=True,
|
26
|
+
))
|
27
|
+
|
28
|
+
|
29
|
+
class FCFS(Policy):
|
30
|
+
|
31
|
+
def get_priority(
|
32
|
+
self,
|
33
|
+
now: float,
|
34
|
+
seq_group: SequenceGroup,
|
35
|
+
) -> float:
|
36
|
+
return now - seq_group.metrics.arrival_time
|
37
|
+
|
38
|
+
|
39
|
+
class PolicyFactory:
|
40
|
+
|
41
|
+
_POLICY_REGISTRY = {'fcfs': FCFS}
|
42
|
+
|
43
|
+
@classmethod
|
44
|
+
def get_policy(cls, policy_name: str, **kwargs) -> Policy:
|
45
|
+
return cls._POLICY_REGISTRY[policy_name](**kwargs)
|