vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,87 @@
|
|
1
|
+
# Adapted from
|
2
|
+
# https://huggingface.co/tiiuae/falcon-7b/blob/main/configuration_RW.py
|
3
|
+
# Copyright 2023 The vLLM team.
|
4
|
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team.
|
5
|
+
# All rights reserved.
|
6
|
+
#
|
7
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8
|
+
# you may not use this file except in compliance with the License.
|
9
|
+
# You may obtain a copy of the License at
|
10
|
+
#
|
11
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12
|
+
#
|
13
|
+
# Unless required by applicable law or agreed to in writing, software
|
14
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16
|
+
# See the License for the specific language governing permissions and
|
17
|
+
# limitations under the License.
|
18
|
+
"""Falcon configuration"""
|
19
|
+
from transformers.configuration_utils import PretrainedConfig
|
20
|
+
|
21
|
+
|
22
|
+
class RWConfig(PretrainedConfig):
|
23
|
+
model_type = "falcon"
|
24
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
25
|
+
attribute_map = {
|
26
|
+
"num_hidden_layers": "n_layer",
|
27
|
+
"num_attention_heads": "n_head",
|
28
|
+
"num_kv_heads": "n_head_kv",
|
29
|
+
}
|
30
|
+
|
31
|
+
def __init__(
|
32
|
+
self,
|
33
|
+
vocab_size=250880,
|
34
|
+
hidden_size=64,
|
35
|
+
n_layer=2,
|
36
|
+
n_head=8,
|
37
|
+
layer_norm_epsilon=1e-5,
|
38
|
+
initializer_range=0.02,
|
39
|
+
use_cache=True,
|
40
|
+
bos_token_id=1,
|
41
|
+
eos_token_id=2,
|
42
|
+
hidden_dropout=0.0,
|
43
|
+
attention_dropout=0.0,
|
44
|
+
multi_query=True,
|
45
|
+
n_head_kv=None,
|
46
|
+
alibi=False,
|
47
|
+
bias=False,
|
48
|
+
parallel_attn=False,
|
49
|
+
new_decoder_architecture=False,
|
50
|
+
**kwargs,
|
51
|
+
) -> None:
|
52
|
+
self.vocab_size = vocab_size
|
53
|
+
# Backward compatibility with n_embed kwarg
|
54
|
+
n_embed = kwargs.pop("n_embed", None)
|
55
|
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
56
|
+
self.n_layer = n_layer
|
57
|
+
self.n_head = n_head
|
58
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
59
|
+
self.initializer_range = initializer_range
|
60
|
+
self.use_cache = use_cache
|
61
|
+
self.hidden_dropout = hidden_dropout
|
62
|
+
self.attention_dropout = attention_dropout
|
63
|
+
|
64
|
+
self.bos_token_id = bos_token_id
|
65
|
+
self.eos_token_id = eos_token_id
|
66
|
+
self.multi_query = multi_query
|
67
|
+
self.n_head_kv = 1 if n_head_kv is None else n_head_kv
|
68
|
+
self.alibi = alibi
|
69
|
+
self.bias = bias
|
70
|
+
self.parallel_attn = parallel_attn
|
71
|
+
self.new_decoder_architecture = new_decoder_architecture
|
72
|
+
|
73
|
+
if self.hidden_size == 8192:
|
74
|
+
# Hack for falcon-40b
|
75
|
+
self.new_decoder_architecture = True
|
76
|
+
|
77
|
+
super().__init__(bos_token_id=bos_token_id,
|
78
|
+
eos_token_id=eos_token_id,
|
79
|
+
**kwargs)
|
80
|
+
|
81
|
+
@property
|
82
|
+
def head_dim(self):
|
83
|
+
return self.hidden_size // self.n_head
|
84
|
+
|
85
|
+
@property
|
86
|
+
def rotary(self):
|
87
|
+
return not self.alibi
|
@@ -0,0 +1,236 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3
|
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4
|
+
# Copyright 2023 Cerebras Systems.
|
5
|
+
#
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7
|
+
# you may not use this file except in compliance with the License.
|
8
|
+
# You may obtain a copy of the License at
|
9
|
+
#
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11
|
+
#
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15
|
+
# See the License for the specific language governing permissions and
|
16
|
+
# limitations under the License.
|
17
|
+
"""JAIS configuration"""
|
18
|
+
|
19
|
+
from transformers.configuration_utils import PretrainedConfig
|
20
|
+
from transformers.utils import logging
|
21
|
+
|
22
|
+
logger = logging.get_logger(__name__)
|
23
|
+
|
24
|
+
|
25
|
+
class JAISConfig(PretrainedConfig):
|
26
|
+
"""
|
27
|
+
This is the configuration class to store the configuration of a
|
28
|
+
[`JAISModel`]. It is used to instantiate a JAIS model according to the
|
29
|
+
specified arguments, defining the model architecture.
|
30
|
+
|
31
|
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
32
|
+
to control the model outputs. Read the documentation from
|
33
|
+
[`PretrainedConfig`] for more information.
|
34
|
+
|
35
|
+
|
36
|
+
Args:
|
37
|
+
vocab_size (`int`, *optional*, defaults to 50257):
|
38
|
+
Vocabulary size of the JAIS model. Defines the number of different
|
39
|
+
tokens that can be represented by the
|
40
|
+
`inputs_ids` passed when calling [`JAISModel`].
|
41
|
+
n_positions (`int`, *optional*, defaults to 1024):
|
42
|
+
The maximum sequence length that this model might ever be used
|
43
|
+
with. Typically set this to something large just in case
|
44
|
+
(e.g., 512 or 1024 or 2048).
|
45
|
+
n_embd (`int`, *optional*, defaults to 768):
|
46
|
+
Dimensionality of the embeddings and hidden states.
|
47
|
+
n_layer (`int`, *optional*, defaults to 12):
|
48
|
+
Number of hidden layers in the Transformer encoder.
|
49
|
+
n_head (`int`, *optional*, defaults to 12):
|
50
|
+
Number of attention heads for each attention layer in the
|
51
|
+
Transformer encoder.
|
52
|
+
n_inner (`int`, *optional*, defaults to None):
|
53
|
+
Dimensionality of the inner feed-forward layers. `None` will set
|
54
|
+
it to 4 times n_embd
|
55
|
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
56
|
+
Activation function, to be selected in the list
|
57
|
+
`["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
|
58
|
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
59
|
+
The dropout probability for all fully connected layers in
|
60
|
+
the embeddings, encoder, and pooler.
|
61
|
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
62
|
+
The dropout ratio for the embeddings.
|
63
|
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
64
|
+
The dropout ratio for the attention.
|
65
|
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
66
|
+
The epsilon to use in the layer normalization layers.
|
67
|
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68
|
+
The standard deviation of the truncated_normal_initializer for
|
69
|
+
initializing all weight matrices.
|
70
|
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
71
|
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
72
|
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73
|
+
Whether or not the model should return the last key/values
|
74
|
+
attentions (not used by all models).
|
75
|
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*,
|
76
|
+
defaults to `False`):
|
77
|
+
Whether to additionally scale attention weights by
|
78
|
+
`1 / layer_idx + 1`.
|
79
|
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
80
|
+
Whether to scale keys (K) prior to computing attention
|
81
|
+
(dot-product)
|
82
|
+
and upcast attention dot-product/softmax to float() when training
|
83
|
+
with mixed precision.
|
84
|
+
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
85
|
+
Positional embedding can be either `"alibi"` or `"learned"`.
|
86
|
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
87
|
+
muP parameter to scale learning rate and initializers. Calculated
|
88
|
+
as (`d_model,0 / d_model`), where
|
89
|
+
`d_model` is the model's width and `d_model,0` is the proxy
|
90
|
+
model's width.
|
91
|
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
92
|
+
muP parameter to scale token and position embeddings.
|
93
|
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
94
|
+
muP parameter to scale output logits
|
95
|
+
(`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
96
|
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
97
|
+
Scale attention weights by dividing by hidden_size instead of
|
98
|
+
sqrt(hidden_size). Need to set scale_attn_weights to `True` as
|
99
|
+
well.
|
100
|
+
alibi_scaling (`Dict`, *optional*):
|
101
|
+
Dictionary containing the scaling configuration for ALiBi
|
102
|
+
embeddings. Currently only supports linear
|
103
|
+
scaling strategy. Can specify either the scaling `factor` (must be
|
104
|
+
a float greater than 1) for fixed scaling
|
105
|
+
or `train_seq_len` for dynamic scaling on input samples with
|
106
|
+
sequence length > `train_seq_len`. The expected
|
107
|
+
formats are `{"type": strategy name, "factor": scaling factor}` or
|
108
|
+
`{"type": strategy name,
|
109
|
+
"train_seq_len": training sequence length}`.
|
110
|
+
architectures (`List`, *optional*, defaults to ['JAISLMHeadModel']):
|
111
|
+
architecture names for Jais.
|
112
|
+
|
113
|
+
Example:
|
114
|
+
|
115
|
+
```python
|
116
|
+
>>> from transformers import JAISConfig, JAISModel
|
117
|
+
|
118
|
+
>>> # Initializing a JAIS configuration
|
119
|
+
>>> configuration = JAISConfig()
|
120
|
+
|
121
|
+
>>> # Initializing a model (with random weights) from the configuration
|
122
|
+
>>> model = JAISModel(configuration)
|
123
|
+
|
124
|
+
>>> # Accessing the model configuration
|
125
|
+
>>> configuration = model.config
|
126
|
+
```"""
|
127
|
+
|
128
|
+
model_type = "jais"
|
129
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
130
|
+
attribute_map = {
|
131
|
+
"hidden_size": "n_embd",
|
132
|
+
"max_position_embeddings": "n_positions",
|
133
|
+
"num_attention_heads": "n_head",
|
134
|
+
"num_hidden_layers": "n_layer",
|
135
|
+
}
|
136
|
+
|
137
|
+
def __init__(
|
138
|
+
self,
|
139
|
+
vocab_size=50257,
|
140
|
+
n_positions=1024,
|
141
|
+
n_embd=768,
|
142
|
+
n_layer=12,
|
143
|
+
n_head=12,
|
144
|
+
n_inner=None,
|
145
|
+
activation_function="gelu_new",
|
146
|
+
resid_pdrop=0.1,
|
147
|
+
embd_pdrop=0.1,
|
148
|
+
attn_pdrop=0.1,
|
149
|
+
layer_norm_epsilon=1e-5,
|
150
|
+
initializer_range=0.02,
|
151
|
+
scale_attn_weights=True,
|
152
|
+
use_cache=True,
|
153
|
+
bos_token_id=50256,
|
154
|
+
eos_token_id=50256,
|
155
|
+
scale_attn_by_inverse_layer_idx=False,
|
156
|
+
reorder_and_upcast_attn=False,
|
157
|
+
position_embedding_type="learned",
|
158
|
+
mup_width_scale=1.0,
|
159
|
+
mup_embeddings_scale=1.0,
|
160
|
+
mup_output_alpha=1.0,
|
161
|
+
mup_scale_qk_dot_by_d=False,
|
162
|
+
alibi_scaling=None,
|
163
|
+
architectures=None,
|
164
|
+
**kwargs,
|
165
|
+
):
|
166
|
+
self.vocab_size = vocab_size
|
167
|
+
self.n_positions = n_positions
|
168
|
+
self.n_embd = n_embd
|
169
|
+
self.n_layer = n_layer
|
170
|
+
self.n_head = n_head
|
171
|
+
self.n_inner = n_inner
|
172
|
+
self.activation_function = activation_function
|
173
|
+
self.resid_pdrop = resid_pdrop
|
174
|
+
self.embd_pdrop = embd_pdrop
|
175
|
+
self.attn_pdrop = attn_pdrop
|
176
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
177
|
+
self.initializer_range = initializer_range
|
178
|
+
self.scale_attn_weights = scale_attn_weights
|
179
|
+
self.use_cache = use_cache
|
180
|
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
181
|
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
182
|
+
|
183
|
+
self.bos_token_id = bos_token_id
|
184
|
+
self.eos_token_id = eos_token_id
|
185
|
+
|
186
|
+
self.position_embedding_type = position_embedding_type
|
187
|
+
self.mup_width_scale = mup_width_scale
|
188
|
+
self.mup_embeddings_scale = mup_embeddings_scale
|
189
|
+
self.mup_output_alpha = mup_output_alpha
|
190
|
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
191
|
+
|
192
|
+
self.alibi_scaling = alibi_scaling
|
193
|
+
self._alibi_scaling_validation()
|
194
|
+
if architectures is None:
|
195
|
+
architectures = ["JAISLMHeadModel"]
|
196
|
+
|
197
|
+
super().__init__(
|
198
|
+
bos_token_id=bos_token_id,
|
199
|
+
eos_token_id=eos_token_id,
|
200
|
+
architectures=architectures,
|
201
|
+
**kwargs,
|
202
|
+
)
|
203
|
+
|
204
|
+
def _alibi_scaling_validation(self):
|
205
|
+
"""
|
206
|
+
Validate the `alibi_scaling` configuration.
|
207
|
+
"""
|
208
|
+
if self.alibi_scaling is None:
|
209
|
+
return
|
210
|
+
|
211
|
+
if (not isinstance(self.alibi_scaling, dict)
|
212
|
+
or len(self.alibi_scaling) != 2):
|
213
|
+
raise ValueError(
|
214
|
+
"`alibi_scaling` must be a dictionary with two fields,"
|
215
|
+
"`type` and `factor` or `type` and `train_seq_len`, "
|
216
|
+
f"got {self.alibi_scaling}")
|
217
|
+
alibi_scaling_type = self.alibi_scaling.get("type", None)
|
218
|
+
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
|
219
|
+
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
|
220
|
+
if alibi_scaling_type is None or alibi_scaling_type != "linear":
|
221
|
+
raise ValueError(f"`alibi_scaling`'s type field must be 'linear',"
|
222
|
+
f"got {alibi_scaling_type}")
|
223
|
+
if (alibi_scaling_factor is not None
|
224
|
+
and not isinstance(alibi_scaling_factor, float)
|
225
|
+
or (alibi_scaling_factor is not None
|
226
|
+
and alibi_scaling_factor <= 1.0)):
|
227
|
+
raise ValueError(
|
228
|
+
f"`alibi_scaling`'s factor field must be a float > 1.0,"
|
229
|
+
f"got {alibi_scaling_factor}")
|
230
|
+
if (alibi_dynamic_scaling is not None
|
231
|
+
and not isinstance(alibi_dynamic_scaling, int)
|
232
|
+
or (alibi_dynamic_scaling is not None
|
233
|
+
and alibi_dynamic_scaling <= 1)):
|
234
|
+
raise ValueError(
|
235
|
+
f"`alibi_scaling`'s `train_seq_len` field must be an"
|
236
|
+
f"integer > 1, got {alibi_dynamic_scaling}")
|
@@ -0,0 +1,178 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copied from
|
3
|
+
# https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
|
4
|
+
"""A HuggingFace-style model configuration."""
|
5
|
+
import warnings
|
6
|
+
from typing import Any, Dict, Optional, Union
|
7
|
+
|
8
|
+
from transformers import PretrainedConfig
|
9
|
+
|
10
|
+
attn_config_defaults: Dict = {
|
11
|
+
'attn_type': 'multihead_attention',
|
12
|
+
'attn_pdrop': 0.0,
|
13
|
+
'attn_impl': 'triton',
|
14
|
+
'qk_ln': False,
|
15
|
+
'clip_qkv': None,
|
16
|
+
'softmax_scale': None,
|
17
|
+
'prefix_lm': False,
|
18
|
+
'attn_uses_sequence_id': False,
|
19
|
+
'alibi': False,
|
20
|
+
'alibi_bias_max': 8
|
21
|
+
}
|
22
|
+
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
|
23
|
+
init_config_defaults: Dict = {
|
24
|
+
'name': 'kaiming_normal_',
|
25
|
+
'fan_mode': 'fan_in',
|
26
|
+
'init_nonlinearity': 'relu',
|
27
|
+
'init_div_is_residual': True,
|
28
|
+
'emb_init_std': None,
|
29
|
+
'emb_init_uniform_lim': None,
|
30
|
+
'init_std': None,
|
31
|
+
'init_gain': 0.0
|
32
|
+
}
|
33
|
+
|
34
|
+
|
35
|
+
class MPTConfig(PretrainedConfig):
|
36
|
+
model_type = 'mpt'
|
37
|
+
attribute_map = {
|
38
|
+
'num_attention_heads': 'n_heads',
|
39
|
+
'hidden_size': 'd_model',
|
40
|
+
'num_hidden_layers': 'n_layers',
|
41
|
+
}
|
42
|
+
|
43
|
+
# pylint: disable=dangerous-default-value
|
44
|
+
def __init__(self,
|
45
|
+
d_model: int = 2048,
|
46
|
+
n_heads: int = 16,
|
47
|
+
n_layers: int = 24,
|
48
|
+
expansion_ratio: int = 4,
|
49
|
+
max_seq_len: int = 2048,
|
50
|
+
vocab_size: int = 50368,
|
51
|
+
resid_pdrop: float = 0.0,
|
52
|
+
emb_pdrop: float = 0.0,
|
53
|
+
learned_pos_emb: bool = True,
|
54
|
+
attn_config: Dict = attn_config_defaults,
|
55
|
+
ffn_config: Dict = ffn_config_defaults,
|
56
|
+
init_device: str = 'cpu',
|
57
|
+
logit_scale: Optional[Union[float, str]] = None,
|
58
|
+
no_bias: bool = False,
|
59
|
+
embedding_fraction: float = 1.0,
|
60
|
+
norm_type: str = 'low_precision_layernorm',
|
61
|
+
use_cache: bool = False,
|
62
|
+
init_config: Dict = init_config_defaults,
|
63
|
+
fc_type: str = 'torch',
|
64
|
+
verbose: Optional[int] = None,
|
65
|
+
**kwargs: Any):
|
66
|
+
self.d_model = d_model
|
67
|
+
self.n_heads = n_heads
|
68
|
+
self.n_layers = n_layers
|
69
|
+
self.expansion_ratio = expansion_ratio
|
70
|
+
self.max_seq_len = max_seq_len
|
71
|
+
self.vocab_size = vocab_size
|
72
|
+
self.resid_pdrop = resid_pdrop
|
73
|
+
self.emb_pdrop = emb_pdrop
|
74
|
+
self.learned_pos_emb = learned_pos_emb
|
75
|
+
self.attn_config = attn_config
|
76
|
+
self.ffn_config = ffn_config
|
77
|
+
self.init_device = init_device
|
78
|
+
self.logit_scale = logit_scale
|
79
|
+
self.no_bias = no_bias
|
80
|
+
self.embedding_fraction = embedding_fraction
|
81
|
+
self.norm_type = norm_type
|
82
|
+
self.use_cache = use_cache
|
83
|
+
self.init_config = init_config
|
84
|
+
self.fc_type = fc_type
|
85
|
+
if verbose is not None:
|
86
|
+
warnings.warn(DeprecationWarning(
|
87
|
+
'verbose argument for MPTConfig is now ignored and '
|
88
|
+
'will be removed. Use python_log_level instead.'),
|
89
|
+
stacklevel=2)
|
90
|
+
if 'name' in kwargs:
|
91
|
+
del kwargs['name']
|
92
|
+
if 'loss_fn' in kwargs:
|
93
|
+
del kwargs['loss_fn']
|
94
|
+
if self.attn_config.get('alibi', False):
|
95
|
+
self.learned_pos_emb = False
|
96
|
+
warnings.warn(
|
97
|
+
f'alibi is turned on, setting `learned_pos_emb` '
|
98
|
+
f'to {self.learned_pos_emb}`',
|
99
|
+
stacklevel=2)
|
100
|
+
super().__init__(**kwargs)
|
101
|
+
self._validate_config()
|
102
|
+
|
103
|
+
def _set_config_defaults(
|
104
|
+
self, config: Dict[str, Any],
|
105
|
+
config_defaults: Dict[str, Any]) -> Dict[str, Any]:
|
106
|
+
for (k, v) in config_defaults.items():
|
107
|
+
if k not in config:
|
108
|
+
config[k] = v
|
109
|
+
return config
|
110
|
+
|
111
|
+
def _validate_config(self) -> None:
|
112
|
+
self.attn_config = self._set_config_defaults(self.attn_config,
|
113
|
+
attn_config_defaults)
|
114
|
+
self.ffn_config = self._set_config_defaults(self.ffn_config,
|
115
|
+
ffn_config_defaults)
|
116
|
+
self.init_config = self._set_config_defaults(self.init_config,
|
117
|
+
init_config_defaults)
|
118
|
+
if self.d_model % self.n_heads != 0:
|
119
|
+
raise ValueError('d_model must be divisible by n_heads')
|
120
|
+
if any((
|
121
|
+
prob < 0 or prob > 1 for prob in
|
122
|
+
[self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop]
|
123
|
+
)):
|
124
|
+
raise ValueError(
|
125
|
+
"self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are "
|
126
|
+
"probabilities and must be between 0 and 1")
|
127
|
+
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
128
|
+
raise ValueError(
|
129
|
+
f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
130
|
+
if self.attn_config['prefix_lm'] and self.attn_config[
|
131
|
+
'attn_impl'] not in ['torch', 'triton']:
|
132
|
+
raise NotImplementedError(
|
133
|
+
'prefix_lm only implemented with torch and triton attention.')
|
134
|
+
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
|
135
|
+
'torch', 'triton'
|
136
|
+
]:
|
137
|
+
raise NotImplementedError(
|
138
|
+
'alibi only implemented with torch and triton attention.')
|
139
|
+
if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
|
140
|
+
'attn_impl'] not in ['torch', 'triton']:
|
141
|
+
raise NotImplementedError(
|
142
|
+
'attn_uses_sequence_id only implemented with torch '
|
143
|
+
'and triton attention.')
|
144
|
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
145
|
+
raise ValueError(
|
146
|
+
'model.embedding_fraction must be between 0 (exclusive) '
|
147
|
+
'and 1 (inclusive)!')
|
148
|
+
if isinstance(self.logit_scale,
|
149
|
+
str) and self.logit_scale != 'inv_sqrt_d_model':
|
150
|
+
raise ValueError(
|
151
|
+
f"self.logit_scale={self.logit_scale!r} is not recognized as "
|
152
|
+
"an option; use numeric value or 'inv_sqrt_d_model'.")
|
153
|
+
if self.init_config.get('name', None) is None:
|
154
|
+
raise ValueError(
|
155
|
+
f"self.init_config={self.init_config!r} 'name' needs to be set."
|
156
|
+
)
|
157
|
+
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
158
|
+
warnings.warn(
|
159
|
+
'Positional information not being provided to the model.',
|
160
|
+
stacklevel=2)
|
161
|
+
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
162
|
+
try:
|
163
|
+
# pylint: disable=import-outside-toplevel
|
164
|
+
import transformer_engine.pytorch as te
|
165
|
+
del te
|
166
|
+
except Exception as exc:
|
167
|
+
raise ImportError(
|
168
|
+
'TransformerEngine import fail. `fc_type: te` requires '
|
169
|
+
'TransformerEngine be installed. '
|
170
|
+
'The required version of transformer_engine also requires '
|
171
|
+
'FlashAttention v1.0.6 is installed:\n'
|
172
|
+
'pip install flash-attn==1.0.6 --no-build-isolation \n'
|
173
|
+
'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156'
|
174
|
+
) from exc
|
175
|
+
if self.ffn_config['ffn_type'] == 'mptmlp':
|
176
|
+
self.ffn_config['fc_type'] = self.fc_type
|
177
|
+
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
|
178
|
+
self.ffn_config['bias'] = not self.no_bias
|