vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,84 @@
|
|
1
|
+
"""
|
2
|
+
This file contains the Pydantic schemas for various quantization-related
|
3
|
+
parameters. When a relevant quantization technique is specified, these
|
4
|
+
parameters are loaded in the form of a JSON alongside the model weights
|
5
|
+
and augment the model with additional information needed for use of that
|
6
|
+
technique. The format of this JSON should be specified by one or more
|
7
|
+
schemas contained here.
|
8
|
+
|
9
|
+
For example, when the KV cache is quantized to FP8-E4M3 (currently only
|
10
|
+
possible on ROCm), the model can be optionally augmented with KV cache
|
11
|
+
scaling factors.
|
12
|
+
"""
|
13
|
+
|
14
|
+
from typing import Dict, Optional
|
15
|
+
|
16
|
+
from pydantic import BaseModel, ConfigDict, ValidationInfo, model_validator
|
17
|
+
|
18
|
+
|
19
|
+
class KVCacheQuantSchema(BaseModel):
|
20
|
+
dtype: str
|
21
|
+
# Each key is a TP rank. Each value is a dictionary mapping a TP rank's
|
22
|
+
# layer indices to their per-tensor KV cache scaling factor.
|
23
|
+
# TODO: Consider pulling this and its validation methods out into its
|
24
|
+
# own schema class (tricky as its members are variable)
|
25
|
+
scaling_factor: Dict[int, Dict[int, float]]
|
26
|
+
|
27
|
+
@model_validator(mode="after")
|
28
|
+
def check_is_fp8(self) -> "KVCacheQuantSchema":
|
29
|
+
assert self.dtype == "float8_e4m3fn", (
|
30
|
+
"Loaded scaling factors intended for KV cache dtype = "
|
31
|
+
f"{self.dtype} rather than float8_e4m3fn!")
|
32
|
+
return self
|
33
|
+
|
34
|
+
@model_validator(mode="after")
|
35
|
+
def check_tp_ranks(self, info: ValidationInfo) -> "KVCacheQuantSchema":
|
36
|
+
context = info.context
|
37
|
+
if context:
|
38
|
+
tp_size = context["tp_size"]
|
39
|
+
num_hidden_layers = context["num_hidden_layers"]
|
40
|
+
assert len(self.scaling_factor) == tp_size, (
|
41
|
+
f"Loaded dictionary has TP size {len(self.scaling_factor)} "
|
42
|
+
f"but LLM engine is currently running with TP size {tp_size}.")
|
43
|
+
for tp_rank, layer_maps in self.scaling_factor.items():
|
44
|
+
assert len(layer_maps) == num_hidden_layers, (
|
45
|
+
f"KV cache scales map for TP rank {tp_rank} is malformed. "
|
46
|
+
f"Expected {num_hidden_layers} layers, got "
|
47
|
+
f"{len(layer_maps)}.")
|
48
|
+
for i in range(tp_size):
|
49
|
+
assert i in self.scaling_factor, (
|
50
|
+
f"KV cache scales map for TP rank {i} not found.")
|
51
|
+
return self
|
52
|
+
|
53
|
+
@model_validator(mode="after")
|
54
|
+
def check_current_rank(self, info: ValidationInfo) -> "KVCacheQuantSchema":
|
55
|
+
context = info.context
|
56
|
+
if context:
|
57
|
+
tp_rank = context["tp_rank"]
|
58
|
+
num_hidden_layers = context["num_hidden_layers"]
|
59
|
+
layer_scales_map = self.scaling_factor[tp_rank]
|
60
|
+
for i in range(num_hidden_layers):
|
61
|
+
assert i in layer_scales_map, (
|
62
|
+
f"Could not find KV cache scales for layer {i} in "
|
63
|
+
f"TP rank {tp_rank}.")
|
64
|
+
return self
|
65
|
+
|
66
|
+
|
67
|
+
class QuantParamSchema(BaseModel):
|
68
|
+
# TODO: Generalize and extend with more fields
|
69
|
+
# (e.g. weights/activations params) once functionality is enabled
|
70
|
+
model_config = ConfigDict(protected_namespaces=())
|
71
|
+
model_type: Optional[str]
|
72
|
+
kv_cache: KVCacheQuantSchema
|
73
|
+
|
74
|
+
@model_validator(mode="after")
|
75
|
+
def check_model_type(self, info: ValidationInfo) -> "QuantParamSchema":
|
76
|
+
context = info.context
|
77
|
+
if context:
|
78
|
+
model_type = context.get("model_type", None)
|
79
|
+
if model_type is not None:
|
80
|
+
assert model_type == self.model_type, (
|
81
|
+
f"Model type is {model_type} but loaded "
|
82
|
+
f"scaling factors belonging to different "
|
83
|
+
f"model type {self.model_type}!")
|
84
|
+
return self
|
@@ -0,0 +1,137 @@
|
|
1
|
+
from typing import Any, Dict, List, Optional
|
2
|
+
|
3
|
+
import torch
|
4
|
+
from torch.nn.parameter import Parameter
|
5
|
+
|
6
|
+
from vllm import _custom_ops as ops
|
7
|
+
from vllm.model_executor.layers.linear import LinearBase
|
8
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
9
|
+
QuantizationConfig, QuantizeMethodBase)
|
10
|
+
from vllm.model_executor.utils import set_weight_attrs
|
11
|
+
from vllm.utils import is_hip
|
12
|
+
|
13
|
+
|
14
|
+
class SqueezeLLMConfig(QuantizationConfig):
|
15
|
+
"""Config class for SqueezeLLM.
|
16
|
+
|
17
|
+
Reference: https://arxiv.org/pdf/2306.07629
|
18
|
+
"""
|
19
|
+
|
20
|
+
def __init__(
|
21
|
+
self,
|
22
|
+
weight_bits: int,
|
23
|
+
) -> None:
|
24
|
+
self.weight_bits = weight_bits
|
25
|
+
|
26
|
+
if self.weight_bits != 4:
|
27
|
+
raise ValueError(
|
28
|
+
"Currently, only 4-bit weight quantization is supported for "
|
29
|
+
f"SqueezeLLM, but got {self.weight_bits} bits.")
|
30
|
+
|
31
|
+
self.pack_factor = 32 // self.weight_bits
|
32
|
+
|
33
|
+
def __repr__(self) -> str:
|
34
|
+
return f"SqueezeLLMConfig(weight_bits={self.weight_bits})"
|
35
|
+
|
36
|
+
def get_name(self) -> str:
|
37
|
+
return "squeezellm"
|
38
|
+
|
39
|
+
def get_supported_act_dtypes(self) -> List[torch.dtype]:
|
40
|
+
return [torch.half]
|
41
|
+
|
42
|
+
def get_min_capability(self) -> int:
|
43
|
+
return 70
|
44
|
+
|
45
|
+
@staticmethod
|
46
|
+
def get_config_filenames() -> List[str]:
|
47
|
+
return ["quant_config.json"]
|
48
|
+
|
49
|
+
@classmethod
|
50
|
+
def from_config(cls, config: Dict[str, Any]) -> "SqueezeLLMConfig":
|
51
|
+
weight_bits = cls.get_from_keys(config, ["wbits"])
|
52
|
+
return cls(weight_bits)
|
53
|
+
|
54
|
+
def get_quant_method(
|
55
|
+
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
|
56
|
+
if isinstance(layer, LinearBase):
|
57
|
+
return SqueezeLLMLinearMethod(self)
|
58
|
+
return None
|
59
|
+
|
60
|
+
def get_scaled_act_names(self) -> List[str]:
|
61
|
+
return []
|
62
|
+
|
63
|
+
|
64
|
+
class SqueezeLLMLinearMethod(QuantizeMethodBase):
|
65
|
+
"""Linear method for SqueezeLLM.
|
66
|
+
|
67
|
+
Args:
|
68
|
+
quant_config: The SqueezeLLM quantization config.
|
69
|
+
"""
|
70
|
+
|
71
|
+
def __init__(self, quant_config: SqueezeLLMConfig):
|
72
|
+
self.quant_config = quant_config
|
73
|
+
|
74
|
+
def create_weights(self, layer: torch.nn.Module,
|
75
|
+
input_size_per_partition: int,
|
76
|
+
output_partition_sizes: List[int], input_size: int,
|
77
|
+
output_size: int, params_dtype: torch.dtype,
|
78
|
+
**extra_weight_attrs):
|
79
|
+
if input_size_per_partition % self.quant_config.pack_factor != 0:
|
80
|
+
raise ValueError(
|
81
|
+
"The input size is not aligned with the quantized "
|
82
|
+
"weight shape. This can be caused by too large "
|
83
|
+
"tensor parallel size.")
|
84
|
+
|
85
|
+
output_size_per_partition = sum(output_partition_sizes)
|
86
|
+
qweight = Parameter(
|
87
|
+
torch.empty(
|
88
|
+
input_size_per_partition // self.quant_config.pack_factor,
|
89
|
+
output_size_per_partition,
|
90
|
+
dtype=torch.int32,
|
91
|
+
),
|
92
|
+
requires_grad=False,
|
93
|
+
)
|
94
|
+
set_weight_attrs(
|
95
|
+
qweight, {
|
96
|
+
"input_dim": 0,
|
97
|
+
"output_dim": 1,
|
98
|
+
"packed_dim": 0,
|
99
|
+
"pack_factor": self.quant_config.pack_factor,
|
100
|
+
})
|
101
|
+
lookup_table = Parameter(
|
102
|
+
torch.empty(
|
103
|
+
output_size,
|
104
|
+
self.quant_config.weight_bits**2,
|
105
|
+
dtype=params_dtype,
|
106
|
+
),
|
107
|
+
requires_grad=False,
|
108
|
+
)
|
109
|
+
set_weight_attrs(lookup_table, {
|
110
|
+
"output_dim": 0,
|
111
|
+
})
|
112
|
+
|
113
|
+
layer.register_parameter("qweight", qweight)
|
114
|
+
set_weight_attrs(qweight, extra_weight_attrs)
|
115
|
+
layer.register_parameter("lookup_table", lookup_table)
|
116
|
+
set_weight_attrs(lookup_table, extra_weight_attrs)
|
117
|
+
|
118
|
+
def apply(self,
|
119
|
+
layer: torch.nn.Module,
|
120
|
+
x: torch.Tensor,
|
121
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
122
|
+
qweight = layer.qweight
|
123
|
+
lookup_table = layer.lookup_table
|
124
|
+
out_shape = x.shape[:-1] + (qweight.shape[-1], )
|
125
|
+
reshaped_x = x.reshape(-1, x.shape[-1])
|
126
|
+
if is_hip():
|
127
|
+
out_f = torch.zeros(out_shape, dtype=torch.float)
|
128
|
+
ops.squeezellm_gemm(reshaped_x, qweight, out_f, lookup_table)
|
129
|
+
out = out_f.to(dtype=torch.float16)
|
130
|
+
else:
|
131
|
+
# NOTE: The output tensor should be zero-initialized.
|
132
|
+
out = torch.zeros(out_shape, dtype=torch.float16)
|
133
|
+
ops.squeezellm_gemm(reshaped_x, qweight, out, lookup_table)
|
134
|
+
|
135
|
+
if bias is not None:
|
136
|
+
out.add_(bias)
|
137
|
+
return out.reshape(out_shape)
|
@@ -0,0 +1,405 @@
|
|
1
|
+
from functools import cached_property
|
2
|
+
from typing import Optional, Tuple
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.jit
|
6
|
+
import torch.nn as nn
|
7
|
+
|
8
|
+
|
9
|
+
class RejectionSampler(nn.Module):
|
10
|
+
"""Apply modified rejection sampling as described in "Accelerating Large
|
11
|
+
Language Model Decoding with Speculative Sampling"
|
12
|
+
https://arxiv.org/pdf/2302.01318.pdf.
|
13
|
+
"""
|
14
|
+
|
15
|
+
def __init__(self, strict_mode: bool = False):
|
16
|
+
"""Create a rejection sampler.
|
17
|
+
|
18
|
+
Args:
|
19
|
+
strict_mode: Whether or not to perform shape/device/dtype checks
|
20
|
+
during sampling. This catches correctness issues but adds
|
21
|
+
nontrivial latency.
|
22
|
+
"""
|
23
|
+
super().__init__()
|
24
|
+
self._strict_mode = strict_mode
|
25
|
+
|
26
|
+
# NOTE: A "bonus token" is accepted iff all proposal tokens are
|
27
|
+
# accepted. There is always only one possible bonus token. We store this
|
28
|
+
# value in a variable for readability.
|
29
|
+
self._num_bonus_tokens = 1
|
30
|
+
|
31
|
+
self.num_accepted_tokens: Optional[torch.Tensor] = None
|
32
|
+
self.num_emitted_tokens: Optional[torch.Tensor] = None
|
33
|
+
self.num_draft_tokens: int = 0
|
34
|
+
|
35
|
+
def init_gpu_tensors(self, rank: int) -> None:
|
36
|
+
assert self.num_accepted_tokens is None
|
37
|
+
device = f"cuda:{rank}"
|
38
|
+
self.num_accepted_tokens = torch.tensor(0,
|
39
|
+
dtype=torch.long,
|
40
|
+
device=device)
|
41
|
+
self.num_emitted_tokens = torch.tensor(0,
|
42
|
+
dtype=torch.long,
|
43
|
+
device=device)
|
44
|
+
|
45
|
+
@property
|
46
|
+
def probs_dtype(self):
|
47
|
+
return torch.float32
|
48
|
+
|
49
|
+
@property
|
50
|
+
def token_id_dtype(self):
|
51
|
+
return torch.int64
|
52
|
+
|
53
|
+
def forward(
|
54
|
+
self,
|
55
|
+
target_probs: torch.Tensor,
|
56
|
+
bonus_token_ids: torch.Tensor,
|
57
|
+
draft_probs: torch.Tensor,
|
58
|
+
draft_token_ids: torch.Tensor,
|
59
|
+
) -> torch.Tensor:
|
60
|
+
"""Sample token ids using rejection sampling. This accepts or rejects
|
61
|
+
tokens proposed by the draft model using the probability of each token
|
62
|
+
according to the draft and target models.
|
63
|
+
|
64
|
+
In the worst case where all draft tokens are rejected, it is guaranteed
|
65
|
+
one correct token will be emitted.
|
66
|
+
|
67
|
+
In the case where all draft tokens are accepted, a bonus token will be
|
68
|
+
accepted as its cheap to have the target model score this speculative
|
69
|
+
sequence.
|
70
|
+
|
71
|
+
Args:
|
72
|
+
target_probs: The probability distribution over token ids given
|
73
|
+
context according to the target model.
|
74
|
+
shape = [batch_size, num_speculative_tokens, vocab_size]
|
75
|
+
|
76
|
+
bonus_token_ids: The "bonus" token ids that are accepted iff all
|
77
|
+
speculative tokens in a sequence are accepted.
|
78
|
+
shape = [batch_size, num_bonus_tokens]
|
79
|
+
|
80
|
+
draft_probs: The probability distribution over token ids given
|
81
|
+
context according to the draft model.
|
82
|
+
shape = [batch_size, num_speculative_tokens, vocab_size]
|
83
|
+
|
84
|
+
draft_token_ids: The token ids that were sampled from the draft
|
85
|
+
probabilities.
|
86
|
+
shape = [batch_size, num_speculative_tokens]
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
output_token_ids: The token ids sampled via rejection sampling,
|
90
|
+
or -1 if unable to sample a token because the previous token
|
91
|
+
was rejected.
|
92
|
+
shape = [batch_size, num_speculative_tokens + num_bonus_tokens]
|
93
|
+
"""
|
94
|
+
# Only perform shape/dtype/device checking in strict mode, as it adds
|
95
|
+
# overhead.
|
96
|
+
if self._strict_mode:
|
97
|
+
self._raise_if_incorrect_shape(target_probs, bonus_token_ids,
|
98
|
+
draft_probs, draft_token_ids)
|
99
|
+
self._raise_if_incorrect_dtype(target_probs, bonus_token_ids,
|
100
|
+
draft_probs, draft_token_ids)
|
101
|
+
self._raise_if_inconsistent_device(target_probs, bonus_token_ids,
|
102
|
+
draft_probs, draft_token_ids)
|
103
|
+
self._raise_if_out_of_bounds_vocab(target_probs.shape[-1],
|
104
|
+
bonus_token_ids,
|
105
|
+
draft_token_ids)
|
106
|
+
|
107
|
+
accepted, recovered_token_ids = self._batch_modified_rejection_sampling(
|
108
|
+
target_probs,
|
109
|
+
draft_probs,
|
110
|
+
draft_token_ids,
|
111
|
+
)
|
112
|
+
|
113
|
+
output_token_ids = self._create_output(
|
114
|
+
accepted,
|
115
|
+
recovered_token_ids,
|
116
|
+
draft_token_ids,
|
117
|
+
bonus_token_ids,
|
118
|
+
)
|
119
|
+
return output_token_ids
|
120
|
+
|
121
|
+
def _batch_modified_rejection_sampling(
|
122
|
+
self,
|
123
|
+
target_probs: torch.Tensor, # [batch_size, k, vocab_size]
|
124
|
+
draft_probs: torch.Tensor, # [batch_size, k, vocab_size]
|
125
|
+
draft_token_ids: torch.Tensor, # [batch_size, k]
|
126
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
127
|
+
"""Perform modified rejection sampling on each sequence.
|
128
|
+
|
129
|
+
Returns:
|
130
|
+
A tuple of two tensors:
|
131
|
+
0: A bool tensor of which tokens in each sequence is accepted.
|
132
|
+
shape = [batch_size, k]
|
133
|
+
1: Token ids sampled from a recovered distribution, to be used
|
134
|
+
when a token is rejected.
|
135
|
+
shape = [batch_size, k]
|
136
|
+
"""
|
137
|
+
|
138
|
+
batch_size, k, vocab_size = draft_probs.shape
|
139
|
+
|
140
|
+
# shape [batch_size, k]
|
141
|
+
accepted = self._get_accepted(target_probs, draft_probs,
|
142
|
+
draft_token_ids)
|
143
|
+
|
144
|
+
recovered_probs = self._get_recovered_probs(
|
145
|
+
target_probs, draft_probs).reshape(batch_size * k, vocab_size)
|
146
|
+
|
147
|
+
# NOTE: the recovered_probs are overwritten by this method.
|
148
|
+
recovered_token_ids = _multinomial(recovered_probs,
|
149
|
+
num_samples=1).reshape(
|
150
|
+
batch_size, k)
|
151
|
+
return accepted, recovered_token_ids
|
152
|
+
|
153
|
+
def _get_accepted(
|
154
|
+
self,
|
155
|
+
target_probs: torch.Tensor, # [batch_size, k, vocab_size]
|
156
|
+
draft_probs: torch.Tensor, # [batch_size, k, vocab_size]
|
157
|
+
draft_token_ids: torch.Tensor, # [batch_size, k]
|
158
|
+
) -> torch.Tensor:
|
159
|
+
r"""Create bool matrix over the proposed draft tokens. If
|
160
|
+
True, then a token can be accepted, else it should be
|
161
|
+
rejected.
|
162
|
+
|
163
|
+
Given :math:`q(\hat{x}_{n+1}|x_1, \dots, x_n)`, the probability of
|
164
|
+
:math:`\hat{x}_{n+1}` given context :math:`x_1, \dots, x_n` according
|
165
|
+
to the target model, and :math:`p(\hat{x}_{n+1}|x_1, \dots, x_n)`, the
|
166
|
+
same conditional probability according to the draft model, the token
|
167
|
+
is accepted with probability:
|
168
|
+
|
169
|
+
.. math::
|
170
|
+
\min\left(1, \frac{q(\hat{x}_{n+1}|x_1, \dots, x_n)}
|
171
|
+
{p(\hat{x}_{n+1}|x_1, \dots, x_n)}\right)
|
172
|
+
|
173
|
+
This implementation does not apply causality. When using the output,
|
174
|
+
if a token is rejected, subsequent tokens should not be used.
|
175
|
+
|
176
|
+
Returns a bool tensor of shape [batch_size, k] specifying which tokens
|
177
|
+
are accepted.
|
178
|
+
"""
|
179
|
+
batch_size, k, _ = draft_probs.shape
|
180
|
+
batch_indices = torch.arange(batch_size,
|
181
|
+
device=target_probs.device)[:, None]
|
182
|
+
probs_indicies = torch.arange(k, device=target_probs.device)
|
183
|
+
|
184
|
+
# shape [batch_size, k]
|
185
|
+
selected_draft_probs = draft_probs[batch_indices, probs_indicies,
|
186
|
+
draft_token_ids]
|
187
|
+
|
188
|
+
# shape [batch_size, k]
|
189
|
+
selected_target_probs = target_probs[batch_indices, probs_indicies,
|
190
|
+
draft_token_ids]
|
191
|
+
|
192
|
+
uniform_rand = torch.rand(batch_size,
|
193
|
+
k,
|
194
|
+
dtype=self.probs_dtype,
|
195
|
+
device=target_probs.device)
|
196
|
+
capped_ratio = torch.minimum(
|
197
|
+
selected_target_probs / selected_draft_probs,
|
198
|
+
torch.full((1, ), 1, device=target_probs.device))
|
199
|
+
accepted = uniform_rand < capped_ratio
|
200
|
+
|
201
|
+
return accepted
|
202
|
+
|
203
|
+
def _get_recovered_probs(
|
204
|
+
self,
|
205
|
+
target_probs: torch.Tensor, # [k, vocab_size]
|
206
|
+
draft_probs: torch.Tensor, # [k, vocab_size]
|
207
|
+
) -> torch.Tensor:
|
208
|
+
r"""Create a probability distribution for each proposed token which can
|
209
|
+
be sampled if the proposed token is rejected.
|
210
|
+
|
211
|
+
When this routine is applied sequentially, the true distribution of the
|
212
|
+
target model is recovered (within hardware numerics).
|
213
|
+
|
214
|
+
The probability distribution used in this rejection case is constructed
|
215
|
+
as follows. Given :math:`q(x|x_1, \dots, x_n)`, the probability of
|
216
|
+
:math:`x` given context :math:`x_1, \dots, x_n` according to the target
|
217
|
+
model and :math:`p(x|x_1, \dots, x_n)`, the same conditional probability
|
218
|
+
according to the draft model:
|
219
|
+
|
220
|
+
.. math::
|
221
|
+
x_{n+1} \sim (q(x|x_1, \dots, x_n) - p(x|x_1, \dots, x_n))_+
|
222
|
+
|
223
|
+
where :math:`(f(x))_+` is defined as:
|
224
|
+
|
225
|
+
.. math::
|
226
|
+
(f(x))_+ = \frac{\max(0, f(x))}{\sum_x \max(0, f(x))}
|
227
|
+
|
228
|
+
See https://github.com/vllm-project/vllm/pull/2336 for a visualization
|
229
|
+
of the draft, target, and recovered probability distributions.
|
230
|
+
|
231
|
+
Returns a tensor of shape [batch_size, k, vocab_size].
|
232
|
+
|
233
|
+
Note: This batches operations on GPU and thus constructs the recovered
|
234
|
+
distribution for all tokens, even if they are accepted. This causes
|
235
|
+
division-by-zero errors, so we use self._smallest_positive_value to
|
236
|
+
avoid that. This introduces some drift to the distribution.
|
237
|
+
"""
|
238
|
+
_, k, _ = draft_probs.shape
|
239
|
+
|
240
|
+
# shape [batch_size, k, vocab_size]
|
241
|
+
difference = target_probs - draft_probs
|
242
|
+
|
243
|
+
# TODO(cade): Can we use logprobs instead of probs, and avoid the
|
244
|
+
# division-by-zero errors without introducing distribution drift?
|
245
|
+
|
246
|
+
# shape [batch_size, k, vocab_size]
|
247
|
+
f = torch.clamp(difference, min=self._smallest_positive_value)
|
248
|
+
|
249
|
+
# shape [batch_size, k, vocab_size]
|
250
|
+
recovered_probs = f / torch.sum(f, dim=-1).reshape(-1, k, 1)
|
251
|
+
|
252
|
+
return recovered_probs
|
253
|
+
|
254
|
+
@cached_property
|
255
|
+
def _smallest_positive_value(self) -> float:
|
256
|
+
"""Return the smallest positive value representable by the probs dtype.
|
257
|
+
This value is used when constructing a distribution from which to sample
|
258
|
+
recovered tokens in the first rejection case.
|
259
|
+
|
260
|
+
See _get_recovered_probs for more details
|
261
|
+
|
262
|
+
Note that this isn't actually the smallest positive value representable
|
263
|
+
by float32, but the smallest positive normal value.
|
264
|
+
See https://en.wikipedia.org/wiki/Subnormal_number for more information.
|
265
|
+
"""
|
266
|
+
return torch.finfo(self.probs_dtype).tiny
|
267
|
+
|
268
|
+
def _create_output(
|
269
|
+
self,
|
270
|
+
accepted: torch.Tensor, # [batch_size, k]
|
271
|
+
recovered_token_ids: torch.Tensor, # [batch_size, k]
|
272
|
+
draft_token_ids: torch.Tensor, # [batch_size, k]
|
273
|
+
bonus_token_ids: torch.Tensor, # [batch_size]
|
274
|
+
) -> torch.Tensor:
|
275
|
+
"""Format output. Returns a matrix of token ids. When
|
276
|
+
a token is rejected via rejection sampling, all subsequent
|
277
|
+
token ids are set to -1 for the sequence.
|
278
|
+
|
279
|
+
shape = [batch_size, k + num_bonus_tokens]
|
280
|
+
"""
|
281
|
+
bonus_token_ids = bonus_token_ids.squeeze()
|
282
|
+
batch_size, k = recovered_token_ids.shape
|
283
|
+
|
284
|
+
# Determine the index of the first False value for each row.
|
285
|
+
limits = (accepted == 0).max(1).indices
|
286
|
+
limits[~(accepted == 0).any(1)] = k
|
287
|
+
|
288
|
+
# Create masks using the indices.
|
289
|
+
indices = torch.arange(k, device=accepted.device).unsqueeze(0)
|
290
|
+
accepted_mask = indices < limits.unsqueeze(1)
|
291
|
+
after_false_mask = indices == limits.unsqueeze(1)
|
292
|
+
|
293
|
+
# Create an extended output tensor
|
294
|
+
output_with_bonus_tokens = -torch.ones(
|
295
|
+
(batch_size, k + self._num_bonus_tokens),
|
296
|
+
dtype=self.token_id_dtype,
|
297
|
+
device=accepted.device)
|
298
|
+
output = output_with_bonus_tokens[:, :k]
|
299
|
+
|
300
|
+
# Fill in the first k columns of the output tensor using masks and data
|
301
|
+
# tensors.
|
302
|
+
output[:, :k] = torch.where(accepted_mask, draft_token_ids,
|
303
|
+
-torch.ones_like(draft_token_ids))
|
304
|
+
|
305
|
+
# Fill the last column.
|
306
|
+
# We check output directly as accepted may have True values inconsistent
|
307
|
+
# with causal acceptance.
|
308
|
+
output_with_bonus_tokens[:, -1] = torch.where(output[:, -1] != -1,
|
309
|
+
bonus_token_ids, -1)
|
310
|
+
|
311
|
+
# We disable bonus tokens because it causes corrupt KV cache for
|
312
|
+
# proposal methods that require KV cache. We can fix it by "prefilling"
|
313
|
+
# the bonus token in the proposer. The following issue tracks the fix.
|
314
|
+
# https://github.com/vllm-project/vllm/issues/4212
|
315
|
+
output_with_bonus_tokens[:, -1] = -1
|
316
|
+
|
317
|
+
# Fill the recovered token ids.
|
318
|
+
output.mul_(~after_false_mask).add_(
|
319
|
+
recovered_token_ids.mul(after_false_mask))
|
320
|
+
|
321
|
+
self.num_accepted_tokens += accepted.sum()
|
322
|
+
self.num_emitted_tokens += (output_with_bonus_tokens != -1).sum()
|
323
|
+
self.num_draft_tokens += batch_size * k
|
324
|
+
|
325
|
+
return output_with_bonus_tokens
|
326
|
+
|
327
|
+
def _raise_if_incorrect_shape(
|
328
|
+
self,
|
329
|
+
target_probs: torch.Tensor,
|
330
|
+
bonus_token_ids: torch.Tensor,
|
331
|
+
draft_probs: torch.Tensor,
|
332
|
+
draft_token_ids: torch.Tensor,
|
333
|
+
) -> None:
|
334
|
+
(target_batch_size, num_target_probs,
|
335
|
+
target_vocab_size) = target_probs.shape
|
336
|
+
bonus_batch_size, num_bonus_tokens = bonus_token_ids.shape
|
337
|
+
draft_batch_size, num_draft_probs, draft_vocab_size = draft_probs.shape
|
338
|
+
draft_token_ids_batch_size, num_draft_token_ids = draft_token_ids.shape
|
339
|
+
|
340
|
+
assert draft_batch_size == target_batch_size
|
341
|
+
assert num_draft_probs == num_target_probs
|
342
|
+
assert (draft_vocab_size == target_vocab_size
|
343
|
+
), f"{draft_vocab_size=} {target_vocab_size=}"
|
344
|
+
|
345
|
+
assert draft_token_ids_batch_size == draft_batch_size
|
346
|
+
assert num_draft_token_ids == num_draft_probs
|
347
|
+
|
348
|
+
assert bonus_batch_size == target_batch_size
|
349
|
+
assert num_bonus_tokens == self._num_bonus_tokens
|
350
|
+
|
351
|
+
def _raise_if_incorrect_dtype(
|
352
|
+
self,
|
353
|
+
target_probs: torch.Tensor,
|
354
|
+
bonus_token_ids: torch.Tensor,
|
355
|
+
draft_probs: torch.Tensor,
|
356
|
+
draft_token_ids: torch.Tensor,
|
357
|
+
) -> None:
|
358
|
+
assert all(probs.dtype == self.probs_dtype
|
359
|
+
for probs in [target_probs, draft_probs])
|
360
|
+
assert all(token_ids.dtype == self.token_id_dtype
|
361
|
+
for token_ids in [bonus_token_ids, draft_token_ids])
|
362
|
+
|
363
|
+
def _raise_if_inconsistent_device(
|
364
|
+
self,
|
365
|
+
target_probs: torch.Tensor,
|
366
|
+
bonus_token_ids: torch.Tensor,
|
367
|
+
draft_probs: torch.Tensor,
|
368
|
+
draft_token_ids: torch.Tensor,
|
369
|
+
) -> None:
|
370
|
+
devices = [
|
371
|
+
t.device for t in
|
372
|
+
[target_probs, bonus_token_ids, draft_probs, draft_token_ids]
|
373
|
+
]
|
374
|
+
assert all([devices[0] == device for device in devices])
|
375
|
+
|
376
|
+
def _raise_if_out_of_bounds_vocab(
|
377
|
+
self,
|
378
|
+
vocab_size: int,
|
379
|
+
bonus_token_ids: torch.Tensor,
|
380
|
+
draft_token_ids: torch.Tensor,
|
381
|
+
) -> None:
|
382
|
+
assert torch.all(bonus_token_ids < vocab_size)
|
383
|
+
assert torch.all(bonus_token_ids >= 0)
|
384
|
+
assert torch.all(draft_token_ids < vocab_size)
|
385
|
+
assert torch.all(draft_token_ids >= 0)
|
386
|
+
|
387
|
+
|
388
|
+
# torch.multinomial forces a GPU<->CPU sync.
|
389
|
+
# Therefore, we use an optimized implementation instead that skips the sync.
|
390
|
+
# Note that we always sample with replacement.
|
391
|
+
# probs will be modified in place, but this is fine, as we pass
|
392
|
+
# in a copy already.
|
393
|
+
@torch.jit.script
|
394
|
+
def _multinomial(
|
395
|
+
probs: torch.Tensor,
|
396
|
+
num_samples: int,
|
397
|
+
) -> torch.Tensor:
|
398
|
+
if num_samples > 1:
|
399
|
+
# This is equivalent to torch.repeat_interleaved (which also
|
400
|
+
# forces a GPU<->CPU sync).
|
401
|
+
probs = probs[:, None, :].expand(probs.shape[0], num_samples,
|
402
|
+
probs.shape[1]).contiguous().view(
|
403
|
+
-1, probs.shape[1])
|
404
|
+
q = torch.empty_like(probs).exponential_(1.0)
|
405
|
+
return probs.div_(q).argmax(dim=1).view(-1, num_samples)
|