vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,216 @@
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Tuple
3
+
4
+ import torch
5
+
6
+ from vllm import _custom_ops as ops
7
+ from vllm.attention.ops.prefix_prefill import context_attention_fwd
8
+
9
+ # Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`.
10
+ _PARTITION_SIZE = 512
11
+
12
+
13
+ @dataclass
14
+ class PagedAttentionMetadata:
15
+ """Metadata for PagedAttention."""
16
+ # (batch_size,). The length of sequences (entire tokens seen so far) per
17
+ # sequence.
18
+ seq_lens_tensor: Optional[torch.Tensor]
19
+ # Maximum sequence length in the batch.
20
+ max_seq_len: Optional[int]
21
+ # (batch_size, max_blocks_per_seq).
22
+ # Block addresses per sequence. (Seq id -> list of physical block)
23
+ # E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
24
+ # in the kv cache. Each block can contain up to block_size tokens.
25
+ # 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
26
+ # captured.
27
+ block_tables: Optional[torch.Tensor]
28
+
29
+
30
+ class PagedAttention:
31
+
32
+ @staticmethod
33
+ def get_supported_head_sizes() -> List[int]:
34
+ return [64, 80, 96, 112, 128, 256]
35
+
36
+ @staticmethod
37
+ def get_kv_cache_shape(
38
+ num_blocks: int,
39
+ block_size: int,
40
+ num_kv_heads: int,
41
+ head_size: int,
42
+ ) -> Tuple[int, ...]:
43
+ return (2, num_blocks, block_size * num_kv_heads * head_size)
44
+
45
+ @staticmethod
46
+ def split_kv_cache(
47
+ kv_cache: torch.Tensor,
48
+ num_kv_heads: int,
49
+ head_size: int,
50
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
51
+ x = 16 // kv_cache.element_size()
52
+ num_blocks = kv_cache.shape[1]
53
+
54
+ key_cache = kv_cache[0]
55
+ key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x,
56
+ -1, x)
57
+ value_cache = kv_cache[1]
58
+ value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1)
59
+ return key_cache, value_cache
60
+
61
+ @staticmethod
62
+ def write_to_paged_cache(
63
+ key: torch.Tensor,
64
+ value: torch.Tensor,
65
+ key_cache: torch.Tensor,
66
+ value_cache: torch.Tensor,
67
+ slot_mapping: torch.Tensor,
68
+ kv_cache_dtype: str,
69
+ kv_scale: float,
70
+ ) -> None:
71
+ ops.reshape_and_cache(
72
+ key,
73
+ value,
74
+ key_cache,
75
+ value_cache,
76
+ slot_mapping.flatten(),
77
+ kv_cache_dtype,
78
+ kv_scale,
79
+ )
80
+
81
+ @staticmethod
82
+ def forward_decode(
83
+ query: torch.Tensor,
84
+ key_cache: torch.Tensor,
85
+ value_cache: torch.Tensor,
86
+ block_tables: torch.Tensor,
87
+ seq_lens: torch.Tensor,
88
+ max_seq_len: int,
89
+ kv_cache_dtype: str,
90
+ num_kv_heads: int,
91
+ scale: float,
92
+ alibi_slopes: Optional[torch.Tensor],
93
+ kv_scale: float,
94
+ ) -> torch.Tensor:
95
+ output = torch.empty_like(query)
96
+
97
+ block_size = value_cache.shape[3]
98
+ num_seqs, num_heads, head_size = query.shape
99
+ max_num_partitions = ((max_seq_len + _PARTITION_SIZE - 1) //
100
+ _PARTITION_SIZE)
101
+ # NOTE(woosuk): We use a simple heuristic to decide whether to use
102
+ # PagedAttention V1 or V2. If the number of partitions is 1, we use
103
+ # V1 to avoid the overhead of reduction. Also, if the number of
104
+ # sequences or heads is large, we use V1 since there is enough work
105
+ # to parallelize.
106
+ # TODO(woosuk): Tune this heuristic.
107
+ # For context len > 8192, use V2 kernel to avoid shared memory shortage.
108
+ use_v1 = (max_seq_len <= 8192
109
+ and (max_num_partitions == 1 or num_seqs * num_heads > 512))
110
+ if use_v1:
111
+ # Run PagedAttention V1.
112
+ ops.paged_attention_v1(
113
+ output,
114
+ query,
115
+ key_cache,
116
+ value_cache,
117
+ num_kv_heads,
118
+ scale,
119
+ block_tables,
120
+ seq_lens,
121
+ block_size,
122
+ max_seq_len,
123
+ alibi_slopes,
124
+ kv_cache_dtype,
125
+ kv_scale,
126
+ )
127
+ else:
128
+ # Run PagedAttention V2.
129
+ assert _PARTITION_SIZE % block_size == 0
130
+ tmp_output = torch.empty(
131
+ size=(num_seqs, num_heads, max_num_partitions, head_size),
132
+ dtype=output.dtype,
133
+ device=output.device,
134
+ )
135
+ exp_sums = torch.empty(
136
+ size=(num_seqs, num_heads, max_num_partitions),
137
+ dtype=torch.float32,
138
+ device=output.device,
139
+ )
140
+ max_logits = torch.empty_like(exp_sums)
141
+ ops.paged_attention_v2(
142
+ output,
143
+ exp_sums,
144
+ max_logits,
145
+ tmp_output,
146
+ query,
147
+ key_cache,
148
+ value_cache,
149
+ num_kv_heads,
150
+ scale,
151
+ block_tables,
152
+ seq_lens,
153
+ block_size,
154
+ max_seq_len,
155
+ alibi_slopes,
156
+ kv_cache_dtype,
157
+ kv_scale,
158
+ )
159
+ return output
160
+
161
+ @staticmethod
162
+ def forward_prefix(
163
+ query: torch.Tensor,
164
+ key: torch.Tensor,
165
+ value: torch.Tensor,
166
+ key_cache: torch.Tensor,
167
+ value_cache: torch.Tensor,
168
+ block_tables: torch.Tensor,
169
+ subquery_start_loc: torch.Tensor,
170
+ seq_lens_tensor: torch.Tensor,
171
+ context_lens: torch.Tensor,
172
+ max_query_len: int,
173
+ alibi_slopes: Optional[torch.Tensor],
174
+ sliding_window: Optional[int],
175
+ ) -> torch.Tensor:
176
+ output = torch.empty_like(query)
177
+ context_attention_fwd(
178
+ query,
179
+ key,
180
+ value,
181
+ output,
182
+ key_cache,
183
+ value_cache,
184
+ block_tables,
185
+ # subquery_start_loc is (batch_size + 1,)
186
+ subquery_start_loc[:-1],
187
+ seq_lens_tensor,
188
+ context_lens,
189
+ max_query_len,
190
+ alibi_slopes,
191
+ sliding_window,
192
+ )
193
+ return output
194
+
195
+ @staticmethod
196
+ def swap_blocks(
197
+ src_kv_cache: torch.Tensor,
198
+ dst_kv_cache: torch.Tensor,
199
+ src_to_dst: Dict[int, int],
200
+ ) -> None:
201
+ src_key_cache = src_kv_cache[0]
202
+ dst_key_cache = dst_kv_cache[0]
203
+ ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
204
+
205
+ src_value_cache = src_kv_cache[1]
206
+ dst_value_cache = dst_kv_cache[1]
207
+ ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
208
+
209
+ @staticmethod
210
+ def copy_blocks(
211
+ kv_caches: List[torch.Tensor],
212
+ src_to_dists: Dict[int, List[int]],
213
+ ) -> None:
214
+ key_caches = [kv_cache[0] for kv_cache in kv_caches]
215
+ value_caches = [kv_cache[1] for kv_cache in kv_caches]
216
+ ops.copy_blocks(key_caches, value_caches, src_to_dists)