vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,709 @@
|
|
1
|
+
from abc import abstractmethod
|
2
|
+
from typing import List, Optional
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.nn.functional as F
|
6
|
+
from torch.nn.parameter import Parameter
|
7
|
+
|
8
|
+
from vllm.distributed import (divide, get_tensor_model_parallel_rank,
|
9
|
+
get_tensor_model_parallel_world_size,
|
10
|
+
split_tensor_along_last_dim,
|
11
|
+
tensor_model_parallel_all_gather,
|
12
|
+
tensor_model_parallel_all_reduce)
|
13
|
+
from vllm.logger import init_logger
|
14
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
15
|
+
QuantizationConfig, QuantizeMethodBase)
|
16
|
+
from vllm.model_executor.utils import set_weight_attrs
|
17
|
+
|
18
|
+
logger = init_logger(__name__)
|
19
|
+
|
20
|
+
|
21
|
+
def adjust_marlin_shard(param, shard_size, shard_offset):
|
22
|
+
marlin_tile_size = getattr(param, "marlin_tile_size", None)
|
23
|
+
if marlin_tile_size is None:
|
24
|
+
return shard_size, shard_offset
|
25
|
+
|
26
|
+
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
|
27
|
+
|
28
|
+
|
29
|
+
class LinearMethodBase(QuantizeMethodBase):
|
30
|
+
"""Base class for different (maybe quantized) linear methods."""
|
31
|
+
|
32
|
+
@abstractmethod
|
33
|
+
def create_weights(self, layer: torch.nn.Module,
|
34
|
+
input_size_per_partition: int,
|
35
|
+
output_partition_sizes: List[int], input_size: int,
|
36
|
+
output_size: int, params_dtype: torch.dtype,
|
37
|
+
**extra_weight_attrs):
|
38
|
+
"""Create weights for a linear layer.
|
39
|
+
The weights will be set as attributes of the layer.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
layer: The layer that is using the LinearMethodBase factory.
|
43
|
+
input_size_per_partition: Size of the weight input dim on rank X.
|
44
|
+
output_partition_sizes: Sizes of the output dim of each logical
|
45
|
+
weight on rank X. E.g., output_partition_sizes for QKVLinear
|
46
|
+
is a list contains the width of Wq, Wk, Wv on rank X.
|
47
|
+
input_size: Size of the input dim of the weight across all ranks.
|
48
|
+
output_size: Size of the output dim of the weight across all ranks.
|
49
|
+
params_dtype: Datatype of the parameters.
|
50
|
+
"""
|
51
|
+
raise NotImplementedError
|
52
|
+
|
53
|
+
@abstractmethod
|
54
|
+
def apply(self,
|
55
|
+
layer: torch.nn.Module,
|
56
|
+
x: torch.Tensor,
|
57
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
58
|
+
"""Apply the weights in layer to the input tensor.
|
59
|
+
|
60
|
+
Expects create_weights to have been called before on the layer."""
|
61
|
+
raise NotImplementedError
|
62
|
+
|
63
|
+
|
64
|
+
class UnquantizedLinearMethod(LinearMethodBase):
|
65
|
+
"""Linear method without quantization.
|
66
|
+
|
67
|
+
Args:
|
68
|
+
separate_bias_add: If true, add bias separately after matrix
|
69
|
+
multiplication.
|
70
|
+
"""
|
71
|
+
|
72
|
+
def __init__(self, separate_bias_add: bool = False):
|
73
|
+
self.separate_bias_add = separate_bias_add
|
74
|
+
|
75
|
+
def create_weights(self, layer: torch.nn.Module,
|
76
|
+
input_size_per_partition: int,
|
77
|
+
output_partition_sizes: List[int], input_size: int,
|
78
|
+
output_size: int, params_dtype: torch.dtype,
|
79
|
+
**extra_weight_attrs):
|
80
|
+
output_size_per_partition = sum(output_partition_sizes)
|
81
|
+
weight = Parameter(torch.empty(output_size_per_partition,
|
82
|
+
input_size_per_partition,
|
83
|
+
dtype=params_dtype),
|
84
|
+
requires_grad=False)
|
85
|
+
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
86
|
+
layer.register_parameter("weight", weight)
|
87
|
+
set_weight_attrs(weight, extra_weight_attrs)
|
88
|
+
|
89
|
+
def apply(self,
|
90
|
+
layer: torch.nn.Module,
|
91
|
+
x: torch.Tensor,
|
92
|
+
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
93
|
+
weight = layer.weight
|
94
|
+
if self.separate_bias_add:
|
95
|
+
if bias is not None:
|
96
|
+
return F.linear(x, weight) + bias
|
97
|
+
return F.linear(x, weight)
|
98
|
+
return F.linear(x, weight, bias)
|
99
|
+
|
100
|
+
|
101
|
+
class LinearBase(torch.nn.Module):
|
102
|
+
"""Base linear layer.
|
103
|
+
|
104
|
+
Args:
|
105
|
+
input_size: input dimension of the linear layer.
|
106
|
+
output_size: output dimension of the linear layer.
|
107
|
+
bias: If true, add bias.
|
108
|
+
skip_bias_add: If true, skip adding bias but instead return it.
|
109
|
+
params_dtype: Data type for the parameters.
|
110
|
+
quant_config: Quantization configure.
|
111
|
+
"""
|
112
|
+
|
113
|
+
def __init__(
|
114
|
+
self,
|
115
|
+
input_size: int,
|
116
|
+
output_size: int,
|
117
|
+
skip_bias_add: bool = False,
|
118
|
+
params_dtype: Optional[torch.dtype] = None,
|
119
|
+
quant_config: Optional[QuantizationConfig] = None,
|
120
|
+
):
|
121
|
+
super().__init__()
|
122
|
+
|
123
|
+
# Keep input parameters
|
124
|
+
self.input_size = input_size
|
125
|
+
self.output_size = output_size
|
126
|
+
self.skip_bias_add = skip_bias_add
|
127
|
+
if params_dtype is None:
|
128
|
+
params_dtype = torch.get_default_dtype()
|
129
|
+
self.params_dtype = params_dtype
|
130
|
+
if quant_config is None:
|
131
|
+
self.quant_method: Optional[
|
132
|
+
QuantizeMethodBase] = UnquantizedLinearMethod()
|
133
|
+
else:
|
134
|
+
self.quant_method = quant_config.get_quant_method(self)
|
135
|
+
|
136
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
137
|
+
raise NotImplementedError
|
138
|
+
|
139
|
+
|
140
|
+
class ReplicatedLinear(LinearBase):
|
141
|
+
"""Replicated linear layer.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
input_size: input dimension of the linear layer.
|
145
|
+
output_size: output dimension of the linear layer.
|
146
|
+
bias: If true, add bias.
|
147
|
+
skip_bias_add: If true, skip adding bias but instead return it.
|
148
|
+
params_dtype: Data type for the parameters.
|
149
|
+
quant_config: Quantization configure.
|
150
|
+
"""
|
151
|
+
|
152
|
+
def __init__(
|
153
|
+
self,
|
154
|
+
input_size: int,
|
155
|
+
output_size: int,
|
156
|
+
bias: bool = True,
|
157
|
+
skip_bias_add: bool = False,
|
158
|
+
params_dtype: Optional[torch.dtype] = None,
|
159
|
+
quant_config: Optional[QuantizationConfig] = None,
|
160
|
+
):
|
161
|
+
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
162
|
+
quant_config)
|
163
|
+
|
164
|
+
# All the linear layer supports quant method.
|
165
|
+
assert self.quant_method is not None
|
166
|
+
self.quant_method.create_weights(self, self.input_size,
|
167
|
+
[self.output_size], self.input_size,
|
168
|
+
self.output_size, self.params_dtype)
|
169
|
+
|
170
|
+
if bias:
|
171
|
+
self.bias = Parameter(
|
172
|
+
torch.empty(self.output_size, dtype=self.params_dtype))
|
173
|
+
set_weight_attrs(self.bias, {"output_dim": 0})
|
174
|
+
else:
|
175
|
+
self.register_parameter("bias", None)
|
176
|
+
|
177
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
178
|
+
bias = self.bias if not self.skip_bias_add else None
|
179
|
+
assert self.quant_method is not None
|
180
|
+
output = self.quant_method.apply(self, x, bias)
|
181
|
+
output_bias = self.bias if self.skip_bias_add else None
|
182
|
+
return output, output_bias
|
183
|
+
|
184
|
+
def extra_repr(self) -> str:
|
185
|
+
s = f"in_features={self.input_size}"
|
186
|
+
s += f", output_features={self.output_size}"
|
187
|
+
s += f", bias={self.bias is not None}"
|
188
|
+
return s
|
189
|
+
|
190
|
+
|
191
|
+
class ColumnParallelLinear(LinearBase):
|
192
|
+
"""Linear layer with column parallelism.
|
193
|
+
|
194
|
+
The linear layer is defined as Y = XA + b. A is parallelized along
|
195
|
+
its second dimension as A = [A_1, ..., A_p].
|
196
|
+
|
197
|
+
Args:
|
198
|
+
input_size: first dimension of matrix A.
|
199
|
+
output_size: second dimension of matrix A.
|
200
|
+
bias: If true, add bias.
|
201
|
+
gather_output: If true, call all-gather on output and make Y available
|
202
|
+
to all GPUs, otherwise, every GPU will have its output
|
203
|
+
which is Y_i = XA_i
|
204
|
+
skip_bias_add: This was added to enable performance optimizations where
|
205
|
+
bias can be fused with other element-wise operations. we
|
206
|
+
skip adding bias but instead return it.
|
207
|
+
params_dtype: Data type for the parameters.
|
208
|
+
quant_config: Quantization configure.
|
209
|
+
output_sizes: list of output sizes packed into one output, like for QKV
|
210
|
+
the list would be size 3.
|
211
|
+
"""
|
212
|
+
|
213
|
+
def __init__(
|
214
|
+
self,
|
215
|
+
input_size: int,
|
216
|
+
output_size: int,
|
217
|
+
bias: bool = True,
|
218
|
+
gather_output: bool = False,
|
219
|
+
skip_bias_add: bool = False,
|
220
|
+
params_dtype: Optional[torch.dtype] = None,
|
221
|
+
quant_config: Optional[QuantizationConfig] = None,
|
222
|
+
output_sizes: Optional[List[int]] = None,
|
223
|
+
):
|
224
|
+
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
225
|
+
quant_config)
|
226
|
+
|
227
|
+
self.gather_output = gather_output
|
228
|
+
|
229
|
+
# Divide the weight matrix along the last dimension.
|
230
|
+
tp_size = get_tensor_model_parallel_world_size()
|
231
|
+
self.output_size_per_partition = divide(output_size, tp_size)
|
232
|
+
if output_sizes is None:
|
233
|
+
output_sizes = [output_size]
|
234
|
+
# All the linear layer supports quant method.
|
235
|
+
assert self.quant_method is not None
|
236
|
+
self.quant_method.create_weights(self,
|
237
|
+
self.input_size,
|
238
|
+
[x // tp_size for x in output_sizes],
|
239
|
+
self.input_size,
|
240
|
+
self.output_size,
|
241
|
+
self.params_dtype,
|
242
|
+
weight_loader=self.weight_loader)
|
243
|
+
if bias:
|
244
|
+
self.bias = Parameter(
|
245
|
+
torch.empty(self.output_size_per_partition,
|
246
|
+
dtype=params_dtype))
|
247
|
+
set_weight_attrs(self.bias, {
|
248
|
+
"output_dim": 0,
|
249
|
+
"weight_loader": self.weight_loader,
|
250
|
+
})
|
251
|
+
else:
|
252
|
+
self.register_parameter("bias", None)
|
253
|
+
|
254
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
255
|
+
# Special case for Fp8 scales.
|
256
|
+
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
257
|
+
None)
|
258
|
+
|
259
|
+
tp_rank = get_tensor_model_parallel_rank()
|
260
|
+
output_dim = getattr(param, "output_dim", None)
|
261
|
+
param_data = param.data
|
262
|
+
if output_dim is not None:
|
263
|
+
shard_size = param_data.shape[output_dim]
|
264
|
+
start_idx = tp_rank * shard_size
|
265
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
266
|
+
shard_size)
|
267
|
+
# Special case for Fp8 scales.
|
268
|
+
elif fp8_scales_shard_indexer is not None:
|
269
|
+
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
|
270
|
+
loaded_weight,
|
271
|
+
shard_id=0)
|
272
|
+
|
273
|
+
assert param_data.shape == loaded_weight.shape
|
274
|
+
param_data.copy_(loaded_weight)
|
275
|
+
|
276
|
+
def forward(self, input_):
|
277
|
+
bias = self.bias if not self.skip_bias_add else None
|
278
|
+
|
279
|
+
# Matrix multiply.
|
280
|
+
assert self.quant_method is not None
|
281
|
+
output_parallel = self.quant_method.apply(self, input_, bias)
|
282
|
+
if self.gather_output:
|
283
|
+
# All-gather across the partitions.
|
284
|
+
output = tensor_model_parallel_all_gather(output_parallel)
|
285
|
+
else:
|
286
|
+
output = output_parallel
|
287
|
+
output_bias = self.bias if self.skip_bias_add else None
|
288
|
+
return output, output_bias
|
289
|
+
|
290
|
+
def extra_repr(self) -> str:
|
291
|
+
s = f"in_features={self.input_size}"
|
292
|
+
s += f", output_features={self.output_size_per_partition}"
|
293
|
+
s += f", bias={self.bias is not None}"
|
294
|
+
s += f", tp_size={get_tensor_model_parallel_world_size()}"
|
295
|
+
s += f", gather_output={self.gather_output}"
|
296
|
+
return s
|
297
|
+
|
298
|
+
|
299
|
+
class MergedColumnParallelLinear(ColumnParallelLinear):
|
300
|
+
"""Packed linear layers with column parallelism.
|
301
|
+
|
302
|
+
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
303
|
+
along the output dimension. When the weight matrix is loaded, the
|
304
|
+
different partitions are sharded separately.
|
305
|
+
|
306
|
+
Args:
|
307
|
+
input_size: input dimension of the linear layer.
|
308
|
+
output_sizes: list of output dimensions of the linear layer.
|
309
|
+
bias: If true, add bias.
|
310
|
+
gather_output: If true, call all-gather on output and make the output
|
311
|
+
available to all GPUs, otherwise, every GPU will have
|
312
|
+
its own output.
|
313
|
+
skip_bias_add: This was added to enable performance optimizations where
|
314
|
+
bias can be fused with other element-wise operations. we
|
315
|
+
skip adding bias but instead return it.
|
316
|
+
params_dtype: Data type for the parameters.
|
317
|
+
quant_config: Quantization configure.
|
318
|
+
"""
|
319
|
+
|
320
|
+
def __init__(
|
321
|
+
self,
|
322
|
+
input_size: int,
|
323
|
+
output_sizes: List[int],
|
324
|
+
bias: bool = True,
|
325
|
+
gather_output: bool = False,
|
326
|
+
skip_bias_add: bool = False,
|
327
|
+
params_dtype: Optional[torch.dtype] = None,
|
328
|
+
quant_config: Optional[QuantizationConfig] = None,
|
329
|
+
):
|
330
|
+
self.output_sizes = output_sizes
|
331
|
+
tp_size = get_tensor_model_parallel_world_size()
|
332
|
+
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
333
|
+
super().__init__(input_size, sum(output_sizes), bias, gather_output,
|
334
|
+
skip_bias_add, params_dtype, quant_config,
|
335
|
+
self.output_sizes)
|
336
|
+
|
337
|
+
def weight_loader(self,
|
338
|
+
param: Parameter,
|
339
|
+
loaded_weight: torch.Tensor,
|
340
|
+
loaded_shard_id: Optional[int] = None):
|
341
|
+
|
342
|
+
param_data = param.data
|
343
|
+
output_dim = getattr(param, "output_dim", None)
|
344
|
+
# Special case for AQLM codebooks.
|
345
|
+
is_metadata = getattr(param, "is_metadata", False)
|
346
|
+
# Special case for Fp8 scales.
|
347
|
+
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
348
|
+
None)
|
349
|
+
|
350
|
+
if loaded_shard_id is None:
|
351
|
+
# Loaded weight is already packed.
|
352
|
+
if output_dim is None:
|
353
|
+
assert param_data.shape == loaded_weight.shape
|
354
|
+
param_data.copy_(loaded_weight)
|
355
|
+
return
|
356
|
+
current_shard_offset = 0
|
357
|
+
shard_offsets = []
|
358
|
+
for i, output_size in enumerate(self.output_sizes):
|
359
|
+
shard_offsets.append((i, current_shard_offset, output_size))
|
360
|
+
current_shard_offset += output_size
|
361
|
+
packed_dim = getattr(param, "packed_dim", None)
|
362
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
363
|
+
# Special case for Quantization.
|
364
|
+
# If quantized, we need to adjust the offset and size to account
|
365
|
+
# for the packing.
|
366
|
+
if packed_dim == output_dim:
|
367
|
+
shard_size = shard_size // param.pack_factor
|
368
|
+
shard_offset = shard_offset // param.pack_factor
|
369
|
+
# Special case for Marlin.
|
370
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
371
|
+
param, shard_size, shard_offset)
|
372
|
+
|
373
|
+
loaded_weight_shard = loaded_weight.narrow(
|
374
|
+
output_dim, shard_offset, shard_size)
|
375
|
+
self.weight_loader(param, loaded_weight_shard, shard_id)
|
376
|
+
return
|
377
|
+
|
378
|
+
assert loaded_shard_id < len(self.output_sizes)
|
379
|
+
tp_rank = get_tensor_model_parallel_rank()
|
380
|
+
tp_size = get_tensor_model_parallel_world_size()
|
381
|
+
if output_dim is not None:
|
382
|
+
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
383
|
+
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
384
|
+
# Special case for quantization.
|
385
|
+
# If quantized, we need to adjust the offset and size to account
|
386
|
+
# for the packing.
|
387
|
+
packed_dim = getattr(param, "packed_dim", None)
|
388
|
+
if packed_dim == output_dim:
|
389
|
+
shard_size = shard_size // param.pack_factor
|
390
|
+
shard_offset = shard_offset // param.pack_factor
|
391
|
+
# Special case for Marlin.
|
392
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
393
|
+
param, shard_size, shard_offset)
|
394
|
+
|
395
|
+
param_data = param_data.narrow(output_dim, shard_offset,
|
396
|
+
shard_size)
|
397
|
+
start_idx = tp_rank * shard_size
|
398
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
399
|
+
shard_size)
|
400
|
+
# Special case for AQLM codebooks.
|
401
|
+
elif is_metadata:
|
402
|
+
# metadata indicates fixed size concatenated along dim 0
|
403
|
+
shard_size = loaded_weight.shape[0]
|
404
|
+
shard_offset = loaded_shard_id * shard_size
|
405
|
+
param_data = param_data.narrow(0, shard_offset, shard_size)
|
406
|
+
# Special case for Fp8 scales.
|
407
|
+
elif fp8_scales_shard_indexer is not None:
|
408
|
+
param_data, loaded_weight = fp8_scales_shard_indexer(
|
409
|
+
param_data, loaded_weight, loaded_shard_id)
|
410
|
+
|
411
|
+
else:
|
412
|
+
ignore_warning = getattr(param, "ignore_warning", False)
|
413
|
+
if not ignore_warning:
|
414
|
+
logger.warning(
|
415
|
+
"Loading a weight without `output_dim` attribute in "
|
416
|
+
"MergedColumnParallelLinear, assume the weight is "
|
417
|
+
"the same for all partitions.")
|
418
|
+
assert param_data.shape == loaded_weight.shape
|
419
|
+
param_data.copy_(loaded_weight)
|
420
|
+
|
421
|
+
|
422
|
+
class QKVParallelLinear(ColumnParallelLinear):
|
423
|
+
"""Linear layers for the attention's QKV transformation.
|
424
|
+
|
425
|
+
Linear layers for the linear transformation of the query, key, and value
|
426
|
+
vectors in the attention layer. The weight matrix is concatenated along
|
427
|
+
the output dimension. The layer is parallelized along the head dimension.
|
428
|
+
When the number of key/value heads is smaller than the number of query
|
429
|
+
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
430
|
+
be replicated while the query heads are partitioned.
|
431
|
+
|
432
|
+
Args:
|
433
|
+
hidden_size: input hidden state size of the transformer.
|
434
|
+
head_size: size of each attention head.
|
435
|
+
total_num_heads: total number of attention query heads.
|
436
|
+
total_num_kv_heads: total number of attention key/value heads. If
|
437
|
+
None, assume total_num_kv_heads = total_num_heads.
|
438
|
+
bias: If true, add bias.
|
439
|
+
skip_bias_add: This was added to enable performance optimizations where
|
440
|
+
bias can be fused with other element-wise operations. we
|
441
|
+
skip adding bias but instead return it.
|
442
|
+
params_dtype: Data type for the parameters.
|
443
|
+
quant_config: Quantization configure.
|
444
|
+
"""
|
445
|
+
|
446
|
+
def __init__(
|
447
|
+
self,
|
448
|
+
hidden_size: int,
|
449
|
+
head_size: int,
|
450
|
+
total_num_heads: int,
|
451
|
+
total_num_kv_heads: Optional[int] = None,
|
452
|
+
bias: bool = True,
|
453
|
+
skip_bias_add: bool = False,
|
454
|
+
params_dtype: Optional[torch.dtype] = None,
|
455
|
+
quant_config: Optional[QuantizationConfig] = None,
|
456
|
+
):
|
457
|
+
self.hidden_size = hidden_size
|
458
|
+
self.head_size = head_size
|
459
|
+
self.total_num_heads = total_num_heads
|
460
|
+
if total_num_kv_heads is None:
|
461
|
+
total_num_kv_heads = total_num_heads
|
462
|
+
self.total_num_kv_heads = total_num_kv_heads
|
463
|
+
# Divide the weight matrix along the last dimension.
|
464
|
+
tp_size = get_tensor_model_parallel_world_size()
|
465
|
+
self.num_heads = divide(self.total_num_heads, tp_size)
|
466
|
+
if tp_size >= self.total_num_kv_heads:
|
467
|
+
self.num_kv_heads = 1
|
468
|
+
self.num_kv_head_replicas = divide(tp_size,
|
469
|
+
self.total_num_kv_heads)
|
470
|
+
else:
|
471
|
+
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
472
|
+
self.num_kv_head_replicas = 1
|
473
|
+
input_size = self.hidden_size
|
474
|
+
output_size = (self.num_heads +
|
475
|
+
2 * self.num_kv_heads) * tp_size * self.head_size
|
476
|
+
output_sizes = [
|
477
|
+
self.num_heads * tp_size * self.head_size,
|
478
|
+
self.num_kv_heads * tp_size * self.head_size,
|
479
|
+
self.num_kv_heads * tp_size * self.head_size
|
480
|
+
]
|
481
|
+
|
482
|
+
super().__init__(input_size, output_size, bias, False, skip_bias_add,
|
483
|
+
params_dtype, quant_config, output_sizes)
|
484
|
+
|
485
|
+
def weight_loader(self,
|
486
|
+
param: Parameter,
|
487
|
+
loaded_weight: torch.Tensor,
|
488
|
+
loaded_shard_id: Optional[str] = None):
|
489
|
+
param_data = param.data
|
490
|
+
output_dim = getattr(param, "output_dim", None)
|
491
|
+
# Special case for AQLM codebooks.
|
492
|
+
is_metadata = getattr(param, "is_metadata", False)
|
493
|
+
# Special case for Fp8 scales.
|
494
|
+
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
495
|
+
None)
|
496
|
+
|
497
|
+
if loaded_shard_id is None:
|
498
|
+
# Loaded weight is already packed.
|
499
|
+
if output_dim is None:
|
500
|
+
assert param_data.shape == loaded_weight.shape
|
501
|
+
param_data.copy_(loaded_weight)
|
502
|
+
return
|
503
|
+
shard_offsets = [
|
504
|
+
# (shard_id, shard_offset, shard_size)
|
505
|
+
("q", 0, self.total_num_heads * self.head_size),
|
506
|
+
("k", self.total_num_heads * self.head_size,
|
507
|
+
self.total_num_kv_heads * self.head_size),
|
508
|
+
("v", (self.total_num_heads + self.total_num_kv_heads) *
|
509
|
+
self.head_size, self.total_num_kv_heads * self.head_size),
|
510
|
+
]
|
511
|
+
packed_dim = getattr(param, "packed_dim", None)
|
512
|
+
for shard_id, shard_offset, shard_size in shard_offsets:
|
513
|
+
# Special case for Quantized Weights.
|
514
|
+
# If quantized, we need to adjust the offset and size to account
|
515
|
+
# for the packing.
|
516
|
+
if packed_dim == output_dim:
|
517
|
+
shard_size = shard_size // param.pack_factor
|
518
|
+
shard_offset = shard_offset // param.pack_factor
|
519
|
+
|
520
|
+
# Special case for Marlin.
|
521
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
522
|
+
param, shard_size, shard_offset)
|
523
|
+
|
524
|
+
loaded_weight_shard = loaded_weight.narrow(
|
525
|
+
output_dim, shard_offset, shard_size)
|
526
|
+
self.weight_loader(param, loaded_weight_shard, shard_id)
|
527
|
+
return
|
528
|
+
|
529
|
+
tp_rank = get_tensor_model_parallel_rank()
|
530
|
+
assert loaded_shard_id in ["q", "k", "v"]
|
531
|
+
if output_dim is not None:
|
532
|
+
if loaded_shard_id == "q":
|
533
|
+
shard_offset = 0
|
534
|
+
shard_size = self.num_heads * self.head_size
|
535
|
+
elif loaded_shard_id == "k":
|
536
|
+
shard_offset = self.num_heads * self.head_size
|
537
|
+
shard_size = self.num_kv_heads * self.head_size
|
538
|
+
elif loaded_shard_id == "v":
|
539
|
+
shard_offset = (self.num_heads +
|
540
|
+
self.num_kv_heads) * self.head_size
|
541
|
+
shard_size = self.num_kv_heads * self.head_size
|
542
|
+
# Special case for Quantized Weights.
|
543
|
+
# If quantized, we need to adjust the offset and size to account
|
544
|
+
# for the packing.
|
545
|
+
packed_dim = getattr(param, "packed_dim", None)
|
546
|
+
if packed_dim == output_dim:
|
547
|
+
shard_size = shard_size // param.pack_factor
|
548
|
+
shard_offset = shard_offset // param.pack_factor
|
549
|
+
|
550
|
+
# Special case for Marlin.
|
551
|
+
shard_size, shard_offset = adjust_marlin_shard(
|
552
|
+
param, shard_size, shard_offset)
|
553
|
+
|
554
|
+
param_data = param_data.narrow(output_dim, shard_offset,
|
555
|
+
shard_size)
|
556
|
+
if loaded_shard_id == "q":
|
557
|
+
shard_id = tp_rank
|
558
|
+
else:
|
559
|
+
shard_id = tp_rank // self.num_kv_head_replicas
|
560
|
+
start_idx = shard_id * shard_size
|
561
|
+
loaded_weight = loaded_weight.narrow(output_dim, start_idx,
|
562
|
+
shard_size)
|
563
|
+
# Special case for for AQLM codebooks.
|
564
|
+
elif is_metadata:
|
565
|
+
# metadata indicates fixed size concatenated along dim 0
|
566
|
+
shard_size = loaded_weight.shape[0]
|
567
|
+
shard_index = ["q", "k", "v"].index(loaded_shard_id)
|
568
|
+
param_data = param_data.narrow(0, shard_index * shard_size,
|
569
|
+
shard_size)
|
570
|
+
# Special case for Fp8 scales.
|
571
|
+
elif fp8_scales_shard_indexer is not None:
|
572
|
+
param_data, loaded_weight = fp8_scales_shard_indexer(
|
573
|
+
param_data, loaded_weight, loaded_shard_id)
|
574
|
+
else:
|
575
|
+
ignore_warning = getattr(param, "ignore_warning", False)
|
576
|
+
if not ignore_warning:
|
577
|
+
logger.warning(
|
578
|
+
"Loading a weight without `output_dim` attribute in "
|
579
|
+
"QKVParallelLinear, assume the weight is the same "
|
580
|
+
"for all partitions.")
|
581
|
+
assert param_data.shape == loaded_weight.shape
|
582
|
+
param_data.copy_(loaded_weight)
|
583
|
+
|
584
|
+
|
585
|
+
class RowParallelLinear(LinearBase):
|
586
|
+
"""Linear layer with row parallelism.
|
587
|
+
|
588
|
+
The linear layer is defined as Y = XA + b. A is parallelized along
|
589
|
+
its first dimension and X along its second dimension as:
|
590
|
+
- -
|
591
|
+
| A_1 |
|
592
|
+
| . |
|
593
|
+
A = | . | X = [X_1, ..., X_p]
|
594
|
+
| . |
|
595
|
+
| A_p |
|
596
|
+
- -
|
597
|
+
Arguments:
|
598
|
+
input_size: first dimension of matrix A.
|
599
|
+
output_size: second dimension of matrix A.
|
600
|
+
bias: If true, add bias. Note that bias is not parallelized.
|
601
|
+
input_is_parallel: If true, we assume that the input is already
|
602
|
+
split across the GPUs and we do not split
|
603
|
+
again.
|
604
|
+
skip_bias_add: This was added to enable performance optimization where
|
605
|
+
bias can be fused with other element-wise operations.
|
606
|
+
We skip adding bias but instead return it.
|
607
|
+
params_dtype: Data type for the parameters.
|
608
|
+
quant_config: Quantization configure.
|
609
|
+
"""
|
610
|
+
|
611
|
+
def __init__(
|
612
|
+
self,
|
613
|
+
input_size: int,
|
614
|
+
output_size: int,
|
615
|
+
bias: bool = True,
|
616
|
+
input_is_parallel: bool = True,
|
617
|
+
skip_bias_add: bool = False,
|
618
|
+
params_dtype: Optional[torch.dtype] = None,
|
619
|
+
reduce_results: bool = True,
|
620
|
+
quant_config: Optional[QuantizationConfig] = None,
|
621
|
+
):
|
622
|
+
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
623
|
+
quant_config)
|
624
|
+
|
625
|
+
self.input_is_parallel = input_is_parallel
|
626
|
+
self.reduce_results = reduce_results
|
627
|
+
|
628
|
+
# Divide the weight matrix along the last dimension.
|
629
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
630
|
+
self.input_size_per_partition = divide(input_size, self.tp_size)
|
631
|
+
# All the linear layer supports quant method.
|
632
|
+
assert self.quant_method is not None
|
633
|
+
self.quant_method.create_weights(self,
|
634
|
+
self.input_size_per_partition,
|
635
|
+
[self.output_size],
|
636
|
+
self.input_size,
|
637
|
+
self.output_size,
|
638
|
+
self.params_dtype,
|
639
|
+
weight_loader=self.weight_loader)
|
640
|
+
|
641
|
+
if not reduce_results and (bias and not skip_bias_add):
|
642
|
+
raise ValueError("When not reduce the results, adding bias to the "
|
643
|
+
"results can lead to incorrect results")
|
644
|
+
|
645
|
+
if bias:
|
646
|
+
self.bias = Parameter(
|
647
|
+
torch.empty(self.output_size, dtype=params_dtype))
|
648
|
+
set_weight_attrs(self.bias, {
|
649
|
+
"output_dim": 0,
|
650
|
+
"weight_loader": self.weight_loader,
|
651
|
+
})
|
652
|
+
else:
|
653
|
+
self.register_parameter("bias", None)
|
654
|
+
|
655
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
656
|
+
# Special case for Fp8 scales.
|
657
|
+
fp8_scales_shard_indexer = getattr(param, "fp8_scales_shard_indexer",
|
658
|
+
None)
|
659
|
+
|
660
|
+
tp_rank = get_tensor_model_parallel_rank()
|
661
|
+
input_dim = getattr(param, "input_dim", None)
|
662
|
+
param_data = param.data
|
663
|
+
if input_dim is not None:
|
664
|
+
shard_size = param_data.shape[input_dim]
|
665
|
+
start_idx = tp_rank * shard_size
|
666
|
+
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
|
667
|
+
shard_size)
|
668
|
+
# Special case for Fp8 scales.
|
669
|
+
elif fp8_scales_shard_indexer is not None:
|
670
|
+
param_data, loaded_weight = fp8_scales_shard_indexer(param_data,
|
671
|
+
loaded_weight,
|
672
|
+
shard_id=0)
|
673
|
+
|
674
|
+
assert param_data.shape == loaded_weight.shape
|
675
|
+
param_data.copy_(loaded_weight)
|
676
|
+
|
677
|
+
def forward(self, input_):
|
678
|
+
# Set up backprop all-reduce.
|
679
|
+
if self.input_is_parallel:
|
680
|
+
input_parallel = input_
|
681
|
+
else:
|
682
|
+
tp_rank = get_tensor_model_parallel_rank()
|
683
|
+
splitted_input = split_tensor_along_last_dim(
|
684
|
+
input_, num_partitions=self.tp_size)
|
685
|
+
input_parallel = splitted_input[tp_rank].contiguous()
|
686
|
+
|
687
|
+
# Matrix multiply.
|
688
|
+
assert self.quant_method is not None
|
689
|
+
output_parallel = self.quant_method.apply(self, input_parallel)
|
690
|
+
if self.reduce_results and self.tp_size > 1:
|
691
|
+
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
692
|
+
else:
|
693
|
+
output_ = output_parallel
|
694
|
+
|
695
|
+
if not self.skip_bias_add:
|
696
|
+
output = output_ + self.bias if self.bias is not None else output_
|
697
|
+
output_bias = None
|
698
|
+
else:
|
699
|
+
output = output_
|
700
|
+
output_bias = self.bias
|
701
|
+
return output, output_bias
|
702
|
+
|
703
|
+
def extra_repr(self) -> str:
|
704
|
+
s = f"input_features={self.input_size_per_partition}"
|
705
|
+
s += f", output_features={self.output_size}"
|
706
|
+
s += f", bias={self.bias is not None}"
|
707
|
+
s += f", tp_size={self.tp_size}"
|
708
|
+
s += f", reduce_results={self.reduce_results}"
|
709
|
+
return s
|