vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,237 @@
|
|
1
|
+
from collections import namedtuple
|
2
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch.distributed import ProcessGroup
|
6
|
+
|
7
|
+
from .parallel_state import (get_cpu_world_group,
|
8
|
+
get_tensor_model_parallel_group,
|
9
|
+
get_tensor_model_parallel_rank,
|
10
|
+
get_tensor_model_parallel_world_size,
|
11
|
+
is_pynccl_enabled_for_all_reduce)
|
12
|
+
|
13
|
+
|
14
|
+
def tensor_model_parallel_all_reduce(input_: torch.Tensor) -> torch.Tensor:
|
15
|
+
"""All-reduce the input tensor across model parallel group.
|
16
|
+
|
17
|
+
NOTE: This operation will be applied in-place on the input tensor if
|
18
|
+
disable_custom_all_reduce is set to True. Otherwise, this operation may or
|
19
|
+
may not be applied in place depending on whether custom all reduce is
|
20
|
+
invoked for a particular tensor, which further depends on the tensor size
|
21
|
+
and GPU topology.
|
22
|
+
|
23
|
+
TLDR: always assume this function modifies its input, but use the return
|
24
|
+
value as the output.
|
25
|
+
"""
|
26
|
+
from vllm.distributed.device_communicators import pynccl_utils
|
27
|
+
from vllm.distributed.device_communicators.custom_all_reduce import (
|
28
|
+
custom_all_reduce)
|
29
|
+
|
30
|
+
# Bypass the function if we are using only 1 GPU.
|
31
|
+
if get_tensor_model_parallel_world_size() == 1:
|
32
|
+
return input_
|
33
|
+
out = custom_all_reduce(input_)
|
34
|
+
if out is not None:
|
35
|
+
return out
|
36
|
+
if is_pynccl_enabled_for_all_reduce():
|
37
|
+
pynccl_utils.all_reduce(input_)
|
38
|
+
else:
|
39
|
+
torch.distributed.all_reduce(input_,
|
40
|
+
group=get_tensor_model_parallel_group())
|
41
|
+
return input_
|
42
|
+
|
43
|
+
|
44
|
+
def tensor_model_parallel_all_gather(input_: torch.Tensor,
|
45
|
+
dim: int = -1) -> torch.Tensor:
|
46
|
+
"""All-gather the input tensor across model parallel group."""
|
47
|
+
world_size = get_tensor_model_parallel_world_size()
|
48
|
+
# Bypass the function if we are using only 1 GPU.
|
49
|
+
if world_size == 1:
|
50
|
+
return input_
|
51
|
+
assert -input_.dim() <= dim < input_.dim(), (
|
52
|
+
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
|
53
|
+
if dim < 0:
|
54
|
+
# Convert negative dim to positive.
|
55
|
+
dim += input_.dim()
|
56
|
+
input_size = input_.size()
|
57
|
+
# Allocate output tensor.
|
58
|
+
output_tensor = torch.empty((world_size, ) + input_size,
|
59
|
+
dtype=input_.dtype,
|
60
|
+
device=input_.device)
|
61
|
+
# All-gather.
|
62
|
+
torch.distributed.all_gather_into_tensor(
|
63
|
+
output_tensor, input_, group=get_tensor_model_parallel_group())
|
64
|
+
# Reshape
|
65
|
+
output_tensor = output_tensor.movedim(0, dim)
|
66
|
+
output_tensor = output_tensor.reshape(input_size[:dim] +
|
67
|
+
(world_size * input_size[dim], ) +
|
68
|
+
input_size[dim + 1:])
|
69
|
+
return output_tensor
|
70
|
+
|
71
|
+
|
72
|
+
def tensor_model_parallel_gather(input_: torch.Tensor,
|
73
|
+
dst: int = 0,
|
74
|
+
dim: int = -1) -> torch.Tensor:
|
75
|
+
"""Gather the input tensor across model parallel group.
|
76
|
+
|
77
|
+
NOTE: We assume that the input tensor is on the same device across
|
78
|
+
all the ranks.
|
79
|
+
"""
|
80
|
+
world_size = get_tensor_model_parallel_world_size()
|
81
|
+
# Bypass the function if we are using only 1 GPU.
|
82
|
+
if world_size == 1:
|
83
|
+
return input_
|
84
|
+
assert -input_.dim() <= dim < input_.dim(), (
|
85
|
+
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
|
86
|
+
if dim < 0:
|
87
|
+
# Convert negative dim to positive.
|
88
|
+
dim += input_.dim()
|
89
|
+
# Allocate output tensor.
|
90
|
+
if get_tensor_model_parallel_rank() == dst:
|
91
|
+
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
|
92
|
+
else:
|
93
|
+
gather_list = None
|
94
|
+
# Gather.
|
95
|
+
torch.distributed.gather(input_,
|
96
|
+
gather_list,
|
97
|
+
dst=dst,
|
98
|
+
group=get_tensor_model_parallel_group())
|
99
|
+
if get_tensor_model_parallel_rank() == dst:
|
100
|
+
output_tensor = torch.cat(gather_list, dim=dim)
|
101
|
+
else:
|
102
|
+
output_tensor = None
|
103
|
+
return output_tensor
|
104
|
+
|
105
|
+
|
106
|
+
def broadcast(input_: torch.Tensor,
|
107
|
+
src: int = 0,
|
108
|
+
group: Optional[ProcessGroup] = None):
|
109
|
+
"""Broadcast the input tensor."""
|
110
|
+
group = group or torch.distributed.group.WORLD
|
111
|
+
ranks = torch.distributed.get_process_group_ranks(group)
|
112
|
+
assert src in ranks, f"Invalid src rank ({src})"
|
113
|
+
|
114
|
+
# Bypass the function if we are using only 1 GPU.
|
115
|
+
world_size = torch.distributed.get_world_size(group=group)
|
116
|
+
if world_size == 1:
|
117
|
+
return input_
|
118
|
+
# Broadcast.
|
119
|
+
torch.distributed.broadcast(input_, src=src, group=group)
|
120
|
+
return input_
|
121
|
+
|
122
|
+
|
123
|
+
def broadcast_object_list(obj_list: List[Any],
|
124
|
+
src: int = 0,
|
125
|
+
group: Optional[ProcessGroup] = None):
|
126
|
+
"""Broadcast the input object list."""
|
127
|
+
group = group or torch.distributed.group.WORLD
|
128
|
+
ranks = torch.distributed.get_process_group_ranks(group)
|
129
|
+
assert src in ranks, f"Invalid src rank ({src})"
|
130
|
+
|
131
|
+
# Bypass the function if we are using only 1 GPU.
|
132
|
+
world_size = torch.distributed.get_world_size(group=group)
|
133
|
+
if world_size == 1:
|
134
|
+
return obj_list
|
135
|
+
# Broadcast.
|
136
|
+
torch.distributed.broadcast_object_list(obj_list, src=src, group=group)
|
137
|
+
return obj_list
|
138
|
+
|
139
|
+
|
140
|
+
TensorMetadata = namedtuple("TensorMetadata", ["dtype", "size"])
|
141
|
+
|
142
|
+
|
143
|
+
def _split_tensor_dict(
|
144
|
+
tensor_dict: Dict[Any, Union[torch.Tensor, Any]]
|
145
|
+
) -> Tuple[List[Tuple[str, Any]], List[torch.Tensor]]:
|
146
|
+
"""Split the tensor dictionary into two parts:
|
147
|
+
1. A list of (key, value) pairs. If the value is a tensor, it is replaced
|
148
|
+
by its metadata.
|
149
|
+
2. A list of tensors.
|
150
|
+
"""
|
151
|
+
metadata_list = []
|
152
|
+
tensor_list = []
|
153
|
+
for key, value in tensor_dict.items():
|
154
|
+
if isinstance(value, torch.Tensor):
|
155
|
+
# Note(youkaichao): currently this only supports broadcasting
|
156
|
+
# tensors on cuda. In the future, we can add device as a field in
|
157
|
+
# TensorMetadata to support broadcasting tensors on different
|
158
|
+
# devices.
|
159
|
+
assert value.is_cuda, (
|
160
|
+
f"Tensor {key}: {value} is not on cuda. Currently we only "
|
161
|
+
f"support broadcasting tensors on cuda.")
|
162
|
+
metadata_list.append((key, TensorMetadata(value.dtype,
|
163
|
+
value.size())))
|
164
|
+
tensor_list.append(value)
|
165
|
+
else:
|
166
|
+
metadata_list.append((key, value))
|
167
|
+
return metadata_list, tensor_list
|
168
|
+
|
169
|
+
|
170
|
+
def broadcast_tensor_dict(
|
171
|
+
tensor_dict: Optional[Dict[Any, Union[torch.Tensor, Any]]] = None,
|
172
|
+
src: int = 0,
|
173
|
+
group: Optional[ProcessGroup] = None,
|
174
|
+
metadata_group: Optional[ProcessGroup] = None
|
175
|
+
) -> Optional[Dict[Any, Union[torch.Tensor, Any]]]:
|
176
|
+
"""Broadcast the input tensor dictionary.
|
177
|
+
`group` is used to broadcast the tensors, while `metadata_group` is used
|
178
|
+
to broadcast the metadata of the dict (e.g. dict structure, tensor sizes,
|
179
|
+
dtypes).
|
180
|
+
"""
|
181
|
+
group = group or torch.distributed.group.WORLD
|
182
|
+
metadata_group = metadata_group or get_cpu_world_group()
|
183
|
+
ranks = torch.distributed.get_process_group_ranks(group)
|
184
|
+
assert src in ranks, f"Invalid src rank ({src})"
|
185
|
+
|
186
|
+
# Bypass the function if we are using only 1 GPU.
|
187
|
+
world_size = torch.distributed.get_world_size(group=group)
|
188
|
+
if world_size == 1:
|
189
|
+
return tensor_dict
|
190
|
+
|
191
|
+
rank = torch.distributed.get_rank()
|
192
|
+
if rank == src:
|
193
|
+
metadata_list: List[Tuple[Any, Any]] = []
|
194
|
+
assert isinstance(
|
195
|
+
tensor_dict,
|
196
|
+
dict), (f"Expecting a dictionary, got {type(tensor_dict)}")
|
197
|
+
metadata_list, tensor_list = _split_tensor_dict(tensor_dict)
|
198
|
+
# `metadata_list` lives in CPU memory.
|
199
|
+
# `broadcast_object_list` involves serialization and deserialization,
|
200
|
+
# all happening on CPU. Therefore, we can use the CPU group.
|
201
|
+
torch.distributed.broadcast_object_list([metadata_list],
|
202
|
+
src=src,
|
203
|
+
group=metadata_group)
|
204
|
+
async_handles = []
|
205
|
+
for tensor in tensor_list:
|
206
|
+
async_handles.append(
|
207
|
+
torch.distributed.broadcast(tensor,
|
208
|
+
src=src,
|
209
|
+
group=group,
|
210
|
+
async_op=True))
|
211
|
+
for async_handle in async_handles:
|
212
|
+
async_handle.wait()
|
213
|
+
|
214
|
+
else:
|
215
|
+
recv_metadata_list = [None]
|
216
|
+
torch.distributed.broadcast_object_list(recv_metadata_list,
|
217
|
+
src=src,
|
218
|
+
group=metadata_group)
|
219
|
+
assert recv_metadata_list[0] is not None
|
220
|
+
tensor_dict = {}
|
221
|
+
async_handles = []
|
222
|
+
for key, value in recv_metadata_list[0]:
|
223
|
+
if isinstance(value, TensorMetadata):
|
224
|
+
tensor = torch.empty(value.size,
|
225
|
+
dtype=value.dtype,
|
226
|
+
device="cuda")
|
227
|
+
async_handle = torch.distributed.broadcast(tensor,
|
228
|
+
src=src,
|
229
|
+
async_op=True,
|
230
|
+
group=group)
|
231
|
+
async_handles.append(async_handle)
|
232
|
+
tensor_dict[key] = tensor
|
233
|
+
else:
|
234
|
+
tensor_dict[key] = value
|
235
|
+
for async_handle in async_handles:
|
236
|
+
async_handle.wait()
|
237
|
+
return tensor_dict
|
File without changes
|
@@ -0,0 +1,274 @@
|
|
1
|
+
from contextlib import contextmanager
|
2
|
+
from typing import Any, List, Optional
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.distributed as dist
|
6
|
+
|
7
|
+
import vllm.envs as envs
|
8
|
+
from vllm.logger import init_logger
|
9
|
+
|
10
|
+
try:
|
11
|
+
import pynvml
|
12
|
+
|
13
|
+
from vllm._C import custom_ar
|
14
|
+
except ImportError:
|
15
|
+
# For AMD GPUs
|
16
|
+
custom_ar = None
|
17
|
+
pynvml = None
|
18
|
+
|
19
|
+
logger = init_logger(__name__)
|
20
|
+
|
21
|
+
_CA_HANDLE: Optional["CustomAllreduce"] = None
|
22
|
+
_IS_CAPTURING = False
|
23
|
+
_SUPPORTED_WORLD_SIZES = [2, 4, 6, 8]
|
24
|
+
|
25
|
+
|
26
|
+
def init_custom_ar() -> None:
|
27
|
+
from vllm.distributed import (get_tensor_model_parallel_rank,
|
28
|
+
get_tensor_model_parallel_world_size)
|
29
|
+
|
30
|
+
global _CA_HANDLE
|
31
|
+
if _CA_HANDLE is not None:
|
32
|
+
return
|
33
|
+
rank = get_tensor_model_parallel_rank()
|
34
|
+
world_size = get_tensor_model_parallel_world_size()
|
35
|
+
if world_size == 1:
|
36
|
+
# No need to initialize custom allreduce for single GPU case.
|
37
|
+
return
|
38
|
+
|
39
|
+
if world_size not in _SUPPORTED_WORLD_SIZES:
|
40
|
+
logger.warning(
|
41
|
+
"Custom allreduce is disabled due to an unsupported world size: "
|
42
|
+
"%d. Supported world sizes: %s. To silence this warning, specify"
|
43
|
+
" disable_custom_all_reduce=True explicitly.", world_size,
|
44
|
+
str(_SUPPORTED_WORLD_SIZES))
|
45
|
+
return
|
46
|
+
num_dev = torch.cuda.device_count()
|
47
|
+
# note: num dev can be larger than world_size if we're only using
|
48
|
+
# first few GPUs
|
49
|
+
if num_dev < world_size:
|
50
|
+
logger.warning(
|
51
|
+
"Cannot test GPU P2P because not all GPUs are visible to the "
|
52
|
+
"current process. This might be the case if 'CUDA_VISIBLE_DEVICES'"
|
53
|
+
" is set.")
|
54
|
+
return
|
55
|
+
# test nvlink first, this will filter out most of the cases
|
56
|
+
# where custom allreduce is not supported
|
57
|
+
cuda_visible_devices = envs.CUDA_VISIBLE_DEVICES
|
58
|
+
if cuda_visible_devices:
|
59
|
+
device_ids = list(map(int, cuda_visible_devices.split(",")))
|
60
|
+
else:
|
61
|
+
device_ids = list(range(num_dev))
|
62
|
+
# this checks hardware and driver support for NVLink
|
63
|
+
full_nvlink = _is_full_nvlink(device_ids)
|
64
|
+
if world_size > 2 and not full_nvlink:
|
65
|
+
logger.warning(
|
66
|
+
"Custom allreduce is disabled because it's not supported on more"
|
67
|
+
" than two PCIe-only GPUs. To silence this warning, specify"
|
68
|
+
" disable_custom_all_reduce=True explicitly.")
|
69
|
+
return
|
70
|
+
# test P2P capability, this checks software/cudaruntime support
|
71
|
+
# this is expensive to compute at the first time
|
72
|
+
# then we cache the result
|
73
|
+
if not _can_p2p(rank, world_size):
|
74
|
+
logger.warning(
|
75
|
+
"Custom allreduce is disabled because your platform lacks GPU P2P"
|
76
|
+
" capability or P2P test failed. To silence this warning, specify"
|
77
|
+
" disable_custom_all_reduce=True explicitly.")
|
78
|
+
return
|
79
|
+
_CA_HANDLE = CustomAllreduce(rank, world_size, full_nvlink)
|
80
|
+
|
81
|
+
|
82
|
+
def begin_capture() -> None:
|
83
|
+
global _IS_CAPTURING
|
84
|
+
_IS_CAPTURING = True
|
85
|
+
|
86
|
+
|
87
|
+
def end_capture() -> None:
|
88
|
+
global _IS_CAPTURING
|
89
|
+
_IS_CAPTURING = False
|
90
|
+
|
91
|
+
|
92
|
+
def is_capturing() -> bool:
|
93
|
+
return _IS_CAPTURING and _CA_HANDLE is not None
|
94
|
+
|
95
|
+
|
96
|
+
def get_handle() -> Optional["CustomAllreduce"]:
|
97
|
+
return _CA_HANDLE
|
98
|
+
|
99
|
+
|
100
|
+
def is_initialized() -> bool:
|
101
|
+
return _CA_HANDLE is not None
|
102
|
+
|
103
|
+
|
104
|
+
@contextmanager
|
105
|
+
def capture():
|
106
|
+
try:
|
107
|
+
begin_capture()
|
108
|
+
yield
|
109
|
+
finally:
|
110
|
+
end_capture()
|
111
|
+
handle = get_handle()
|
112
|
+
if handle is not None:
|
113
|
+
handle.register_graph_buffers()
|
114
|
+
|
115
|
+
|
116
|
+
def custom_all_reduce(input: torch.Tensor) -> Optional[torch.Tensor]:
|
117
|
+
ca_handle = get_handle()
|
118
|
+
# when custom allreduce is disabled, this will be None
|
119
|
+
if ca_handle is None:
|
120
|
+
return None
|
121
|
+
if is_capturing():
|
122
|
+
if torch.cuda.is_current_stream_capturing():
|
123
|
+
if ca_handle.should_custom_ar(input):
|
124
|
+
return ca_handle.all_reduce_reg(input)
|
125
|
+
else:
|
126
|
+
if ca_handle.should_custom_ar(input):
|
127
|
+
# if warm up, mimic the allocation pattern
|
128
|
+
# since custom allreduce is out-of-place
|
129
|
+
return torch.empty_like(input)
|
130
|
+
else:
|
131
|
+
# note: outside of cuda graph context,
|
132
|
+
# custom allreduce incurs a cost of cudaMemcpy, which should
|
133
|
+
# be small(<=1% of overall latency) compared to the performance
|
134
|
+
# gains of using custom kernels
|
135
|
+
if ca_handle.should_custom_ar(input):
|
136
|
+
return ca_handle.all_reduce_unreg(input)
|
137
|
+
|
138
|
+
return None
|
139
|
+
|
140
|
+
|
141
|
+
@contextmanager
|
142
|
+
def _nvml():
|
143
|
+
try:
|
144
|
+
pynvml.nvmlInit()
|
145
|
+
yield
|
146
|
+
finally:
|
147
|
+
pynvml.nvmlShutdown()
|
148
|
+
|
149
|
+
|
150
|
+
@_nvml()
|
151
|
+
def _is_full_nvlink(device_ids: List[int]) -> bool:
|
152
|
+
"""
|
153
|
+
query if the set of gpus are fully connected by nvlink (1 hop)
|
154
|
+
Note that `pynvml` is not affected by `CUDA_VISIBLE_DEVICES`,
|
155
|
+
so it works on real physical device ids.
|
156
|
+
"""
|
157
|
+
handles = [pynvml.nvmlDeviceGetHandleByIndex(i) for i in device_ids]
|
158
|
+
for i, handle in enumerate(handles):
|
159
|
+
for j, peer_handle in enumerate(handles):
|
160
|
+
if i < j:
|
161
|
+
try:
|
162
|
+
p2p_status = pynvml.nvmlDeviceGetP2PStatus(
|
163
|
+
handle, peer_handle, pynvml.NVML_P2P_CAPS_INDEX_NVLINK)
|
164
|
+
if p2p_status != pynvml.NVML_P2P_STATUS_OK:
|
165
|
+
return False
|
166
|
+
except pynvml.NVMLError as error:
|
167
|
+
logger.error(
|
168
|
+
"NVLink detection failed. This is normal if your"
|
169
|
+
" machine has no NVLink equipped.",
|
170
|
+
exc_info=error)
|
171
|
+
return False
|
172
|
+
return True
|
173
|
+
|
174
|
+
|
175
|
+
def _can_p2p(rank: int, world_size: int) -> bool:
|
176
|
+
from vllm.distributed.utils import gpu_p2p_access_check
|
177
|
+
for i in range(world_size):
|
178
|
+
if i == rank:
|
179
|
+
continue
|
180
|
+
if not gpu_p2p_access_check(rank, i):
|
181
|
+
return False
|
182
|
+
return True
|
183
|
+
|
184
|
+
|
185
|
+
class CustomAllreduce:
|
186
|
+
|
187
|
+
# max_size: max supported allreduce size
|
188
|
+
def __init__(self,
|
189
|
+
rank,
|
190
|
+
world_size,
|
191
|
+
full_nvlink,
|
192
|
+
max_size=8192 * 1024) -> None:
|
193
|
+
# buffers memory are owned by this Python class and passed to C++
|
194
|
+
# meta data composes of two parts: meta data for synchronization
|
195
|
+
# (256 bytes) and a temporary buffer for storing intermediate
|
196
|
+
# allreduce results.
|
197
|
+
self.meta = torch.zeros(custom_ar.meta_size() + max_size,
|
198
|
+
dtype=torch.uint8,
|
199
|
+
device="cuda")
|
200
|
+
# This is a pre-registered IPC buffer. In eager mode, input tensors
|
201
|
+
# are first copied into this buffer before allreduce is performed
|
202
|
+
self.buffer = torch.empty(max_size, dtype=torch.uint8, device="cuda")
|
203
|
+
# This is a buffer for storing the tuples of pointers pointing to
|
204
|
+
# IPC buffers from all ranks. Each registered tuple has size of
|
205
|
+
# 8*world_size bytes where world_size is at most 8. Allocating 8MB
|
206
|
+
# is enough for 131072 such tuples. The largest model I've seen only
|
207
|
+
# needs less than 10000 of registered tuples.
|
208
|
+
self.rank_data = torch.empty(8 * 1024 * 1024,
|
209
|
+
dtype=torch.uint8,
|
210
|
+
device="cuda")
|
211
|
+
self.max_size = max_size
|
212
|
+
self.world_size = world_size
|
213
|
+
handles, offsets = self._get_ipc_meta(self.meta)
|
214
|
+
self.full_nvlink = full_nvlink
|
215
|
+
self._ptr = custom_ar.init_custom_ar(self.meta, self.rank_data,
|
216
|
+
handles, offsets, rank,
|
217
|
+
self.full_nvlink)
|
218
|
+
self.register_buffer(self.buffer)
|
219
|
+
|
220
|
+
def _get_ipc_meta(self, inp: torch.Tensor):
|
221
|
+
data = inp.untyped_storage()._share_cuda_()
|
222
|
+
shard_data = (
|
223
|
+
data[1], # ipc handle to base ptr
|
224
|
+
data[3], # offset of base ptr
|
225
|
+
)
|
226
|
+
return self._gather_ipc_meta(shard_data)
|
227
|
+
|
228
|
+
def _gather_ipc_meta(self, shard_data):
|
229
|
+
all_data: List[Optional[Any]] = [None] * self.world_size
|
230
|
+
dist.all_gather_object(all_data, shard_data)
|
231
|
+
|
232
|
+
handles = []
|
233
|
+
offsets = []
|
234
|
+
for i in range(len(all_data)):
|
235
|
+
handles.append(all_data[i][0]) # type: ignore
|
236
|
+
offsets.append(all_data[i][1]) # type: ignore
|
237
|
+
return handles, offsets
|
238
|
+
|
239
|
+
def register_buffer(self, inp: torch.Tensor):
|
240
|
+
handles, offsets = self._get_ipc_meta(inp)
|
241
|
+
custom_ar.register_buffer(self._ptr, inp, handles, offsets)
|
242
|
+
|
243
|
+
def register_graph_buffers(self):
|
244
|
+
handle, offset = custom_ar.get_graph_buffer_ipc_meta(self._ptr)
|
245
|
+
handles, offsets = self._gather_ipc_meta((bytes(handle), offset))
|
246
|
+
logger.info("Registering %d cuda graph addresses", len(offset))
|
247
|
+
custom_ar.register_graph_buffers(self._ptr, handles, offsets)
|
248
|
+
|
249
|
+
def should_custom_ar(self, inp: torch.Tensor):
|
250
|
+
return custom_ar.should_custom_ar(inp, self.max_size, self.world_size,
|
251
|
+
self.full_nvlink)
|
252
|
+
|
253
|
+
# all reduce, assuming inp tensor is IPC registered with register_buffer,
|
254
|
+
# or, in the context of cuda graphs, register_graph_buffers
|
255
|
+
def all_reduce_reg(self, inp: torch.Tensor, out: torch.Tensor = None):
|
256
|
+
if out is None:
|
257
|
+
out = torch.empty_like(inp)
|
258
|
+
custom_ar.all_reduce_reg(self._ptr, inp, out)
|
259
|
+
return out
|
260
|
+
|
261
|
+
# all reduce, assuming inp tensor is NOT IPC registered
|
262
|
+
def all_reduce_unreg(self, inp: torch.Tensor, out: torch.Tensor = None):
|
263
|
+
if out is None:
|
264
|
+
out = torch.empty_like(inp)
|
265
|
+
custom_ar.all_reduce_unreg(self._ptr, inp, self.buffer, out)
|
266
|
+
return out
|
267
|
+
|
268
|
+
def close(self):
|
269
|
+
if self._ptr:
|
270
|
+
custom_ar.dispose(self._ptr)
|
271
|
+
self._ptr = 0
|
272
|
+
|
273
|
+
def __del__(self):
|
274
|
+
self.close()
|