vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,274 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2023 CTranslate2, and Michael Feil
6
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
7
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Inference-only GPTBigCode model compatible with HuggingFace weights."""
21
+ from typing import Iterable, List, Optional, Tuple
22
+
23
+ import torch
24
+ from torch import nn
25
+ from transformers import GPTBigCodeConfig
26
+
27
+ from vllm.attention import Attention, AttentionMetadata
28
+ from vllm.distributed import get_tensor_model_parallel_world_size
29
+ from vllm.model_executor.layers.activation import get_act_fn
30
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
31
+ QKVParallelLinear,
32
+ RowParallelLinear)
33
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
34
+ from vllm.model_executor.layers.quantization.base_config import (
35
+ QuantizationConfig)
36
+ from vllm.model_executor.layers.sampler import Sampler
37
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
38
+ VocabParallelEmbedding)
39
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
40
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
41
+ from vllm.sequence import SamplerOutput
42
+
43
+
44
+ class GPTBigCodeAttention(nn.Module):
45
+
46
+ def __init__(
47
+ self,
48
+ config: GPTBigCodeConfig,
49
+ quant_config: Optional[QuantizationConfig] = None,
50
+ ):
51
+ super().__init__()
52
+ self.hidden_size = config.hidden_size
53
+ total_num_heads = config.num_attention_heads
54
+ self.tensor_model_parallel_world_size = (
55
+ get_tensor_model_parallel_world_size())
56
+ assert total_num_heads % self.tensor_model_parallel_world_size == 0
57
+ self.num_heads = (total_num_heads //
58
+ self.tensor_model_parallel_world_size)
59
+ self.head_dim = self.hidden_size // total_num_heads
60
+ self.scale = self.head_dim**-0.5
61
+
62
+ self.multi_query = config.multi_query
63
+ if self.multi_query:
64
+ total_num_kv_heads = 1
65
+ self.num_kv_heads = 1
66
+ else:
67
+ total_num_kv_heads = total_num_heads
68
+ self.num_kv_heads = self.num_heads
69
+ self.kv_dim = self.head_dim * self.num_kv_heads
70
+ self.c_attn = QKVParallelLinear(
71
+ self.hidden_size,
72
+ self.head_dim,
73
+ total_num_heads,
74
+ total_num_kv_heads,
75
+ bias=True,
76
+ quant_config=quant_config,
77
+ )
78
+
79
+ self.c_proj = RowParallelLinear(
80
+ self.hidden_size,
81
+ self.hidden_size,
82
+ bias=True,
83
+ quant_config=quant_config,
84
+ )
85
+ self.attn = Attention(self.num_heads,
86
+ self.head_dim,
87
+ scale=self.scale,
88
+ num_kv_heads=self.num_kv_heads)
89
+
90
+ def forward(
91
+ self,
92
+ hidden_states: torch.Tensor,
93
+ kv_cache: torch.Tensor,
94
+ attn_metadata: AttentionMetadata,
95
+ ) -> torch.Tensor:
96
+ qkv, _ = self.c_attn(hidden_states)
97
+ q, k, v = qkv.split(
98
+ [
99
+ self.hidden_size // self.tensor_model_parallel_world_size,
100
+ self.kv_dim, self.kv_dim
101
+ ],
102
+ dim=-1,
103
+ )
104
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
105
+ attn_output, _ = self.c_proj(attn_output)
106
+ return attn_output
107
+
108
+
109
+ class GPTBigMLP(nn.Module):
110
+
111
+ def __init__(
112
+ self,
113
+ intermediate_size: int,
114
+ config: GPTBigCodeConfig,
115
+ quant_config: Optional[QuantizationConfig] = None,
116
+ ):
117
+ super().__init__()
118
+ hidden_size = config.hidden_size
119
+ self.c_fc = ColumnParallelLinear(
120
+ hidden_size,
121
+ intermediate_size,
122
+ bias=True,
123
+ quant_config=quant_config,
124
+ )
125
+ self.c_proj = RowParallelLinear(
126
+ intermediate_size,
127
+ hidden_size,
128
+ bias=True,
129
+ quant_config=quant_config,
130
+ )
131
+ self.act = get_act_fn(config.activation_function, quant_config,
132
+ intermediate_size)
133
+
134
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
135
+ hidden_states, _ = self.c_fc(hidden_states)
136
+ hidden_states = self.act(hidden_states)
137
+ hidden_states, _ = self.c_proj(hidden_states)
138
+ return hidden_states
139
+
140
+
141
+ class GPTBigCodeBlock(nn.Module):
142
+
143
+ def __init__(
144
+ self,
145
+ config: GPTBigCodeConfig,
146
+ quant_config: Optional[QuantizationConfig] = None,
147
+ ):
148
+ super().__init__()
149
+ hidden_size = config.hidden_size
150
+ inner_dim = (config.n_inner if config.n_inner is not None else 4 *
151
+ hidden_size)
152
+
153
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
154
+ self.attn = GPTBigCodeAttention(config, quant_config)
155
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
156
+ self.mlp = GPTBigMLP(inner_dim, config, quant_config)
157
+
158
+ def forward(
159
+ self,
160
+ hidden_states: torch.Tensor,
161
+ kv_cache: torch.Tensor,
162
+ attn_metadata: AttentionMetadata,
163
+ ) -> torch.Tensor:
164
+ residual = hidden_states
165
+ hidden_states = self.ln_1(hidden_states)
166
+ attn_output = self.attn(
167
+ hidden_states=hidden_states,
168
+ kv_cache=kv_cache,
169
+ attn_metadata=attn_metadata,
170
+ )
171
+ # residual connection
172
+ hidden_states = attn_output + residual
173
+
174
+ residual = hidden_states
175
+ hidden_states = self.ln_2(hidden_states)
176
+ feed_forward_hidden_states = self.mlp(hidden_states)
177
+ # residual connection
178
+ hidden_states = residual + feed_forward_hidden_states
179
+ return hidden_states
180
+
181
+
182
+ class GPTBigCodeModel(nn.Module):
183
+
184
+ def __init__(
185
+ self,
186
+ config: GPTBigCodeConfig,
187
+ quant_config: Optional[QuantizationConfig] = None,
188
+ ):
189
+ super().__init__()
190
+ self.config = config
191
+ assert not config.add_cross_attention
192
+
193
+ self.embed_dim = config.hidden_size
194
+
195
+ self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
196
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
197
+ self.h = nn.ModuleList([
198
+ GPTBigCodeBlock(config, quant_config)
199
+ for _ in range(config.num_hidden_layers)
200
+ ])
201
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
202
+
203
+ def forward(
204
+ self,
205
+ input_ids: torch.Tensor,
206
+ position_ids: torch.Tensor,
207
+ kv_caches: List[torch.Tensor],
208
+ attn_metadata: AttentionMetadata,
209
+ ) -> torch.Tensor:
210
+ inputs_embeds = self.wte(input_ids)
211
+ position_embeds = self.wpe(position_ids)
212
+ hidden_states = inputs_embeds + position_embeds
213
+
214
+ for i in range(len(self.h)):
215
+ layer = self.h[i]
216
+ hidden_states = layer(hidden_states, kv_caches[i], attn_metadata)
217
+
218
+ hidden_states = self.ln_f(hidden_states)
219
+ return hidden_states
220
+
221
+
222
+ class GPTBigCodeForCausalLM(nn.Module):
223
+
224
+ def __init__(
225
+ self,
226
+ config: GPTBigCodeConfig,
227
+ quant_config: Optional[QuantizationConfig] = None,
228
+ ):
229
+ super().__init__()
230
+ self.config = config
231
+ self.quant_config = quant_config
232
+ self.transformer = GPTBigCodeModel(config, quant_config)
233
+ self.lm_head_weight = self.transformer.wte.weight
234
+ self.logits_processor = LogitsProcessor(config.vocab_size)
235
+ self.sampler = Sampler()
236
+
237
+ def forward(
238
+ self,
239
+ input_ids: torch.Tensor,
240
+ positions: torch.Tensor,
241
+ kv_caches: List[torch.Tensor],
242
+ attn_metadata: AttentionMetadata,
243
+ ) -> torch.Tensor:
244
+ hidden_states = self.transformer(input_ids, positions, kv_caches,
245
+ attn_metadata)
246
+ return hidden_states
247
+
248
+ def compute_logits(self, hidden_states: torch.Tensor,
249
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
250
+ logits = self.logits_processor(self.lm_head_weight, hidden_states,
251
+ sampling_metadata)
252
+ return logits
253
+
254
+ def sample(
255
+ self,
256
+ logits: torch.Tensor,
257
+ sampling_metadata: SamplingMetadata,
258
+ ) -> Optional[SamplerOutput]:
259
+ next_tokens = self.sampler(logits, sampling_metadata)
260
+ return next_tokens
261
+
262
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
263
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
264
+ for name, loaded_weight in weights:
265
+ if "lm_head.weight" in name:
266
+ continue
267
+ if ".attn.bias" in name:
268
+ # Skip attention mask.
269
+ # NOTE: "c_attn.bias" should not be skipped.
270
+ continue
271
+ param = params_dict[name]
272
+ weight_loader = getattr(param, "weight_loader",
273
+ default_weight_loader)
274
+ weight_loader(param, loaded_weight)
@@ -0,0 +1,281 @@
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gptj/modeling_gptj.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
6
+ #
7
+ # Licensed under the Apache License, Version 2.0 (the "License");
8
+ # you may not use this file except in compliance with the License.
9
+ # You may obtain a copy of the License at
10
+ #
11
+ # http://www.apache.org/licenses/LICENSE-2.0
12
+ #
13
+ # Unless required by applicable law or agreed to in writing, software
14
+ # distributed under the License is distributed on an "AS IS" BASIS,
15
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
+ # See the License for the specific language governing permissions and
17
+ # limitations under the License.
18
+ """Inference-only GPT-J model compatible with HuggingFace weights."""
19
+ from typing import Iterable, List, Optional, Tuple
20
+
21
+ import torch
22
+ from torch import nn
23
+ from transformers import GPTJConfig
24
+
25
+ from vllm.attention import Attention, AttentionMetadata
26
+ from vllm.distributed import get_tensor_model_parallel_world_size
27
+ from vllm.model_executor.layers.activation import get_act_fn
28
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
29
+ QKVParallelLinear,
30
+ RowParallelLinear)
31
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
32
+ from vllm.model_executor.layers.quantization.base_config import (
33
+ QuantizationConfig)
34
+ from vllm.model_executor.layers.rotary_embedding import get_rope
35
+ from vllm.model_executor.layers.sampler import Sampler
36
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
37
+ ParallelLMHead, VocabParallelEmbedding)
38
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
39
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
40
+ from vllm.sequence import SamplerOutput
41
+
42
+
43
+ class GPTJAttention(nn.Module):
44
+
45
+ def __init__(
46
+ self,
47
+ config: GPTJConfig,
48
+ quant_config: Optional[QuantizationConfig] = None,
49
+ ):
50
+ super().__init__()
51
+ self.total_num_heads = config.num_attention_heads
52
+ self.hidden_size = config.hidden_size
53
+ self.head_size = self.hidden_size // self.total_num_heads
54
+
55
+ self.qkv_proj = QKVParallelLinear(
56
+ config.hidden_size,
57
+ self.head_size,
58
+ self.total_num_heads,
59
+ bias=False,
60
+ quant_config=quant_config,
61
+ )
62
+ self.out_proj = RowParallelLinear(
63
+ config.hidden_size,
64
+ config.hidden_size,
65
+ bias=False,
66
+ quant_config=quant_config,
67
+ )
68
+
69
+ tp_world_size = get_tensor_model_parallel_world_size()
70
+ assert self.total_num_heads % tp_world_size == 0
71
+ self.num_heads = self.total_num_heads // tp_world_size
72
+
73
+ scaling = self.head_size**-0.5
74
+ assert getattr(config, "rotary", True)
75
+ assert config.rotary_dim % 2 == 0
76
+ rope_theta = getattr(config, "rope_theta", 10000)
77
+ max_position_embeddings = getattr(config, "max_position_embeddings",
78
+ 8192)
79
+ self.rotary_emb = get_rope(
80
+ self.head_size,
81
+ rotary_dim=config.rotary_dim,
82
+ max_position=max_position_embeddings,
83
+ base=rope_theta,
84
+ is_neox_style=False,
85
+ )
86
+ self.attn = Attention(self.num_heads, self.head_size, scaling)
87
+
88
+ def forward(
89
+ self,
90
+ position_ids: torch.Tensor,
91
+ hidden_states: torch.Tensor,
92
+ kv_cache: torch.Tensor,
93
+ attn_metadata: AttentionMetadata,
94
+ ) -> torch.Tensor:
95
+ qkv, _ = self.qkv_proj(hidden_states)
96
+ q, k, v = qkv.chunk(chunks=3, dim=-1)
97
+ q, k = self.rotary_emb(position_ids, q, k)
98
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
99
+ attn_output, _ = self.out_proj(attn_output)
100
+ return attn_output
101
+
102
+
103
+ class GPTJMLP(nn.Module):
104
+
105
+ def __init__(
106
+ self,
107
+ intermediate_size: int,
108
+ config: GPTJConfig,
109
+ quant_config: Optional[QuantizationConfig] = None,
110
+ ):
111
+ super().__init__()
112
+ hidden_size = config.n_embd
113
+ self.fc_in = ColumnParallelLinear(
114
+ hidden_size,
115
+ intermediate_size,
116
+ quant_config=quant_config,
117
+ )
118
+ self.fc_out = RowParallelLinear(
119
+ intermediate_size,
120
+ hidden_size,
121
+ quant_config=quant_config,
122
+ )
123
+ self.act = get_act_fn(config.activation_function, quant_config,
124
+ intermediate_size)
125
+
126
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
127
+ hidden_states, _ = self.fc_in(hidden_states)
128
+ hidden_states = self.act(hidden_states)
129
+ hidden_states, _ = self.fc_out(hidden_states)
130
+ return hidden_states
131
+
132
+
133
+ class GPTJBlock(nn.Module):
134
+
135
+ def __init__(
136
+ self,
137
+ config: GPTJConfig,
138
+ quant_config: Optional[QuantizationConfig] = None,
139
+ ):
140
+ super().__init__()
141
+ inner_dim = (4 * config.n_embd
142
+ if config.n_inner is None else config.n_inner)
143
+ self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
144
+ self.attn = GPTJAttention(config, quant_config)
145
+ self.mlp = GPTJMLP(inner_dim, config, quant_config)
146
+
147
+ def forward(
148
+ self,
149
+ position_ids: torch.Tensor,
150
+ hidden_states: torch.Tensor,
151
+ kv_cache: torch.Tensor,
152
+ attn_metadata: AttentionMetadata,
153
+ ) -> torch.Tensor:
154
+ residual = hidden_states
155
+ hidden_states = self.ln_1(hidden_states)
156
+ attn_output = self.attn(
157
+ position_ids=position_ids,
158
+ hidden_states=hidden_states,
159
+ kv_cache=kv_cache,
160
+ attn_metadata=attn_metadata,
161
+ )
162
+ mlp_output = self.mlp(hidden_states)
163
+ hidden_states = attn_output + mlp_output + residual
164
+ return hidden_states
165
+
166
+
167
+ class GPTJModel(nn.Module):
168
+
169
+ def __init__(
170
+ self,
171
+ config: GPTJConfig,
172
+ quant_config: Optional[QuantizationConfig] = None,
173
+ ):
174
+ super().__init__()
175
+ self.config = config
176
+ self.embed_dim = config.n_embd
177
+ self.wte = VocabParallelEmbedding(
178
+ config.vocab_size,
179
+ self.embed_dim,
180
+ )
181
+ self.h = nn.ModuleList(
182
+ [GPTJBlock(config, quant_config) for _ in range(config.n_layer)])
183
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
184
+
185
+ def forward(
186
+ self,
187
+ input_ids: torch.Tensor,
188
+ position_ids: torch.Tensor,
189
+ kv_caches: List[torch.Tensor],
190
+ attn_metadata: AttentionMetadata,
191
+ ) -> torch.Tensor:
192
+ hidden_states = self.wte(input_ids)
193
+ for i in range(len(self.h)):
194
+ layer = self.h[i]
195
+ hidden_states = layer(
196
+ position_ids,
197
+ hidden_states,
198
+ kv_caches[i],
199
+ attn_metadata,
200
+ )
201
+ hidden_states = self.ln_f(hidden_states)
202
+ return hidden_states
203
+
204
+
205
+ class GPTJForCausalLM(nn.Module):
206
+
207
+ def __init__(
208
+ self,
209
+ config: GPTJConfig,
210
+ quant_config: Optional[QuantizationConfig] = None,
211
+ ):
212
+ super().__init__()
213
+ self.config = config
214
+ self.quant_config = quant_config
215
+ assert not config.tie_word_embeddings
216
+ self.transformer = GPTJModel(config, quant_config)
217
+ self.lm_head = ParallelLMHead(
218
+ config.vocab_size,
219
+ config.n_embd,
220
+ bias=True,
221
+ )
222
+ self.logits_processor = LogitsProcessor(config.vocab_size)
223
+ self.sampler = Sampler()
224
+
225
+ def forward(
226
+ self,
227
+ input_ids: torch.Tensor,
228
+ positions: torch.Tensor,
229
+ kv_caches: List[torch.Tensor],
230
+ attn_metadata: AttentionMetadata,
231
+ ) -> torch.Tensor:
232
+ hidden_states = self.transformer(input_ids, positions, kv_caches,
233
+ attn_metadata)
234
+ return hidden_states
235
+
236
+ def compute_logits(self, hidden_states: torch.Tensor,
237
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
238
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
239
+ sampling_metadata, self.lm_head.bias)
240
+ return logits
241
+
242
+ def sample(
243
+ self,
244
+ logits: torch.Tensor,
245
+ sampling_metadata: SamplingMetadata,
246
+ ) -> Optional[SamplerOutput]:
247
+ next_tokens = self.sampler(logits, sampling_metadata)
248
+ return next_tokens
249
+
250
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
251
+ stacked_params_mapping = [
252
+ # (param_name, shard_name, shard_id)
253
+ ("qkv_proj", "q_proj", "q"),
254
+ ("qkv_proj", "k_proj", "k"),
255
+ ("qkv_proj", "v_proj", "v"),
256
+ ("gate_up_proj", "gate_proj", 0),
257
+ ("gate_up_proj", "up_proj", 1),
258
+ ]
259
+ params_dict = dict(self.named_parameters())
260
+ for name, loaded_weight in weights:
261
+ if "attn.bias" in name or "attn.masked_bias" in name:
262
+ continue
263
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
264
+ if weight_name not in name:
265
+ continue
266
+ name = name.replace(weight_name, param_name)
267
+ # Skip loading extra bias for GPTQ models.
268
+ if name.endswith(".bias") and name not in params_dict:
269
+ continue
270
+ param = params_dict[name]
271
+ weight_loader = param.weight_loader
272
+ weight_loader(param, loaded_weight, shard_id)
273
+ break
274
+ else:
275
+ # Skip loading extra bias for GPTQ models.
276
+ if name.endswith(".bias") and name not in params_dict:
277
+ continue
278
+ param = params_dict[name]
279
+ weight_loader = getattr(param, "weight_loader",
280
+ default_weight_loader)
281
+ weight_loader(param, loaded_weight)