vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1168 @@
|
|
1
|
+
import contextlib
|
2
|
+
import time
|
3
|
+
from enum import IntEnum
|
4
|
+
from typing import Dict, List, NamedTuple, Optional, Set, Tuple
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import torch
|
8
|
+
import torch.nn as nn
|
9
|
+
|
10
|
+
from vllm.attention import (AttentionMetadata, AttentionMetadataPerStage,
|
11
|
+
get_attn_backend)
|
12
|
+
from vllm.attention.backends.flashinfer import FlashInferBackend
|
13
|
+
from vllm.config import (DeviceConfig, LoadConfig, LoRAConfig, ModelConfig,
|
14
|
+
ParallelConfig, SchedulerConfig, VisionLanguageConfig)
|
15
|
+
from vllm.distributed import broadcast_tensor_dict, with_pynccl_for_all_reduce
|
16
|
+
from vllm.distributed.device_communicators import (custom_all_reduce,
|
17
|
+
pynccl_utils)
|
18
|
+
from vllm.logger import init_logger
|
19
|
+
from vllm.lora.layers import LoRAMapping
|
20
|
+
from vllm.lora.request import LoRARequest
|
21
|
+
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
|
22
|
+
from vllm.model_executor import SamplingMetadata
|
23
|
+
from vllm.model_executor.model_loader import get_model
|
24
|
+
from vllm.sampling_params import SamplingParams
|
25
|
+
from vllm.sequence import (MultiModalData, SamplerOutput, SequenceData,
|
26
|
+
SequenceGroupMetadata)
|
27
|
+
from vllm.utils import (CudaMemoryProfiler, get_kv_cache_torch_dtype, is_hip,
|
28
|
+
is_pin_memory_available, make_tensor_with_pad)
|
29
|
+
|
30
|
+
logger = init_logger(__name__)
|
31
|
+
|
32
|
+
_PAD_SLOT_ID = -1
|
33
|
+
LORA_WARMUP_RANK = 8
|
34
|
+
_BATCH_SIZE_ALIGNMENT = 8
|
35
|
+
# Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
|
36
|
+
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
|
37
|
+
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
|
38
|
+
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
|
39
|
+
]
|
40
|
+
|
41
|
+
|
42
|
+
class PreparePromptMetadata(NamedTuple):
|
43
|
+
input_tokens: List[int]
|
44
|
+
input_positions: List[int]
|
45
|
+
attn_metadata: Optional[AttentionMetadataPerStage]
|
46
|
+
seq_lens: List[int]
|
47
|
+
query_lens: List[int]
|
48
|
+
lora_index_mapping: List[int]
|
49
|
+
lora_prompt_mapping: List[int]
|
50
|
+
lora_requests: Set[LoRARequest]
|
51
|
+
multi_modal_input: Optional[torch.Tensor]
|
52
|
+
slot_mapping: List[int]
|
53
|
+
|
54
|
+
@classmethod
|
55
|
+
def empty(cls):
|
56
|
+
return PreparePromptMetadata(
|
57
|
+
input_tokens=[],
|
58
|
+
input_positions=[],
|
59
|
+
attn_metadata=None,
|
60
|
+
seq_lens=[],
|
61
|
+
query_lens=[],
|
62
|
+
lora_index_mapping=[],
|
63
|
+
lora_prompt_mapping=[],
|
64
|
+
lora_requests=set(),
|
65
|
+
multi_modal_input=None,
|
66
|
+
slot_mapping=[],
|
67
|
+
)
|
68
|
+
|
69
|
+
|
70
|
+
class PrepareDecodeMetadata(NamedTuple):
|
71
|
+
input_tokens: List[int]
|
72
|
+
input_positions: List[int]
|
73
|
+
attn_metadata: Optional[AttentionMetadata]
|
74
|
+
lora_index_mapping: List[int]
|
75
|
+
lora_prompt_mapping: List[int]
|
76
|
+
lora_requests: Set[LoRARequest]
|
77
|
+
slot_mapping: List[int]
|
78
|
+
|
79
|
+
@classmethod
|
80
|
+
def empty(cls):
|
81
|
+
return PrepareDecodeMetadata(
|
82
|
+
input_tokens=[],
|
83
|
+
input_positions=[],
|
84
|
+
attn_metadata=None,
|
85
|
+
lora_index_mapping=[],
|
86
|
+
lora_prompt_mapping=[],
|
87
|
+
lora_requests=set(),
|
88
|
+
slot_mapping=[],
|
89
|
+
)
|
90
|
+
|
91
|
+
|
92
|
+
# How batches are constructed.
|
93
|
+
class BatchType(IntEnum):
|
94
|
+
# Every batch is prefill.
|
95
|
+
PREFILL = 0
|
96
|
+
# Every batch is decode.
|
97
|
+
DECODE = 1
|
98
|
+
# Batch is a mixture of prefill and decode.
|
99
|
+
MIXED = 2
|
100
|
+
|
101
|
+
|
102
|
+
class ModelRunner:
|
103
|
+
|
104
|
+
def __init__(
|
105
|
+
self,
|
106
|
+
model_config: ModelConfig,
|
107
|
+
parallel_config: ParallelConfig,
|
108
|
+
scheduler_config: SchedulerConfig,
|
109
|
+
device_config: DeviceConfig,
|
110
|
+
load_config: LoadConfig,
|
111
|
+
lora_config: Optional[LoRAConfig],
|
112
|
+
kv_cache_dtype: Optional[str] = "auto",
|
113
|
+
is_driver_worker: bool = False,
|
114
|
+
vision_language_config: Optional[VisionLanguageConfig] = None,
|
115
|
+
):
|
116
|
+
self.model_config = model_config
|
117
|
+
self.parallel_config = parallel_config
|
118
|
+
self.scheduler_config = scheduler_config
|
119
|
+
self.lora_config = lora_config
|
120
|
+
self.load_config = load_config
|
121
|
+
self.is_driver_worker = is_driver_worker
|
122
|
+
|
123
|
+
# model_config can be None in tests/samplers/test_sampler.py.
|
124
|
+
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
|
125
|
+
self.sliding_window = (model_config.get_sliding_window()
|
126
|
+
if model_config is not None else None)
|
127
|
+
self.device_config = (device_config
|
128
|
+
if device_config is not None else DeviceConfig())
|
129
|
+
self.device = self.device_config.device
|
130
|
+
|
131
|
+
# Set after load_model.
|
132
|
+
self.lora_manager: LRUCacheWorkerLoRAManager = None
|
133
|
+
|
134
|
+
self.graph_runners: Dict[int, CUDAGraphRunner] = {}
|
135
|
+
self.graph_memory_pool: Optional[Tuple[
|
136
|
+
int, int]] = None # Set during graph capture.
|
137
|
+
|
138
|
+
self.max_seq_len_to_capture = (self.model_config.max_seq_len_to_capture
|
139
|
+
if self.model_config is not None else 0)
|
140
|
+
|
141
|
+
self.pin_memory = is_pin_memory_available()
|
142
|
+
self.kv_cache_dtype = kv_cache_dtype
|
143
|
+
self.vision_language_config = vision_language_config
|
144
|
+
|
145
|
+
self.attn_backend = get_attn_backend(
|
146
|
+
self.model_config.dtype if model_config is not None else None)
|
147
|
+
|
148
|
+
# Lazy initialization
|
149
|
+
self.model: torch.nn.Module # Set after load_model
|
150
|
+
self.block_size: int # Set after initial profiling.
|
151
|
+
# When using CUDA graph, the input block tables must be padded to
|
152
|
+
# max_seq_len_to_capture. However, creating the block table in
|
153
|
+
# Python can be expensive. To optimize this, we cache the block table
|
154
|
+
# in numpy and only copy the actual input content at every iteration.
|
155
|
+
# The shape of the cached block table will be
|
156
|
+
# (max batch size to capture, max context len to capture / block size).
|
157
|
+
self.graph_block_tables: torch.Tensor # Set after initial profiling.
|
158
|
+
|
159
|
+
# Set if the backend is flashinfer.
|
160
|
+
self.flashinfer_workspace_buffer: torch.Tensor
|
161
|
+
|
162
|
+
def load_model(self) -> None:
|
163
|
+
with CudaMemoryProfiler() as m:
|
164
|
+
self.model = get_model(
|
165
|
+
model_config=self.model_config,
|
166
|
+
device_config=self.device_config,
|
167
|
+
load_config=self.load_config,
|
168
|
+
lora_config=self.lora_config,
|
169
|
+
vision_language_config=self.vision_language_config,
|
170
|
+
parallel_config=self.parallel_config,
|
171
|
+
scheduler_config=self.scheduler_config,
|
172
|
+
)
|
173
|
+
|
174
|
+
self.model_memory_usage = m.consumed_memory
|
175
|
+
logger.info("Loading model weights took %.4f GB",
|
176
|
+
self.model_memory_usage / float(2**30))
|
177
|
+
|
178
|
+
if self.lora_config:
|
179
|
+
assert hasattr(self.model, "supported_lora_modules"
|
180
|
+
) and self.model.supported_lora_modules, (
|
181
|
+
"Model does not support LoRA")
|
182
|
+
assert hasattr(
|
183
|
+
self.model,
|
184
|
+
"embedding_modules"), "Model does not have embedding_modules"
|
185
|
+
assert hasattr(self.model, "embedding_padding_modules"
|
186
|
+
), "Model does not have embedding_padding_modules"
|
187
|
+
self.lora_manager = LRUCacheWorkerLoRAManager(
|
188
|
+
self.scheduler_config.max_num_seqs,
|
189
|
+
self.scheduler_config.max_num_batched_tokens, self.vocab_size,
|
190
|
+
self.lora_config, self.device, self.model.embedding_modules,
|
191
|
+
self.model.embedding_padding_modules)
|
192
|
+
self.model = self.lora_manager.create_lora_manager(self.model)
|
193
|
+
|
194
|
+
if self.kv_cache_dtype == "fp8" and is_hip():
|
195
|
+
# Currently scaled KV cache is only enabled on ROCm
|
196
|
+
if self.model_config.quantization_param_path is not None:
|
197
|
+
if callable(getattr(self.model, "load_kv_cache_scales", None)):
|
198
|
+
self.model.load_kv_cache_scales(
|
199
|
+
self.model_config.quantization_param_path)
|
200
|
+
else:
|
201
|
+
raise RuntimeError(
|
202
|
+
"Using FP8 KV cache and scaling factors provided but "
|
203
|
+
"model %s does not support loading scaling factors.",
|
204
|
+
self.model.__class__)
|
205
|
+
else:
|
206
|
+
logger.warning(
|
207
|
+
"Using FP8 KV cache but no scaling factors "
|
208
|
+
"provided. Defaulting to scaling factors of 1.0. "
|
209
|
+
"This may lead to less accurate results!")
|
210
|
+
elif self.model_config.quantization_param_path is not None:
|
211
|
+
logger.warning("KV cache scaling factors provided, "
|
212
|
+
"but the KV cache data type is not FP8. "
|
213
|
+
"KV cache scaling factors will not be used.")
|
214
|
+
|
215
|
+
def set_block_size(self, block_size: int) -> None:
|
216
|
+
self.block_size = block_size
|
217
|
+
|
218
|
+
self.graph_block_tables = np.zeros(
|
219
|
+
(max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
|
220
|
+
dtype=np.int32)
|
221
|
+
|
222
|
+
def get_max_block_per_batch(self) -> int:
|
223
|
+
block_size = self.block_size
|
224
|
+
return (self.max_seq_len_to_capture + block_size - 1) // block_size
|
225
|
+
|
226
|
+
def _prepare_prompt(
|
227
|
+
self,
|
228
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
229
|
+
) -> PreparePromptMetadata:
|
230
|
+
input_tokens: List[int] = []
|
231
|
+
input_positions: List[int] = []
|
232
|
+
slot_mapping: List[int] = []
|
233
|
+
lora_index_mapping: List[int] = []
|
234
|
+
lora_prompt_mapping: List[int] = []
|
235
|
+
lora_requests: Set[LoRARequest] = set()
|
236
|
+
|
237
|
+
seq_lens: List[int] = []
|
238
|
+
context_lens: List[int] = []
|
239
|
+
query_lens: List[int] = []
|
240
|
+
prefix_block_tables: List[List[int]] = []
|
241
|
+
multi_modal_input_list: List[torch.Tensor] = []
|
242
|
+
|
243
|
+
if len(seq_group_metadata_list) == 0:
|
244
|
+
return PreparePromptMetadata.empty()
|
245
|
+
|
246
|
+
for seq_group_metadata in seq_group_metadata_list:
|
247
|
+
assert seq_group_metadata.is_prompt
|
248
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
249
|
+
assert len(seq_ids) == 1
|
250
|
+
seq_id = seq_ids[0]
|
251
|
+
|
252
|
+
computed_block_nums = seq_group_metadata.computed_block_nums
|
253
|
+
if (self.scheduler_config is not None
|
254
|
+
and self.scheduler_config.chunked_prefill_enabled
|
255
|
+
and not (computed_block_nums is None
|
256
|
+
or computed_block_nums == [])):
|
257
|
+
raise RuntimeError(
|
258
|
+
"chunked prefill cannot be used with prefix caching "
|
259
|
+
"now.")
|
260
|
+
|
261
|
+
token_chunk_size = seq_group_metadata.token_chunk_size
|
262
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
263
|
+
context_len = seq_data.get_num_computed_tokens()
|
264
|
+
# We should use get_len here because in case of preemption
|
265
|
+
# it contains output tokens.
|
266
|
+
seq_len = min(seq_data.get_len(), context_len + token_chunk_size)
|
267
|
+
prompt_tokens = seq_data.get_token_ids()[context_len:seq_len]
|
268
|
+
seq_lens.append(seq_len)
|
269
|
+
|
270
|
+
# NOTE: This only works for oooooooxxx style attention.
|
271
|
+
if computed_block_nums is not None and len(
|
272
|
+
computed_block_nums) > 0 and self.sliding_window is None:
|
273
|
+
# Prefix is not supported with sliding_window
|
274
|
+
context_len = len(computed_block_nums) * self.block_size
|
275
|
+
prompt_tokens = prompt_tokens[context_len:]
|
276
|
+
prefix_block_tables.append(computed_block_nums)
|
277
|
+
elif self.scheduler_config.chunked_prefill_enabled:
|
278
|
+
if seq_group_metadata.block_tables is not None:
|
279
|
+
# Prefill has chunked before.
|
280
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
281
|
+
prefix_block_tables.append(block_table)
|
282
|
+
else:
|
283
|
+
# The first prefill.
|
284
|
+
prefix_block_tables.append([])
|
285
|
+
else:
|
286
|
+
prefix_block_tables.append([])
|
287
|
+
# Right now, prefill start is always 0. However, this
|
288
|
+
# assumption can be changed once chunked prefill is introduced.
|
289
|
+
assert context_len == 0
|
290
|
+
|
291
|
+
# actual prompt lens
|
292
|
+
context_lens.append(context_len)
|
293
|
+
query_lens.append(seq_len - context_len)
|
294
|
+
|
295
|
+
input_tokens.extend(prompt_tokens)
|
296
|
+
# NOTE(woosuk): Here we assume that the first token in the prompt
|
297
|
+
# is always the first token in the sequence.
|
298
|
+
input_positions.extend(list(range(context_len, seq_len)))
|
299
|
+
lora_id = seq_group_metadata.lora_int_id
|
300
|
+
|
301
|
+
if lora_id > 0:
|
302
|
+
lora_requests.add(seq_group_metadata.lora_request)
|
303
|
+
|
304
|
+
lora_index_mapping += [lora_id] * (seq_len - context_len)
|
305
|
+
lora_prompt_mapping.extend(
|
306
|
+
[lora_id] *
|
307
|
+
(seq_len - context_len
|
308
|
+
if seq_group_metadata.sampling_params.prompt_logprobs else 1))
|
309
|
+
|
310
|
+
if seq_group_metadata.multi_modal_data:
|
311
|
+
multi_modal_input_list.append(
|
312
|
+
seq_group_metadata.multi_modal_data.data)
|
313
|
+
|
314
|
+
if seq_group_metadata.block_tables is None:
|
315
|
+
# During memory profiling, the block tables are not initialized
|
316
|
+
# yet. In this case, we just use a dummy slot mapping.
|
317
|
+
slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
|
318
|
+
continue
|
319
|
+
|
320
|
+
# Compute the slot mapping.
|
321
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
322
|
+
|
323
|
+
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
324
|
+
# where start_idx is max(0, seq_len - sliding_window).
|
325
|
+
# For example, if the prompt len is 10, sliding window is 8, and
|
326
|
+
# block size is 4, the first two tokens are masked and the slot
|
327
|
+
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
328
|
+
start_idx = 0
|
329
|
+
if self.sliding_window is not None:
|
330
|
+
assert context_len == 0, (
|
331
|
+
"Prefix caching is currently not supported with "
|
332
|
+
"sliding window attention")
|
333
|
+
start_idx = max(0, seq_len - self.sliding_window)
|
334
|
+
|
335
|
+
for i in range(context_len, seq_len):
|
336
|
+
if i < start_idx:
|
337
|
+
slot_mapping.append(_PAD_SLOT_ID)
|
338
|
+
continue
|
339
|
+
|
340
|
+
block_number = block_table[i // self.block_size]
|
341
|
+
block_offset = i % self.block_size
|
342
|
+
slot = block_number * self.block_size + block_offset
|
343
|
+
slot_mapping.append(slot)
|
344
|
+
|
345
|
+
max_query_len = max(query_lens)
|
346
|
+
max_seq_len = max(seq_lens)
|
347
|
+
assert max_query_len > 0
|
348
|
+
|
349
|
+
context_lens_tensor = torch.tensor(context_lens,
|
350
|
+
dtype=torch.int,
|
351
|
+
device=self.device)
|
352
|
+
|
353
|
+
if multi_modal_input_list:
|
354
|
+
assert self.vision_language_config, (
|
355
|
+
"Multi-modal inputs are only supported by "
|
356
|
+
"vision language models.")
|
357
|
+
multi_modal_input = torch.cat(multi_modal_input_list,
|
358
|
+
dim=0).to(self.device)
|
359
|
+
else:
|
360
|
+
multi_modal_input = None
|
361
|
+
|
362
|
+
# Prepare prefix block tables
|
363
|
+
max_prompt_block_table_len = max(len(t) for t in prefix_block_tables)
|
364
|
+
block_tables = make_tensor_with_pad(
|
365
|
+
prefix_block_tables,
|
366
|
+
max_len=max_prompt_block_table_len,
|
367
|
+
pad=0,
|
368
|
+
dtype=torch.int,
|
369
|
+
device=self.device,
|
370
|
+
)
|
371
|
+
|
372
|
+
# Query length can be shorter than key (i.e., prompt) when prefill
|
373
|
+
# is chunked or prefix cached.
|
374
|
+
query_lens_tensor = torch.tensor(query_lens,
|
375
|
+
dtype=torch.long,
|
376
|
+
device=self.device)
|
377
|
+
subquery_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
378
|
+
dtype=torch.int32,
|
379
|
+
device=self.device)
|
380
|
+
|
381
|
+
seq_lens_tensor = torch.tensor(seq_lens,
|
382
|
+
dtype=torch.int,
|
383
|
+
device=self.device)
|
384
|
+
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
385
|
+
dtype=torch.int32,
|
386
|
+
device=self.device)
|
387
|
+
|
388
|
+
torch.cumsum(query_lens_tensor,
|
389
|
+
dim=0,
|
390
|
+
dtype=subquery_start_loc.dtype,
|
391
|
+
out=subquery_start_loc[1:])
|
392
|
+
|
393
|
+
torch.cumsum(seq_lens_tensor,
|
394
|
+
dim=0,
|
395
|
+
dtype=seq_start_loc.dtype,
|
396
|
+
out=seq_start_loc[1:])
|
397
|
+
|
398
|
+
if self.attn_backend is FlashInferBackend:
|
399
|
+
attn_metadata = self.attn_backend.make_metadata(
|
400
|
+
is_prompt=True,
|
401
|
+
use_cuda_graph=False,
|
402
|
+
seq_start_loc=seq_start_loc,
|
403
|
+
max_seq_len=max_seq_len,
|
404
|
+
block_tables=block_tables)
|
405
|
+
else:
|
406
|
+
attn_metadata = self.attn_backend.make_metadata(
|
407
|
+
is_prompt=True,
|
408
|
+
seq_lens=seq_lens,
|
409
|
+
seq_lens_tensor=seq_lens_tensor,
|
410
|
+
max_query_len=max_query_len,
|
411
|
+
max_seq_len=max_seq_len,
|
412
|
+
subquery_start_loc=subquery_start_loc,
|
413
|
+
seq_start_loc=seq_start_loc,
|
414
|
+
context_lens_tensor=context_lens_tensor,
|
415
|
+
block_tables=block_tables,
|
416
|
+
use_cuda_graph=False,
|
417
|
+
)
|
418
|
+
|
419
|
+
return PreparePromptMetadata(
|
420
|
+
input_tokens=input_tokens,
|
421
|
+
input_positions=input_positions,
|
422
|
+
attn_metadata=attn_metadata,
|
423
|
+
seq_lens=seq_lens,
|
424
|
+
query_lens=query_lens,
|
425
|
+
lora_index_mapping=lora_index_mapping,
|
426
|
+
lora_prompt_mapping=lora_prompt_mapping,
|
427
|
+
lora_requests=lora_requests,
|
428
|
+
multi_modal_input=multi_modal_input,
|
429
|
+
slot_mapping=slot_mapping,
|
430
|
+
)
|
431
|
+
|
432
|
+
def _prepare_decode(
|
433
|
+
self,
|
434
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
435
|
+
) -> PrepareDecodeMetadata:
|
436
|
+
input_tokens: List[int] = []
|
437
|
+
input_positions: List[int] = []
|
438
|
+
slot_mapping: List[int] = []
|
439
|
+
seq_lens: List[int] = []
|
440
|
+
block_tables: List[List[int]] = []
|
441
|
+
lora_index_mapping: List[int] = []
|
442
|
+
lora_prompt_mapping: List[int] = []
|
443
|
+
lora_requests: Set[LoRARequest] = set()
|
444
|
+
|
445
|
+
# The following fields are only for flashinfer
|
446
|
+
# Please follow https://docs.flashinfer.ai/tutorials/kv_layout.html#page-layout
|
447
|
+
# for the precise definition of the following fields.
|
448
|
+
# An example:
|
449
|
+
# request 1, page indices [0, 5, 8]
|
450
|
+
# request 2, page indices [1, 6, 7]
|
451
|
+
# request 3, page indices [3, 4]
|
452
|
+
# paged_kv_indices is a concatenation of page indices of all requests:
|
453
|
+
# [0, 5, 8, 1, 6, 7, 3, 4]
|
454
|
+
# paged_kv_indptr is used to index into paged_kv_indices:
|
455
|
+
# [0, 3, 6, 8]
|
456
|
+
paged_kv_indices: List[int] = []
|
457
|
+
# 0 at the beginning of paged_kv_indptr indicates the start of the
|
458
|
+
# first request’s page indices in the paged_kv_indices list.
|
459
|
+
paged_kv_indptr: List[int] = [0]
|
460
|
+
# paged_kv_last_page_len is the length of the last page of each request
|
461
|
+
paged_kv_last_page_len: List[int] = []
|
462
|
+
|
463
|
+
if len(seq_group_metadata_list) == 0:
|
464
|
+
return PrepareDecodeMetadata.empty()
|
465
|
+
|
466
|
+
for seq_group_metadata in seq_group_metadata_list:
|
467
|
+
assert not seq_group_metadata.is_prompt
|
468
|
+
assert seq_group_metadata.token_chunk_size == 1
|
469
|
+
|
470
|
+
seq_ids = list(seq_group_metadata.seq_data.keys())
|
471
|
+
lora_id = seq_group_metadata.lora_int_id
|
472
|
+
|
473
|
+
if lora_id > 0:
|
474
|
+
lora_requests.add(seq_group_metadata.lora_request)
|
475
|
+
|
476
|
+
for seq_id in seq_ids:
|
477
|
+
seq_data = seq_group_metadata.seq_data[seq_id]
|
478
|
+
generation_token = seq_data.get_last_token_id()
|
479
|
+
input_tokens.append(generation_token)
|
480
|
+
|
481
|
+
seq_len = seq_data.get_len()
|
482
|
+
position = seq_len - 1
|
483
|
+
input_positions.append(position)
|
484
|
+
|
485
|
+
seq_len = seq_len if self.sliding_window is None else min(
|
486
|
+
seq_len, self.sliding_window)
|
487
|
+
seq_lens.append(seq_len)
|
488
|
+
|
489
|
+
block_table = seq_group_metadata.block_tables[seq_id]
|
490
|
+
block_number = block_table[position // self.block_size]
|
491
|
+
block_offset = position % self.block_size
|
492
|
+
slot = block_number * self.block_size + block_offset
|
493
|
+
slot_mapping.append(slot)
|
494
|
+
lora_index_mapping.append(lora_id)
|
495
|
+
lora_prompt_mapping.append(lora_id)
|
496
|
+
|
497
|
+
if self.sliding_window is not None:
|
498
|
+
sliding_window_blocks = (self.sliding_window //
|
499
|
+
self.block_size)
|
500
|
+
block_table = block_table[-sliding_window_blocks:]
|
501
|
+
block_tables.append(block_table)
|
502
|
+
|
503
|
+
paged_kv_indices.extend(block_table)
|
504
|
+
paged_kv_indptr.append(paged_kv_indptr[-1] + len(block_table))
|
505
|
+
last_page_len = seq_data.get_len() % self.block_size
|
506
|
+
if last_page_len == 0:
|
507
|
+
last_page_len = self.block_size
|
508
|
+
paged_kv_last_page_len.append(last_page_len)
|
509
|
+
|
510
|
+
# vLLM uses cuda graph only for decoding requests.
|
511
|
+
# See `capture_model` API for more details.
|
512
|
+
# For decoding requests, batch_size == input_tokens.
|
513
|
+
batch_size = len(input_tokens)
|
514
|
+
max_seq_len = max(seq_lens)
|
515
|
+
use_captured_graph = (not self.model_config.enforce_eager
|
516
|
+
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
517
|
+
and max_seq_len <= self.max_seq_len_to_capture)
|
518
|
+
if use_captured_graph:
|
519
|
+
graph_batch_size = _get_graph_batch_size(batch_size)
|
520
|
+
assert graph_batch_size >= batch_size
|
521
|
+
for _ in range(graph_batch_size - batch_size):
|
522
|
+
input_tokens.append(0)
|
523
|
+
input_positions.append(0)
|
524
|
+
slot_mapping.append(_PAD_SLOT_ID)
|
525
|
+
seq_lens.append(1)
|
526
|
+
block_tables.append([])
|
527
|
+
lora_index_mapping.append(0)
|
528
|
+
batch_size = graph_batch_size
|
529
|
+
|
530
|
+
seq_lens_tensor = torch.tensor(seq_lens,
|
531
|
+
dtype=torch.int,
|
532
|
+
device=self.device)
|
533
|
+
|
534
|
+
if use_captured_graph:
|
535
|
+
# When using cuda-graph all these tensors should be
|
536
|
+
# padded.
|
537
|
+
assert seq_lens_tensor.shape[0] == len(input_tokens)
|
538
|
+
assert seq_lens_tensor.shape[0] == len(input_positions)
|
539
|
+
assert seq_lens_tensor.shape[0] == len(slot_mapping)
|
540
|
+
|
541
|
+
# The shape of graph_block_tables is
|
542
|
+
# [max batch size, max context len // block size].
|
543
|
+
input_block_tables = self.graph_block_tables[:batch_size]
|
544
|
+
for i, block_table in enumerate(block_tables):
|
545
|
+
if block_table:
|
546
|
+
input_block_tables[i, :len(block_table)] = block_table
|
547
|
+
block_tables = torch.tensor(input_block_tables, device=self.device)
|
548
|
+
else:
|
549
|
+
max_block_table_len = max(
|
550
|
+
len(block_table) for block_table in block_tables)
|
551
|
+
block_tables = make_tensor_with_pad(
|
552
|
+
block_tables,
|
553
|
+
max_len=max_block_table_len,
|
554
|
+
pad=0,
|
555
|
+
dtype=torch.int,
|
556
|
+
device=self.device,
|
557
|
+
)
|
558
|
+
|
559
|
+
if self.attn_backend is FlashInferBackend:
|
560
|
+
if not hasattr(self, "flashinfer_workspace_buffer"):
|
561
|
+
# Allocate 16MB workspace buffer
|
562
|
+
# Follow the example of flashinfer: https://docs.flashinfer.ai/api/python/decode.html
|
563
|
+
self.flashinfer_workspace_buffer = torch.empty(
|
564
|
+
16 * 1024 * 1024, dtype=torch.uint8, device=self.device)
|
565
|
+
paged_kv_indptr = torch.tensor(paged_kv_indptr,
|
566
|
+
dtype=torch.int,
|
567
|
+
device=self.device)
|
568
|
+
paged_kv_indices = torch.tensor(paged_kv_indices,
|
569
|
+
dtype=torch.int,
|
570
|
+
device=self.device)
|
571
|
+
paged_kv_last_page_len = torch.tensor(paged_kv_last_page_len,
|
572
|
+
dtype=torch.int,
|
573
|
+
device=self.device)
|
574
|
+
kv_cache_dtype = get_kv_cache_torch_dtype(self.kv_cache_dtype,
|
575
|
+
self.model_config.dtype)
|
576
|
+
|
577
|
+
attn_metadata = self.attn_backend.make_metadata(
|
578
|
+
is_prompt=False,
|
579
|
+
use_cuda_graph=False,
|
580
|
+
workspace_buffer=self.flashinfer_workspace_buffer,
|
581
|
+
paged_kv_indptr=paged_kv_indptr,
|
582
|
+
paged_kv_indices=paged_kv_indices,
|
583
|
+
paged_kv_last_page_len=paged_kv_last_page_len,
|
584
|
+
num_qo_heads=self.model_config.get_num_attention_heads(
|
585
|
+
self.parallel_config),
|
586
|
+
num_kv_heads=self.model_config.get_num_kv_heads(
|
587
|
+
self.parallel_config),
|
588
|
+
head_dim=self.model_config.get_head_size(),
|
589
|
+
page_size=self.block_size,
|
590
|
+
data_type=kv_cache_dtype)
|
591
|
+
else:
|
592
|
+
attn_metadata = self.attn_backend.make_metadata(
|
593
|
+
is_prompt=False,
|
594
|
+
seq_lens=None,
|
595
|
+
seq_lens_tensor=seq_lens_tensor,
|
596
|
+
max_query_len=None,
|
597
|
+
max_seq_len=max_seq_len,
|
598
|
+
subquery_start_loc=None,
|
599
|
+
seq_start_loc=None,
|
600
|
+
context_lens_tensor=None,
|
601
|
+
block_tables=block_tables,
|
602
|
+
use_cuda_graph=use_captured_graph,
|
603
|
+
)
|
604
|
+
return PrepareDecodeMetadata(
|
605
|
+
input_tokens=input_tokens,
|
606
|
+
input_positions=input_positions,
|
607
|
+
attn_metadata=attn_metadata,
|
608
|
+
lora_index_mapping=lora_index_mapping,
|
609
|
+
lora_prompt_mapping=lora_prompt_mapping,
|
610
|
+
lora_requests=lora_requests,
|
611
|
+
slot_mapping=slot_mapping,
|
612
|
+
)
|
613
|
+
|
614
|
+
def prepare_input_tensors(
|
615
|
+
self,
|
616
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
617
|
+
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata,
|
618
|
+
Set[LoRARequest], LoRAMapping, torch.Tensor]:
|
619
|
+
if self.is_driver_worker:
|
620
|
+
prefill_reqs = []
|
621
|
+
decode_reqs = []
|
622
|
+
for seq_group_meta in seq_group_metadata_list:
|
623
|
+
if seq_group_meta.is_prompt:
|
624
|
+
prefill_reqs.append(seq_group_meta)
|
625
|
+
else:
|
626
|
+
decode_reqs.append(seq_group_meta)
|
627
|
+
|
628
|
+
# Prepare input tensors.
|
629
|
+
(
|
630
|
+
input_tokens,
|
631
|
+
input_positions,
|
632
|
+
prefill_attn_metadata,
|
633
|
+
seq_lens,
|
634
|
+
query_lens,
|
635
|
+
lora_index_mapping,
|
636
|
+
lora_prompt_mapping,
|
637
|
+
lora_requests,
|
638
|
+
multi_modal_input,
|
639
|
+
slot_mapping,
|
640
|
+
) = self._prepare_prompt(prefill_reqs)
|
641
|
+
(
|
642
|
+
decode_input_tokens,
|
643
|
+
decode_input_positions,
|
644
|
+
decode_attn_metadata,
|
645
|
+
decode_lora_index_mapping,
|
646
|
+
decode_lora_prompt_mapping,
|
647
|
+
decode_lora_requests,
|
648
|
+
decode_slot_mapping,
|
649
|
+
) = self._prepare_decode(decode_reqs)
|
650
|
+
sampling_metadata = SamplingMetadata.prepare(
|
651
|
+
seq_group_metadata_list, seq_lens, query_lens, self.device,
|
652
|
+
self.pin_memory)
|
653
|
+
|
654
|
+
if not self.scheduler_config.chunked_prefill_enabled:
|
655
|
+
assert (len(prefill_reqs) and len(decode_reqs)) == 0
|
656
|
+
|
657
|
+
num_prefills = len(seq_lens)
|
658
|
+
num_prefill_tokens = len(input_tokens)
|
659
|
+
num_decode_tokens = len(decode_input_tokens)
|
660
|
+
|
661
|
+
# Coalesce tensors. Note that attn_metadata is currently not
|
662
|
+
# coalesced for simplicity.
|
663
|
+
input_tokens.extend(decode_input_tokens)
|
664
|
+
input_positions.extend(decode_input_positions)
|
665
|
+
slot_mapping.extend(decode_slot_mapping)
|
666
|
+
lora_index_mapping.extend(decode_lora_index_mapping)
|
667
|
+
lora_prompt_mapping.extend(decode_lora_prompt_mapping)
|
668
|
+
lora_requests.update(decode_lora_requests)
|
669
|
+
|
670
|
+
input_tokens = torch.tensor(input_tokens,
|
671
|
+
dtype=torch.long,
|
672
|
+
device=self.device)
|
673
|
+
input_positions = torch.tensor(input_positions,
|
674
|
+
dtype=torch.long,
|
675
|
+
device=self.device)
|
676
|
+
slot_mapping = torch.tensor(slot_mapping,
|
677
|
+
dtype=torch.long,
|
678
|
+
device=self.device)
|
679
|
+
|
680
|
+
if self.lora_config:
|
681
|
+
lora_mapping = LoRAMapping(
|
682
|
+
lora_index_mapping,
|
683
|
+
lora_prompt_mapping,
|
684
|
+
)
|
685
|
+
else:
|
686
|
+
lora_mapping = None
|
687
|
+
|
688
|
+
# Broadcast the metadata.
|
689
|
+
# If batch contains both prefill and decode, it sends 2 broadcasts.
|
690
|
+
# If it only contains 1 type, it triggers a single broadcast.
|
691
|
+
if (prefill_attn_metadata is not None
|
692
|
+
and decode_attn_metadata is not None):
|
693
|
+
batch_type = BatchType.MIXED
|
694
|
+
elif prefill_attn_metadata is not None:
|
695
|
+
batch_type = BatchType.PREFILL
|
696
|
+
else:
|
697
|
+
batch_type = BatchType.DECODE
|
698
|
+
|
699
|
+
metadata_dict = {
|
700
|
+
"input_tokens": input_tokens,
|
701
|
+
"input_positions": input_positions,
|
702
|
+
"selected_token_indices":
|
703
|
+
sampling_metadata.selected_token_indices,
|
704
|
+
"lora_requests": lora_requests,
|
705
|
+
"lora_mapping": lora_mapping,
|
706
|
+
"multi_modal_input": multi_modal_input,
|
707
|
+
"num_prefill_tokens": num_prefill_tokens,
|
708
|
+
"num_decode_tokens": num_decode_tokens,
|
709
|
+
"slot_mapping": slot_mapping,
|
710
|
+
"num_prefills": num_prefills,
|
711
|
+
"batch_type": batch_type,
|
712
|
+
}
|
713
|
+
if prefill_attn_metadata is not None:
|
714
|
+
metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
|
715
|
+
else:
|
716
|
+
assert decode_attn_metadata is not None
|
717
|
+
metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
|
718
|
+
broadcast_tensor_dict(metadata_dict, src=0)
|
719
|
+
|
720
|
+
# Broadcast decode attn metadata for mixed batch type.
|
721
|
+
# The additional broadcast costs 300us overhead on 4 A10 GPUs.
|
722
|
+
# We can potentially reduce the overhead by coelescing tensors.
|
723
|
+
if batch_type == BatchType.MIXED:
|
724
|
+
assert decode_attn_metadata is not None
|
725
|
+
metadata_dict = decode_attn_metadata.asdict_zerocopy()
|
726
|
+
broadcast_tensor_dict(metadata_dict, src=0)
|
727
|
+
else:
|
728
|
+
metadata_dict = broadcast_tensor_dict(src=0)
|
729
|
+
input_tokens = metadata_dict.pop("input_tokens")
|
730
|
+
input_positions = metadata_dict.pop("input_positions")
|
731
|
+
slot_mapping = metadata_dict.pop("slot_mapping")
|
732
|
+
num_prefills = metadata_dict.pop("num_prefills")
|
733
|
+
selected_token_indices = metadata_dict.pop(
|
734
|
+
"selected_token_indices")
|
735
|
+
lora_mapping = metadata_dict.pop("lora_mapping")
|
736
|
+
lora_requests = metadata_dict.pop("lora_requests")
|
737
|
+
multi_modal_input = metadata_dict.pop("multi_modal_input")
|
738
|
+
num_prefill_tokens = metadata_dict.pop("num_prefill_tokens")
|
739
|
+
num_decode_tokens = metadata_dict.pop("num_decode_tokens")
|
740
|
+
batch_type = metadata_dict.pop("batch_type")
|
741
|
+
|
742
|
+
# Create an attention metadata.
|
743
|
+
prefill_attn_metadata = None
|
744
|
+
decode_attn_metadata = None
|
745
|
+
if batch_type == BatchType.PREFILL or batch_type == BatchType.MIXED:
|
746
|
+
prefill_attn_metadata = self.attn_backend.make_metadata(
|
747
|
+
**metadata_dict)
|
748
|
+
else:
|
749
|
+
decode_attn_metadata = self.attn_backend.make_metadata(
|
750
|
+
**metadata_dict)
|
751
|
+
sampling_metadata = SamplingMetadata(
|
752
|
+
seq_groups=None,
|
753
|
+
selected_token_indices=selected_token_indices,
|
754
|
+
categorized_sample_indices=None,
|
755
|
+
num_prompts=0,
|
756
|
+
)
|
757
|
+
|
758
|
+
# if it is a mixed batch, decode attn_metadata is broadcasted
|
759
|
+
# separately.
|
760
|
+
if batch_type == BatchType.MIXED:
|
761
|
+
metadata_dict = broadcast_tensor_dict(src=0)
|
762
|
+
decode_attn_metadata = self.attn_backend.make_metadata(
|
763
|
+
**metadata_dict)
|
764
|
+
|
765
|
+
attn_metadata = AttentionMetadata(
|
766
|
+
num_prefills=num_prefills,
|
767
|
+
slot_mapping=slot_mapping,
|
768
|
+
num_prefill_tokens=num_prefill_tokens,
|
769
|
+
num_decode_tokens=num_decode_tokens,
|
770
|
+
prefill_metadata=prefill_attn_metadata,
|
771
|
+
decode_metadata=decode_attn_metadata,
|
772
|
+
kv_cache_dtype=self.kv_cache_dtype,
|
773
|
+
)
|
774
|
+
|
775
|
+
return (input_tokens, input_positions, attn_metadata,
|
776
|
+
sampling_metadata, lora_requests, lora_mapping,
|
777
|
+
multi_modal_input)
|
778
|
+
|
779
|
+
@torch.inference_mode()
|
780
|
+
def execute_model(
|
781
|
+
self,
|
782
|
+
seq_group_metadata_list: List[SequenceGroupMetadata],
|
783
|
+
kv_caches: List[torch.Tensor],
|
784
|
+
) -> Optional[SamplerOutput]:
|
785
|
+
(input_tokens, input_positions, attn_metadata, sampling_metadata,
|
786
|
+
lora_requests, lora_mapping, multi_modal_input
|
787
|
+
) = self.prepare_input_tensors(seq_group_metadata_list)
|
788
|
+
|
789
|
+
if self.lora_config:
|
790
|
+
self.set_active_loras(lora_requests, lora_mapping)
|
791
|
+
|
792
|
+
# Currently cuda graph is only supported by the decode phase.
|
793
|
+
prefill_meta = attn_metadata.prefill_metadata
|
794
|
+
decode_meta = attn_metadata.decode_metadata
|
795
|
+
if prefill_meta is None and decode_meta.use_cuda_graph:
|
796
|
+
graph_batch_size = input_tokens.shape[0]
|
797
|
+
model_executable = self.graph_runners[graph_batch_size]
|
798
|
+
else:
|
799
|
+
model_executable = self.model
|
800
|
+
execute_model_kwargs = {
|
801
|
+
"input_ids": input_tokens,
|
802
|
+
"positions": input_positions,
|
803
|
+
"kv_caches": kv_caches,
|
804
|
+
"attn_metadata": attn_metadata,
|
805
|
+
}
|
806
|
+
if self.vision_language_config:
|
807
|
+
execute_model_kwargs.update({"image_input": multi_modal_input})
|
808
|
+
hidden_states = model_executable(**execute_model_kwargs)
|
809
|
+
|
810
|
+
# Compute the logits.
|
811
|
+
logits = self.model.compute_logits(hidden_states, sampling_metadata)
|
812
|
+
|
813
|
+
# Only perform sampling in the driver worker.
|
814
|
+
if not self.is_driver_worker:
|
815
|
+
return None
|
816
|
+
|
817
|
+
# Sample the next token.
|
818
|
+
output = self.model.sample(
|
819
|
+
logits=logits,
|
820
|
+
sampling_metadata=sampling_metadata,
|
821
|
+
)
|
822
|
+
|
823
|
+
return output
|
824
|
+
|
825
|
+
@torch.inference_mode()
|
826
|
+
def profile_run(self) -> None:
|
827
|
+
# Enable top-k sampling to reflect the accurate memory usage.
|
828
|
+
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
|
829
|
+
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
830
|
+
max_num_seqs = self.scheduler_config.max_num_seqs
|
831
|
+
|
832
|
+
# This represents the maximum number of different requests
|
833
|
+
# that will have unique loras, an therefore the max amount of memory
|
834
|
+
# consumption create dummy lora request copies from the lora request
|
835
|
+
# passed in, which contains a lora from the lora warmup path.
|
836
|
+
dummy_lora_requests = []
|
837
|
+
dummy_lora_requests_per_seq = []
|
838
|
+
if self.lora_config:
|
839
|
+
for idx in range(self.lora_config.max_loras):
|
840
|
+
lora_id = idx + 1
|
841
|
+
dummy_lora_request = LoRARequest(
|
842
|
+
lora_name=f"warmup_{lora_id}",
|
843
|
+
lora_int_id=lora_id,
|
844
|
+
lora_local_path="/not/a/real/path",
|
845
|
+
)
|
846
|
+
self.lora_manager.add_dummy_lora(dummy_lora_request,
|
847
|
+
rank=LORA_WARMUP_RANK)
|
848
|
+
dummy_lora_requests.append(dummy_lora_request)
|
849
|
+
dummy_lora_requests_per_seq = [
|
850
|
+
dummy_lora_requests[idx % len(dummy_lora_requests)]
|
851
|
+
for idx in range(max_num_seqs)
|
852
|
+
]
|
853
|
+
|
854
|
+
# Profile memory usage with max_num_sequences sequences and the total
|
855
|
+
# number of tokens equal to max_num_batched_tokens.
|
856
|
+
seqs: List[SequenceGroupMetadata] = []
|
857
|
+
# Additional GPU memory may be needed for vision encoding, which needs
|
858
|
+
# to be accounted for when calculating the GPU blocks for
|
859
|
+
# vLLM blocker manager.
|
860
|
+
# To exercise the worst scenario for GPU memory consumption,
|
861
|
+
# the number of seqs (batch_size) is chosen to maximize the number
|
862
|
+
# of images processed.
|
863
|
+
if self.vision_language_config:
|
864
|
+
max_num_seqs = min(
|
865
|
+
max_num_seqs,
|
866
|
+
int(max_num_batched_tokens /
|
867
|
+
self.vision_language_config.image_feature_size))
|
868
|
+
for group_id in range(max_num_seqs):
|
869
|
+
seq_len = (max_num_batched_tokens // max_num_seqs +
|
870
|
+
(group_id < max_num_batched_tokens % max_num_seqs))
|
871
|
+
seq_data, fake_multi_modal_input = _prepare_fake_inputs(
|
872
|
+
seq_len, self.vision_language_config)
|
873
|
+
seq = SequenceGroupMetadata(
|
874
|
+
request_id=str(group_id),
|
875
|
+
is_prompt=True,
|
876
|
+
seq_data={group_id: seq_data},
|
877
|
+
sampling_params=sampling_params,
|
878
|
+
block_tables=None,
|
879
|
+
lora_request=dummy_lora_requests_per_seq[group_id]
|
880
|
+
if dummy_lora_requests_per_seq else None,
|
881
|
+
multi_modal_data=fake_multi_modal_input,
|
882
|
+
)
|
883
|
+
seqs.append(seq)
|
884
|
+
|
885
|
+
# Run the model with the dummy inputs.
|
886
|
+
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
887
|
+
kv_caches = [None] * num_layers
|
888
|
+
self.execute_model(seqs, kv_caches)
|
889
|
+
torch.cuda.synchronize()
|
890
|
+
return
|
891
|
+
|
892
|
+
def remove_all_loras(self):
|
893
|
+
if not self.lora_manager:
|
894
|
+
raise RuntimeError("LoRA is not enabled.")
|
895
|
+
self.lora_manager.remove_all_loras()
|
896
|
+
|
897
|
+
def set_active_loras(self, lora_requests: Set[LoRARequest],
|
898
|
+
lora_mapping: LoRAMapping) -> None:
|
899
|
+
if not self.lora_manager:
|
900
|
+
raise RuntimeError("LoRA is not enabled.")
|
901
|
+
self.lora_manager.set_active_loras(lora_requests, lora_mapping)
|
902
|
+
|
903
|
+
def add_lora(self, lora_request: LoRARequest) -> bool:
|
904
|
+
if not self.lora_manager:
|
905
|
+
raise RuntimeError("LoRA is not enabled.")
|
906
|
+
return self.lora_manager.add_lora(lora_request)
|
907
|
+
|
908
|
+
def remove_lora(self, lora_id: int) -> bool:
|
909
|
+
if not self.lora_manager:
|
910
|
+
raise RuntimeError("LoRA is not enabled.")
|
911
|
+
return self.lora_manager.remove_lora(lora_id)
|
912
|
+
|
913
|
+
def list_loras(self) -> Set[int]:
|
914
|
+
if not self.lora_manager:
|
915
|
+
raise RuntimeError("LoRA is not enabled.")
|
916
|
+
return self.lora_manager.list_loras()
|
917
|
+
|
918
|
+
@torch.inference_mode()
|
919
|
+
def capture_model(self, kv_caches: List[torch.Tensor]) -> None:
|
920
|
+
"""Cuda graph capture a model.
|
921
|
+
|
922
|
+
Note that CUDA graph's performance gain is negligible if number
|
923
|
+
of batched tokens are larger than 200. And since CUDA graph
|
924
|
+
requires fixed sized tensors, supporting large/variable batch
|
925
|
+
size requires high GPU memory overhead. Thus, vLLM only captures
|
926
|
+
decoding requests. Mixed batch (chunked prefill + decoding) or
|
927
|
+
prefill requests are not captured.
|
928
|
+
|
929
|
+
Since it is used for decoding-only, it assumes there's only 1 token
|
930
|
+
per sequence in the batch.
|
931
|
+
"""
|
932
|
+
# NOTE(woosuk): This is a hack to ensure that the NCCL backend is never
|
933
|
+
# deleted before the CUDA graphs.
|
934
|
+
self.pynccl_backend = pynccl_utils.get_nccl_backend()
|
935
|
+
|
936
|
+
assert not self.model_config.enforce_eager
|
937
|
+
logger.info("Capturing the model for CUDA graphs. This may lead to "
|
938
|
+
"unexpected consequences if the model is not static. To "
|
939
|
+
"run the model in eager mode, set 'enforce_eager=True' or "
|
940
|
+
"use '--enforce-eager' in the CLI.")
|
941
|
+
logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. "
|
942
|
+
"If you are running out of memory, consider decreasing "
|
943
|
+
"`gpu_memory_utilization` or enforcing eager mode. "
|
944
|
+
"You can also reduce the `max_num_seqs` as needed "
|
945
|
+
"to decrease memory usage.")
|
946
|
+
start_time = time.perf_counter()
|
947
|
+
|
948
|
+
# Prepare dummy inputs. These will be reused for all batch sizes.
|
949
|
+
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
|
950
|
+
input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
951
|
+
input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
|
952
|
+
slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda()
|
953
|
+
slot_mapping.fill_(_PAD_SLOT_ID)
|
954
|
+
seq_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
|
955
|
+
block_tables = torch.from_numpy(self.graph_block_tables).cuda()
|
956
|
+
|
957
|
+
graph_batch_size = _get_graph_batch_size(
|
958
|
+
self.scheduler_config.max_num_seqs)
|
959
|
+
batch_size_capture_list = [
|
960
|
+
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
|
961
|
+
]
|
962
|
+
|
963
|
+
# NOTE(woosuk): There are 3 backends for all-reduce: custom all-reduce
|
964
|
+
# kernel, pynccl, and PyTorch NCCL. When using CUDA graph, we use
|
965
|
+
# either custom all-reduce kernel or pynccl. When not using CUDA
|
966
|
+
# graph, we use either custom all-reduce kernel or PyTorch NCCL.
|
967
|
+
# We always prioritize using custom all-reduce kernel but fall back
|
968
|
+
# to PyTorch or pynccl if it is disabled or not supported.
|
969
|
+
with custom_all_reduce.capture():
|
970
|
+
# NOTE: Capturing the largest batch size first may help reduce the
|
971
|
+
# memory usage of CUDA graph.
|
972
|
+
for batch_size in reversed(batch_size_capture_list):
|
973
|
+
# Create dummy attn_metadata.
|
974
|
+
decode_metadata = self.attn_backend.make_metadata(
|
975
|
+
is_prompt=False,
|
976
|
+
seq_lens=None,
|
977
|
+
seq_lens_tensor=seq_lens[:batch_size],
|
978
|
+
max_query_len=None,
|
979
|
+
max_seq_len=self.max_seq_len_to_capture,
|
980
|
+
subquery_start_loc=None,
|
981
|
+
seq_start_loc=None,
|
982
|
+
context_lens_tensor=None,
|
983
|
+
block_tables=block_tables[:batch_size],
|
984
|
+
use_cuda_graph=True,
|
985
|
+
)
|
986
|
+
attn_metadata = AttentionMetadata(
|
987
|
+
num_prefills=0,
|
988
|
+
num_prefill_tokens=0,
|
989
|
+
num_decode_tokens=batch_size,
|
990
|
+
slot_mapping=slot_mapping[:batch_size],
|
991
|
+
prefill_metadata=None,
|
992
|
+
decode_metadata=decode_metadata,
|
993
|
+
kv_cache_dtype=self.kv_cache_dtype,
|
994
|
+
)
|
995
|
+
|
996
|
+
if self.lora_config:
|
997
|
+
lora_mapping = LoRAMapping(
|
998
|
+
[0] * batch_size,
|
999
|
+
[0] * batch_size,
|
1000
|
+
)
|
1001
|
+
self.set_active_loras(set(), lora_mapping)
|
1002
|
+
|
1003
|
+
graph_runner = CUDAGraphRunner(self.model)
|
1004
|
+
graph_runner.capture(
|
1005
|
+
input_tokens[:batch_size],
|
1006
|
+
input_positions[:batch_size],
|
1007
|
+
kv_caches,
|
1008
|
+
attn_metadata,
|
1009
|
+
memory_pool=self.graph_memory_pool,
|
1010
|
+
)
|
1011
|
+
self.graph_memory_pool = graph_runner.graph.pool()
|
1012
|
+
self.graph_runners[batch_size] = graph_runner
|
1013
|
+
|
1014
|
+
end_time = time.perf_counter()
|
1015
|
+
elapsed_time = end_time - start_time
|
1016
|
+
# This usually takes < 10 seconds.
|
1017
|
+
logger.info("Graph capturing finished in %.0f secs.", elapsed_time)
|
1018
|
+
|
1019
|
+
def __del__(self) -> None:
|
1020
|
+
# Delete the CUDA graphs before deleting the pynccl communicator.
|
1021
|
+
# NOTE(woosuk): This is necessary because otherwise deadlocks can
|
1022
|
+
# happen.
|
1023
|
+
# FIXME(woosuk): This is a bit hacky. Find a more robust solution.
|
1024
|
+
# TODO(youkaichao): when we get enough user feedback that pynccl is
|
1025
|
+
# more stable than cupy, we can remove this, e.g. in v0.4.1.
|
1026
|
+
self.graph_runners.clear()
|
1027
|
+
self.pynccl_backend = None
|
1028
|
+
|
1029
|
+
@property
|
1030
|
+
def vocab_size(self) -> int:
|
1031
|
+
return self.model_config.get_vocab_size()
|
1032
|
+
|
1033
|
+
|
1034
|
+
class CUDAGraphRunner:
|
1035
|
+
|
1036
|
+
def __init__(self, model: nn.Module):
|
1037
|
+
self.model = model
|
1038
|
+
self.input_buffers: Dict[str, torch.Tensor] = {}
|
1039
|
+
self.output_buffers: Dict[str, torch.Tensor] = {}
|
1040
|
+
|
1041
|
+
self._graph: Optional[torch.cuda.CUDAGraph] = None
|
1042
|
+
|
1043
|
+
@property
|
1044
|
+
def graph(self):
|
1045
|
+
assert self._graph is not None
|
1046
|
+
return self._graph
|
1047
|
+
|
1048
|
+
def capture(
|
1049
|
+
self,
|
1050
|
+
input_ids: torch.Tensor,
|
1051
|
+
positions: torch.Tensor,
|
1052
|
+
kv_caches: List[torch.Tensor],
|
1053
|
+
attn_metadata: AttentionMetadata,
|
1054
|
+
memory_pool,
|
1055
|
+
**kwargs,
|
1056
|
+
) -> None:
|
1057
|
+
assert self._graph is None
|
1058
|
+
# Run the model once without capturing the graph.
|
1059
|
+
# This is to make sure that the captured graph does not include the
|
1060
|
+
# kernel launches for initial benchmarking (e.g., Triton autotune).
|
1061
|
+
with _maybe_pynccl():
|
1062
|
+
self.model(
|
1063
|
+
input_ids,
|
1064
|
+
positions,
|
1065
|
+
kv_caches,
|
1066
|
+
attn_metadata,
|
1067
|
+
**kwargs,
|
1068
|
+
)
|
1069
|
+
torch.cuda.synchronize()
|
1070
|
+
|
1071
|
+
# Capture the graph.
|
1072
|
+
# NOTE(woosuk): Python 3.8 does not support multi-line with statements.
|
1073
|
+
# https://stackoverflow.com/questions/31039022/python-multi-line-with-statement
|
1074
|
+
self._graph = torch.cuda.CUDAGraph()
|
1075
|
+
with torch.cuda.graph(self._graph, pool=memory_pool): # noqa: SIM117
|
1076
|
+
with _maybe_pynccl():
|
1077
|
+
hidden_states = self.model(
|
1078
|
+
input_ids,
|
1079
|
+
positions,
|
1080
|
+
kv_caches,
|
1081
|
+
attn_metadata,
|
1082
|
+
**kwargs,
|
1083
|
+
)
|
1084
|
+
torch.cuda.synchronize()
|
1085
|
+
|
1086
|
+
# Save the input and output buffers.
|
1087
|
+
self.input_buffers = {
|
1088
|
+
"input_ids": input_ids,
|
1089
|
+
"positions": positions,
|
1090
|
+
"kv_caches": kv_caches,
|
1091
|
+
"slot_mapping": attn_metadata.slot_mapping,
|
1092
|
+
"seq_lens_tensor": attn_metadata.decode_metadata.seq_lens_tensor,
|
1093
|
+
"block_tables": attn_metadata.decode_metadata.block_tables,
|
1094
|
+
}
|
1095
|
+
self.output_buffers = {"hidden_states": hidden_states}
|
1096
|
+
return
|
1097
|
+
|
1098
|
+
def forward(
|
1099
|
+
self,
|
1100
|
+
input_ids: torch.Tensor,
|
1101
|
+
positions: torch.Tensor,
|
1102
|
+
kv_caches: List[torch.Tensor],
|
1103
|
+
attn_metadata: AttentionMetadata,
|
1104
|
+
**kwargs,
|
1105
|
+
) -> torch.Tensor:
|
1106
|
+
# KV caches are fixed tensors, so we don't need to copy them.
|
1107
|
+
del kv_caches
|
1108
|
+
|
1109
|
+
# Copy the input tensors to the input buffers.
|
1110
|
+
self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
|
1111
|
+
self.input_buffers["positions"].copy_(positions, non_blocking=True)
|
1112
|
+
self.input_buffers["slot_mapping"].copy_(attn_metadata.slot_mapping,
|
1113
|
+
non_blocking=True)
|
1114
|
+
self.input_buffers["seq_lens_tensor"].copy_(
|
1115
|
+
attn_metadata.decode_metadata.seq_lens_tensor, non_blocking=True)
|
1116
|
+
self.input_buffers["block_tables"].copy_(
|
1117
|
+
attn_metadata.decode_metadata.block_tables, non_blocking=True)
|
1118
|
+
# Run the graph.
|
1119
|
+
self.graph.replay()
|
1120
|
+
|
1121
|
+
# Return the output tensor.
|
1122
|
+
return self.output_buffers["hidden_states"]
|
1123
|
+
|
1124
|
+
def __call__(self, *args, **kwargs):
|
1125
|
+
return self.forward(*args, **kwargs)
|
1126
|
+
|
1127
|
+
|
1128
|
+
@contextlib.contextmanager
|
1129
|
+
def _maybe_pynccl():
|
1130
|
+
if pynccl_utils.is_initialized(
|
1131
|
+
) and not custom_all_reduce.is_initialized():
|
1132
|
+
with with_pynccl_for_all_reduce():
|
1133
|
+
yield
|
1134
|
+
else:
|
1135
|
+
yield
|
1136
|
+
|
1137
|
+
|
1138
|
+
def _get_graph_batch_size(batch_size: int) -> int:
|
1139
|
+
"""Returns the padded batch size given actual batch size.
|
1140
|
+
|
1141
|
+
Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT,
|
1142
|
+
2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT...
|
1143
|
+
"""
|
1144
|
+
if batch_size <= 2:
|
1145
|
+
return batch_size
|
1146
|
+
elif batch_size <= 4:
|
1147
|
+
return 4
|
1148
|
+
else:
|
1149
|
+
return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
|
1150
|
+
_BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)
|
1151
|
+
|
1152
|
+
|
1153
|
+
def _prepare_fake_inputs(
|
1154
|
+
seq_len: int, vision_language_config: Optional[VisionLanguageConfig]):
|
1155
|
+
"""Prepare fake inputs for profile run."""
|
1156
|
+
if vision_language_config:
|
1157
|
+
prompt_tokens = [
|
1158
|
+
vision_language_config.image_token_id
|
1159
|
+
] * vision_language_config.image_feature_size + [0] * (
|
1160
|
+
seq_len - vision_language_config.image_feature_size)
|
1161
|
+
fake_image_input = MultiModalData(
|
1162
|
+
type=MultiModalData.Type.IMAGE,
|
1163
|
+
data=torch.zeros(vision_language_config.image_input_shape,
|
1164
|
+
dtype=torch.float16))
|
1165
|
+
else:
|
1166
|
+
prompt_tokens = [0] * seq_len
|
1167
|
+
fake_image_input = None
|
1168
|
+
return SequenceData(prompt_tokens), fake_image_input
|