vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,444 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/a5cc30d72ae2dc19af534e4b35c986cc28db1275/src/transformers/models/falcon/modeling_falcon.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights
6
+ # reserved.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch Falcon model."""
20
+
21
+ import math
22
+ from typing import Iterable, List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ from torch import nn
26
+ from torch.nn import LayerNorm
27
+ from transformers import FalconConfig as HF_FalconConfig
28
+
29
+ from vllm.attention import Attention, AttentionMetadata
30
+ from vllm.distributed import (get_tensor_model_parallel_rank,
31
+ get_tensor_model_parallel_world_size,
32
+ tensor_model_parallel_all_reduce)
33
+ from vllm.model_executor.layers.activation import get_act_fn
34
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
35
+ QKVParallelLinear,
36
+ RowParallelLinear)
37
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
38
+ from vllm.model_executor.layers.quantization.base_config import (
39
+ QuantizationConfig)
40
+ from vllm.model_executor.layers.rotary_embedding import get_rope
41
+ from vllm.model_executor.layers.sampler import Sampler
42
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
43
+ VocabParallelEmbedding)
44
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
45
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
46
+ from vllm.sequence import SamplerOutput
47
+ from vllm.transformers_utils.configs import RWConfig
48
+
49
+ FalconConfig = Union[HF_FalconConfig, RWConfig]
50
+
51
+
52
+ def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
53
+ closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
54
+ base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
55
+ dtype=torch.float32)
56
+ powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
57
+ slopes = torch.pow(base, powers)
58
+
59
+ if closest_power_of_2 != total_num_heads:
60
+ extra_base = torch.tensor(
61
+ 2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
62
+ dtype=torch.float32)
63
+ num_remaining_heads = min(closest_power_of_2,
64
+ total_num_heads - closest_power_of_2)
65
+ extra_powers = torch.arange(1,
66
+ 1 + 2 * num_remaining_heads,
67
+ 2,
68
+ dtype=torch.int32)
69
+ slopes = torch.cat(
70
+ [slopes, torch.pow(extra_base, extra_powers)], dim=0)
71
+
72
+ return slopes
73
+
74
+
75
+ class FalconAttention(nn.Module):
76
+
77
+ def __init__(
78
+ self,
79
+ config: FalconConfig,
80
+ quant_config: Optional[QuantizationConfig] = None,
81
+ ):
82
+ super().__init__()
83
+
84
+ self.hidden_size = config.hidden_size
85
+ tp_size = get_tensor_model_parallel_world_size()
86
+
87
+ self.total_num_heads = config.num_attention_heads
88
+ assert self.total_num_heads % tp_size == 0
89
+ self.num_heads = self.total_num_heads // tp_size
90
+ self.head_dim = self.hidden_size // self.total_num_heads
91
+ assert self.head_dim * self.total_num_heads == self.hidden_size
92
+
93
+ self.new_decoder_architecture = config.new_decoder_architecture
94
+ self.multi_query = config.multi_query
95
+
96
+ if self.new_decoder_architecture:
97
+ self.total_num_kv_heads = config.num_kv_heads
98
+ elif self.multi_query:
99
+ self.total_num_kv_heads = 1
100
+ else:
101
+ self.total_num_kv_heads = self.total_num_heads
102
+ if self.total_num_kv_heads >= tp_size:
103
+ # Number of KV heads is greater than TP size, so we partition
104
+ # the KV heads across multiple tensor parallel GPUs.
105
+ assert self.total_num_kv_heads % tp_size == 0
106
+ else:
107
+ # Number of KV heads is less than TP size, so we replicate
108
+ # the KV heads across multiple tensor parallel GPUs.
109
+ assert tp_size % self.total_num_kv_heads == 0
110
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
111
+
112
+ self.query_key_value = QKVParallelLinear(
113
+ self.hidden_size,
114
+ self.head_dim,
115
+ self.total_num_heads,
116
+ self.total_num_kv_heads,
117
+ bias=config.bias,
118
+ skip_bias_add=True,
119
+ quant_config=quant_config,
120
+ )
121
+ self.q_size = self.num_heads * self.head_dim
122
+ self.kv_size = self.num_kv_heads * self.head_dim
123
+
124
+ # Layer-wise attention scaling
125
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
126
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
127
+ or config.parallel_attn)
128
+ self.dense = RowParallelLinear(
129
+ self.hidden_size,
130
+ self.hidden_size,
131
+ bias=config.bias,
132
+ skip_bias_add=True,
133
+ quant_config=quant_config,
134
+ reduce_results=self.reduce_row_parallel_results)
135
+
136
+ self.use_rotary = config.rotary
137
+ self.use_alibi = config.alibi
138
+ assert not (self.use_rotary and self.use_alibi), (
139
+ "Rotary and alibi are mutually exclusive.")
140
+
141
+ if self.use_rotary:
142
+ rope_theta = getattr(config, "rope_theta", 10000)
143
+ max_position_embeddings = getattr(config,
144
+ "max_position_embeddings", 8192)
145
+ self.rotary_emb = get_rope(
146
+ self.head_dim,
147
+ rotary_dim=self.head_dim,
148
+ max_position=max_position_embeddings,
149
+ base=rope_theta,
150
+ )
151
+ self.attn = Attention(self.num_heads,
152
+ self.head_dim,
153
+ self.inv_norm_factor,
154
+ num_kv_heads=self.num_kv_heads)
155
+ elif self.use_alibi:
156
+ tp_rank = get_tensor_model_parallel_rank()
157
+ head_start = tp_rank * self.num_heads
158
+ head_end = (tp_rank + 1) * self.num_heads
159
+ alibi_slopes = (_get_alibi_slopes(self.total_num_heads) *
160
+ self.inv_norm_factor)
161
+ alibi_slopes = alibi_slopes[head_start:head_end].tolist()
162
+ self.attn = Attention(self.num_heads,
163
+ self.head_dim,
164
+ self.inv_norm_factor,
165
+ num_kv_heads=self.num_kv_heads,
166
+ alibi_slopes=alibi_slopes)
167
+ else:
168
+ self.attn = Attention(self.num_heads,
169
+ self.head_dim,
170
+ scale=self.inv_norm_factor,
171
+ num_kv_heads=self.num_kv_heads)
172
+
173
+ def forward(
174
+ self,
175
+ positions: torch.Tensor,
176
+ hidden_states: torch.Tensor,
177
+ kv_cache: torch.Tensor,
178
+ attn_metadata: AttentionMetadata,
179
+ ) -> torch.Tensor:
180
+ qkv, bias = self.query_key_value(hidden_states)
181
+ if bias is not None:
182
+ qkv += bias
183
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
184
+ if self.use_rotary:
185
+ q, k = self.rotary_emb(positions, q, k)
186
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
187
+ attn_output, bias = self.dense(attn_output)
188
+ return attn_output, bias
189
+
190
+
191
+ class FalconMLP(nn.Module):
192
+
193
+ def __init__(
194
+ self,
195
+ config: FalconConfig,
196
+ quant_config: Optional[QuantizationConfig] = None,
197
+ ):
198
+ super().__init__()
199
+ hidden_size = config.hidden_size
200
+
201
+ self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
202
+ 4 * hidden_size,
203
+ bias=config.bias,
204
+ skip_bias_add=True,
205
+ quant_config=quant_config)
206
+ self.act = get_act_fn("gelu", quant_config, 4 * hidden_size)
207
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
208
+ or config.parallel_attn)
209
+ self.dense_4h_to_h = RowParallelLinear(
210
+ 4 * hidden_size,
211
+ hidden_size,
212
+ bias=config.bias,
213
+ skip_bias_add=True,
214
+ reduce_results=self.reduce_row_parallel_results,
215
+ quant_config=quant_config)
216
+
217
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
218
+ # NOTE(zhuohan): Following huggingface, we do not fuse bias add here.
219
+ x, bias = self.dense_h_to_4h(x)
220
+ if bias is not None:
221
+ x += bias
222
+ x = self.act(x)
223
+ x, bias = self.dense_4h_to_h(x)
224
+ return x, bias
225
+
226
+
227
+ class FalconDecoderLayer(nn.Module):
228
+
229
+ def __init__(
230
+ self,
231
+ config: FalconConfig,
232
+ quant_config: Optional[QuantizationConfig] = None,
233
+ ):
234
+ super().__init__()
235
+ hidden_size = config.hidden_size
236
+ self.num_heads = config.num_attention_heads
237
+ self.self_attention = FalconAttention(config, quant_config)
238
+ self.mlp = FalconMLP(config, quant_config)
239
+ self.config = config
240
+
241
+ if config.new_decoder_architecture:
242
+ # The layer norm before self-attention
243
+ self.ln_attn = LayerNorm(hidden_size,
244
+ eps=config.layer_norm_epsilon)
245
+ # The layer norm before the MLP
246
+ self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
247
+ else:
248
+ self.input_layernorm = LayerNorm(hidden_size,
249
+ eps=config.layer_norm_epsilon)
250
+ if not config.parallel_attn:
251
+ self.post_attention_layernorm = LayerNorm(
252
+ hidden_size, eps=config.layer_norm_epsilon)
253
+
254
+ self.reduce_row_parallel_results = not (config.new_decoder_architecture
255
+ or config.parallel_attn)
256
+
257
+ def forward(
258
+ self,
259
+ positions: torch.Tensor,
260
+ hidden_states: torch.Tensor,
261
+ kv_cache: torch.Tensor,
262
+ attn_metadata: AttentionMetadata,
263
+ ) -> torch.Tensor:
264
+ residual = hidden_states
265
+
266
+ if self.config.new_decoder_architecture:
267
+ attention_layernorm_out = self.ln_attn(hidden_states)
268
+ mlp_layernorm_out = self.ln_mlp(hidden_states)
269
+ else:
270
+ attention_layernorm_out = self.input_layernorm(hidden_states)
271
+
272
+ # Self attention.
273
+ attention_output, attention_bias = self.self_attention(
274
+ positions=positions,
275
+ hidden_states=attention_layernorm_out,
276
+ kv_cache=kv_cache,
277
+ attn_metadata=attn_metadata,
278
+ )
279
+ if self.reduce_row_parallel_results and attention_bias is not None:
280
+ attention_output += attention_bias
281
+
282
+ if not self.config.new_decoder_architecture:
283
+ if self.config.parallel_attn:
284
+ mlp_layernorm_out = attention_layernorm_out
285
+ else:
286
+ residual += attention_output
287
+ mlp_layernorm_out = self.post_attention_layernorm(residual)
288
+
289
+ # MLP.
290
+ mlp_output, mlp_bias = self.mlp(mlp_layernorm_out)
291
+ if self.reduce_row_parallel_results and mlp_bias is not None:
292
+ mlp_output += mlp_bias
293
+
294
+ if not self.reduce_row_parallel_results:
295
+ # When MLP and Attention layers are parallel, we can use
296
+ # only one all-reduce operator to reduce the results from
297
+ # both MLP and Attention layers.
298
+ mlp_output += attention_output
299
+ mlp_output = tensor_model_parallel_all_reduce(mlp_output)
300
+ if attention_bias is not None:
301
+ mlp_output += attention_bias
302
+ if mlp_bias is not None:
303
+ mlp_output += mlp_bias
304
+
305
+ output = mlp_output + residual
306
+ return output
307
+
308
+
309
+ class FalconModel(nn.Module):
310
+
311
+ def __init__(
312
+ self,
313
+ config: FalconConfig,
314
+ quant_config: Optional[QuantizationConfig] = None,
315
+ ):
316
+ super().__init__()
317
+ self.config = config
318
+ self.embed_dim = config.hidden_size
319
+ self.num_heads = config.num_attention_heads
320
+ self.use_alibi = config.alibi
321
+
322
+ # Embedding + LN Embedding
323
+ self.word_embeddings = VocabParallelEmbedding(
324
+ config.vocab_size,
325
+ self.embed_dim,
326
+ )
327
+
328
+ # Transformer blocks
329
+ self.h = nn.ModuleList([
330
+ FalconDecoderLayer(config, quant_config)
331
+ for _ in range(config.num_hidden_layers)
332
+ ])
333
+
334
+ # Final Layer Norm
335
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
336
+
337
+ def forward(
338
+ self,
339
+ input_ids: torch.LongTensor,
340
+ positions: torch.Tensor,
341
+ kv_caches: List[torch.Tensor],
342
+ attn_metadata: AttentionMetadata,
343
+ ) -> torch.Tensor:
344
+ hidden_states = self.word_embeddings(input_ids)
345
+ for i in range(len(self.h)):
346
+ layer = self.h[i]
347
+ hidden_states = layer(
348
+ positions,
349
+ hidden_states,
350
+ kv_caches[i],
351
+ attn_metadata,
352
+ )
353
+ hidden_states = self.ln_f(hidden_states)
354
+ return hidden_states
355
+
356
+
357
+ class FalconForCausalLM(nn.Module):
358
+
359
+ def __init__(
360
+ self,
361
+ config: FalconConfig,
362
+ quant_config: Optional[QuantizationConfig] = None,
363
+ ):
364
+ super().__init__()
365
+ self.config = config
366
+ self.quant_config = quant_config
367
+ self.transformer = FalconModel(config, quant_config)
368
+ self.lm_head_weight = self.transformer.word_embeddings.weight
369
+ self.logits_processor = LogitsProcessor(config.vocab_size)
370
+ self.sampler = Sampler()
371
+
372
+ def forward(
373
+ self,
374
+ input_ids: torch.LongTensor,
375
+ positions: torch.Tensor,
376
+ kv_caches: List[torch.Tensor],
377
+ attn_metadata: AttentionMetadata,
378
+ ) -> torch.Tensor:
379
+ hidden_states = self.transformer(
380
+ input_ids,
381
+ positions,
382
+ kv_caches,
383
+ attn_metadata,
384
+ )
385
+ return hidden_states
386
+
387
+ def compute_logits(self, hidden_states: torch.Tensor,
388
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
389
+ logits = self.logits_processor(self.lm_head_weight, hidden_states,
390
+ sampling_metadata)
391
+ return logits
392
+
393
+ def sample(
394
+ self,
395
+ logits: torch.Tensor,
396
+ sampling_metadata: SamplingMetadata,
397
+ ) -> Optional[SamplerOutput]:
398
+ next_tokens = self.sampler(logits, sampling_metadata)
399
+ return next_tokens
400
+
401
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
402
+ total_num_heads = self.config.num_attention_heads
403
+ if self.config.new_decoder_architecture:
404
+ total_num_kv_heads = self.config.num_kv_heads
405
+ elif self.config.multi_query:
406
+ total_num_kv_heads = 1
407
+ else:
408
+ total_num_kv_heads = total_num_heads
409
+ num_query_heads_per_kv_head = total_num_heads // total_num_kv_heads
410
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
411
+ for name, loaded_weight in weights:
412
+ if name == "lm_head.weight":
413
+ # Falcon uses tied embeddings.
414
+ continue
415
+ # Skip loading extra bias for GPTQ models.
416
+ if name.endswith(".bias") and name not in params_dict:
417
+ continue
418
+ param = params_dict[name]
419
+ if "query_key_value" in name:
420
+ output_dim = getattr(param, "output_dim", None)
421
+ loaded_weight_shape = loaded_weight.shape
422
+ if output_dim is not None:
423
+ loaded_weight = loaded_weight.view(
424
+ loaded_weight_shape[:output_dim] +
425
+ (total_num_kv_heads, num_query_heads_per_kv_head + 2,
426
+ -1) + loaded_weight_shape[output_dim + 1:])
427
+ wq = loaded_weight.narrow(
428
+ output_dim + 1, 0,
429
+ num_query_heads_per_kv_head).reshape(
430
+ *loaded_weight_shape[:output_dim], -1,
431
+ *loaded_weight_shape[output_dim + 1:])
432
+ wk = loaded_weight.narrow(
433
+ output_dim + 1, num_query_heads_per_kv_head,
434
+ 1).reshape(*loaded_weight_shape[:output_dim], -1,
435
+ *loaded_weight_shape[output_dim + 1:])
436
+ wv = loaded_weight.narrow(
437
+ output_dim + 1, num_query_heads_per_kv_head + 1,
438
+ 1).reshape(*loaded_weight_shape[:output_dim], -1,
439
+ *loaded_weight_shape[output_dim + 1:])
440
+ loaded_weight = torch.cat([wq, wk, wv], dim=output_dim)
441
+
442
+ weight_loader = getattr(param, "weight_loader",
443
+ default_weight_loader)
444
+ weight_loader(param, loaded_weight)