vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,525 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Adapted from
|
3
|
+
# https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py
|
4
|
+
# Copyright 2023 The vLLM team.
|
5
|
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
6
|
+
#
|
7
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
8
|
+
# and OPT implementations in this library. It has been modified from its
|
9
|
+
# original forms to accommodate minor architectural differences compared
|
10
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
11
|
+
#
|
12
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
13
|
+
# you may not use this file except in compliance with the License.
|
14
|
+
# You may obtain a copy of the License at
|
15
|
+
#
|
16
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
17
|
+
#
|
18
|
+
# Unless required by applicable law or agreed to in writing, software
|
19
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
20
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21
|
+
# See the License for the specific language governing permissions and
|
22
|
+
# limitations under the License.
|
23
|
+
"""Rotary Positional Embeddings."""
|
24
|
+
import math
|
25
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
26
|
+
|
27
|
+
import torch
|
28
|
+
import torch.nn as nn
|
29
|
+
|
30
|
+
from vllm import _custom_ops as ops
|
31
|
+
|
32
|
+
|
33
|
+
def _rotate_neox(x: torch.Tensor) -> torch.Tensor:
|
34
|
+
x1 = x[..., :x.shape[-1] // 2]
|
35
|
+
x2 = x[..., x.shape[-1] // 2:]
|
36
|
+
return torch.cat((-x2, x1), dim=-1)
|
37
|
+
|
38
|
+
|
39
|
+
def _rotate_gptj(x: torch.Tensor) -> torch.Tensor:
|
40
|
+
x1 = x[..., ::2]
|
41
|
+
x2 = x[..., 1::2]
|
42
|
+
x = torch.stack((-x2, x1), dim=-1)
|
43
|
+
return x.flatten(-2)
|
44
|
+
|
45
|
+
|
46
|
+
class RotaryEmbedding(nn.Module):
|
47
|
+
"""Original rotary positional embedding."""
|
48
|
+
|
49
|
+
def __init__(
|
50
|
+
self,
|
51
|
+
head_size: int,
|
52
|
+
rotary_dim: int,
|
53
|
+
max_position_embeddings: int,
|
54
|
+
base: int,
|
55
|
+
is_neox_style: bool,
|
56
|
+
) -> None:
|
57
|
+
super().__init__()
|
58
|
+
self.head_size = head_size
|
59
|
+
self.rotary_dim = rotary_dim
|
60
|
+
self.max_position_embeddings = max_position_embeddings
|
61
|
+
self.base = base
|
62
|
+
self.is_neox_style = is_neox_style
|
63
|
+
|
64
|
+
cache = self._compute_cos_sin_cache()
|
65
|
+
cache = cache.to(torch.get_default_dtype())
|
66
|
+
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
67
|
+
|
68
|
+
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
69
|
+
"""Compute the inverse frequency."""
|
70
|
+
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
|
71
|
+
# However, we use `torch.arange(..., dtype=torch.float)` instead to
|
72
|
+
# avoid numerical issues with large base values (e.g., 10000000).
|
73
|
+
# This may cause a slight numerical difference between the HF
|
74
|
+
# implementation and ours.
|
75
|
+
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
76
|
+
# use CPU to compute the cache and then move it to GPU. However, we
|
77
|
+
# create the cache on GPU for faster initialization. This may cause
|
78
|
+
# a slight numerical difference between the HF implementation and ours.
|
79
|
+
inv_freq = 1.0 / (base**(torch.arange(
|
80
|
+
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
81
|
+
return inv_freq
|
82
|
+
|
83
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
84
|
+
"""Compute the cos and sin cache."""
|
85
|
+
inv_freq = self._compute_inv_freq(self.base)
|
86
|
+
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
87
|
+
|
88
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
89
|
+
cos = freqs.cos()
|
90
|
+
sin = freqs.sin()
|
91
|
+
cache = torch.cat((cos, sin), dim=-1)
|
92
|
+
return cache
|
93
|
+
|
94
|
+
def _forward(
|
95
|
+
self,
|
96
|
+
positions: torch.Tensor,
|
97
|
+
query: torch.Tensor,
|
98
|
+
key: torch.Tensor,
|
99
|
+
offsets: Optional[torch.Tensor] = None,
|
100
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
101
|
+
"""PyTorch-native implementation equivalent to forward()."""
|
102
|
+
query = query.view(*query.shape[:-1], -1, self.head_size)
|
103
|
+
key = key.view(*key.shape[:-1], -1, self.head_size)
|
104
|
+
|
105
|
+
query_rot = query[..., :self.rotary_dim]
|
106
|
+
key_rot = key[..., :self.rotary_dim]
|
107
|
+
if self.rotary_dim < self.head_size:
|
108
|
+
query_pass = query[..., self.rotary_dim:]
|
109
|
+
key_pass = key[..., self.rotary_dim:]
|
110
|
+
|
111
|
+
self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
|
112
|
+
positions.device)
|
113
|
+
cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
|
114
|
+
if offsets is not None else positions]
|
115
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
116
|
+
if self.is_neox_style:
|
117
|
+
# NOTE(woosuk): Here we assume that the positions tensor has the
|
118
|
+
# shape [batch_size, seq_len].
|
119
|
+
cos = cos.repeat(1, 1, 2).unsqueeze(-2)
|
120
|
+
sin = sin.repeat(1, 1, 2).unsqueeze(-2)
|
121
|
+
else:
|
122
|
+
cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
123
|
+
sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)
|
124
|
+
|
125
|
+
rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
|
126
|
+
query_rot = query_rot * cos + rotate_fn(query_rot) * sin
|
127
|
+
key_rot = key_rot * cos + rotate_fn(key_rot) * sin
|
128
|
+
|
129
|
+
if self.rotary_dim < self.head_size:
|
130
|
+
query = torch.cat((query_rot, query_pass), dim=-1)
|
131
|
+
key = torch.cat((key_rot, key_pass), dim=-1)
|
132
|
+
else:
|
133
|
+
query = query_rot
|
134
|
+
key = key_rot
|
135
|
+
query = query.flatten(-2)
|
136
|
+
key = key.flatten(-2)
|
137
|
+
return query, key
|
138
|
+
|
139
|
+
def forward(
|
140
|
+
self,
|
141
|
+
positions: torch.Tensor,
|
142
|
+
query: torch.Tensor,
|
143
|
+
key: torch.Tensor,
|
144
|
+
offsets: Optional[torch.Tensor] = None,
|
145
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
146
|
+
self.cos_sin_cache = self.cos_sin_cache.to(positions.device)
|
147
|
+
# ops.rotary_embedding()/batched_rotary_embedding()
|
148
|
+
# are in-place operations that update the query and key tensors.
|
149
|
+
if offsets is not None:
|
150
|
+
ops.batched_rotary_embedding(positions, query, key, self.head_size,
|
151
|
+
self.cos_sin_cache,
|
152
|
+
self.is_neox_style, self.rotary_dim,
|
153
|
+
offsets)
|
154
|
+
else:
|
155
|
+
ops.rotary_embedding(positions, query, key, self.head_size,
|
156
|
+
self.cos_sin_cache, self.is_neox_style)
|
157
|
+
return query, key
|
158
|
+
|
159
|
+
def extra_repr(self) -> str:
|
160
|
+
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
|
161
|
+
s += f", max_position_embeddings={self.max_position_embeddings}"
|
162
|
+
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
|
163
|
+
return s
|
164
|
+
|
165
|
+
|
166
|
+
class LinearScalingRotaryEmbedding(RotaryEmbedding):
|
167
|
+
"""RotaryEmbedding extended with linear scaling.
|
168
|
+
|
169
|
+
Credits to the Reddit user /u/kaiokendev
|
170
|
+
"""
|
171
|
+
|
172
|
+
def __init__(
|
173
|
+
self,
|
174
|
+
head_size: int,
|
175
|
+
rotary_dim: int,
|
176
|
+
max_position_embeddings: int,
|
177
|
+
base: int,
|
178
|
+
is_neox_style: bool,
|
179
|
+
scaling_factors: Union[List[float], float],
|
180
|
+
) -> None:
|
181
|
+
if isinstance(scaling_factors, float):
|
182
|
+
scaling_factors = [scaling_factors]
|
183
|
+
self.scaling_factors = scaling_factors
|
184
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
185
|
+
is_neox_style)
|
186
|
+
|
187
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
188
|
+
inv_freq = self._compute_inv_freq(self.base)
|
189
|
+
cache_list = []
|
190
|
+
for scaling_factor in self.scaling_factors:
|
191
|
+
# NOTE(woosuk): self.max_position_embeddings is the original
|
192
|
+
# maximum length before applying the rope scaling.
|
193
|
+
# Thus, the maximum length after applying the rope scaling is
|
194
|
+
# self.max_position_embeddings * self.scaling_factor.
|
195
|
+
max_len = self.max_position_embeddings * scaling_factor
|
196
|
+
t = torch.arange(max_len, dtype=torch.float)
|
197
|
+
t = t / scaling_factor
|
198
|
+
|
199
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
200
|
+
cos = freqs.cos()
|
201
|
+
sin = freqs.sin()
|
202
|
+
cache = torch.cat((cos, sin), dim=-1)
|
203
|
+
cache_list.append(cache)
|
204
|
+
return torch.cat(cache_list, dim=0)
|
205
|
+
|
206
|
+
|
207
|
+
class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
|
208
|
+
"""RotaryEmbedding extended with Dynamic NTK scaling.
|
209
|
+
|
210
|
+
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
211
|
+
"""
|
212
|
+
|
213
|
+
def __init__(
|
214
|
+
self,
|
215
|
+
head_size: int,
|
216
|
+
rotary_dim: int,
|
217
|
+
max_position_embeddings: int,
|
218
|
+
base: int,
|
219
|
+
is_neox_style: bool,
|
220
|
+
scaling_factor: float,
|
221
|
+
) -> None:
|
222
|
+
self.scaling_factor = scaling_factor
|
223
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
224
|
+
is_neox_style)
|
225
|
+
|
226
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
227
|
+
# NOTE(woosuk): self.max_position_embeddings is the original
|
228
|
+
# maximum length before applying the rope scaling.
|
229
|
+
# Thus, the maximum length after applying the rope scaling is
|
230
|
+
# self.max_position_embeddings * self.scaling_factor.
|
231
|
+
max_len = self.max_position_embeddings * self.scaling_factor
|
232
|
+
base = self.base * (
|
233
|
+
(self.scaling_factor * max_len / self.max_position_embeddings) -
|
234
|
+
(self.scaling_factor - 1))**(self.rotary_dim /
|
235
|
+
(self.rotary_dim - 2))
|
236
|
+
inv_freq = self._compute_inv_freq(base)
|
237
|
+
t = torch.arange(max_len, dtype=torch.float)
|
238
|
+
|
239
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
240
|
+
cos = freqs.cos()
|
241
|
+
sin = freqs.sin()
|
242
|
+
cache = torch.cat((cos, sin), dim=-1)
|
243
|
+
return cache
|
244
|
+
|
245
|
+
|
246
|
+
# Inverse dim formula to find dim based on number of rotations
|
247
|
+
def _yarn_find_correction_dim(num_rotations: int,
|
248
|
+
dim: int,
|
249
|
+
base: float = 10000,
|
250
|
+
max_position_embeddings: int = 2048) -> float:
|
251
|
+
return (dim * math.log(max_position_embeddings /
|
252
|
+
(num_rotations * 2 * math.pi))) / (2 *
|
253
|
+
math.log(base))
|
254
|
+
|
255
|
+
|
256
|
+
# Find dim range bounds based on rotations
|
257
|
+
def _yarn_find_correction_range(
|
258
|
+
low_rot: int,
|
259
|
+
high_rot: int,
|
260
|
+
dim: int,
|
261
|
+
base: float = 10000,
|
262
|
+
max_position_embeddings: int = 2048) -> Tuple[int, int]:
|
263
|
+
low = math.floor(
|
264
|
+
_yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
265
|
+
high = math.ceil(
|
266
|
+
_yarn_find_correction_dim(high_rot, dim, base,
|
267
|
+
max_position_embeddings))
|
268
|
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
269
|
+
|
270
|
+
|
271
|
+
def _yarn_linear_ramp_mask(low: float, high: float, dim: int,
|
272
|
+
dtype: torch.dtype) -> torch.Tensor:
|
273
|
+
if low == high:
|
274
|
+
high += 0.001 # Prevent singularity
|
275
|
+
|
276
|
+
linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low)
|
277
|
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
278
|
+
return ramp_func
|
279
|
+
|
280
|
+
|
281
|
+
def _yarn_get_mscale(scale: float = 1) -> float:
|
282
|
+
if scale <= 1:
|
283
|
+
return 1.0
|
284
|
+
return 0.1 * math.log(scale) + 1.0
|
285
|
+
|
286
|
+
|
287
|
+
class YaRNScalingRotaryEmbedding(RotaryEmbedding):
|
288
|
+
"""RotaryEmbedding extended with YaRN method.
|
289
|
+
|
290
|
+
Credits to Peng et al. github.com/jquesnelle/yarn
|
291
|
+
"""
|
292
|
+
|
293
|
+
def __init__(
|
294
|
+
self,
|
295
|
+
head_size: int,
|
296
|
+
rotary_dim: int,
|
297
|
+
max_position_embeddings: int,
|
298
|
+
base: int,
|
299
|
+
is_neox_style: bool,
|
300
|
+
scaling_factor: float,
|
301
|
+
*,
|
302
|
+
extrapolation_factor: float = 1,
|
303
|
+
attn_factor: float = 1,
|
304
|
+
beta_fast: int = 32,
|
305
|
+
beta_slow: int = 1,
|
306
|
+
) -> None:
|
307
|
+
self.scaling_factor = scaling_factor
|
308
|
+
self.extrapolation_factor = extrapolation_factor
|
309
|
+
self.attn_factor = attn_factor
|
310
|
+
self.beta_fast = beta_fast
|
311
|
+
self.beta_slow = beta_slow
|
312
|
+
# Get n-d magnitude scaling corrected for interpolation
|
313
|
+
self.mscale = float(
|
314
|
+
_yarn_get_mscale(self.scaling_factor) * attn_factor)
|
315
|
+
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
316
|
+
is_neox_style)
|
317
|
+
|
318
|
+
def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
|
319
|
+
pos_freqs = self.base**(
|
320
|
+
torch.arange(0, self.rotary_dim, 2, dtype=torch.float) /
|
321
|
+
self.rotary_dim)
|
322
|
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
323
|
+
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)
|
324
|
+
|
325
|
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
|
326
|
+
self.rotary_dim, self.base,
|
327
|
+
self.max_position_embeddings)
|
328
|
+
# Get n-d rotational scaling corrected for extrapolation
|
329
|
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(
|
330
|
+
low, high, self.rotary_dim // 2,
|
331
|
+
dtype=torch.float)) * self.extrapolation_factor
|
332
|
+
inv_freq = inv_freq_interpolation * (
|
333
|
+
1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
334
|
+
return inv_freq
|
335
|
+
|
336
|
+
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
337
|
+
inv_freq = self._compute_inv_freq(self.scaling_factor)
|
338
|
+
t = torch.arange(self.max_position_embeddings * self.scaling_factor,
|
339
|
+
dtype=torch.float32)
|
340
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
341
|
+
cos = (freqs.cos() * self.mscale)
|
342
|
+
sin = (freqs.sin() * self.mscale)
|
343
|
+
cache = torch.cat((cos, sin), dim=-1)
|
344
|
+
return cache
|
345
|
+
|
346
|
+
|
347
|
+
class Phi3SuScaledRotaryEmbedding(nn.Module):
|
348
|
+
"""Phi3 family of models scaled rotary embedding.
|
349
|
+
|
350
|
+
Based on the original RotaryEmbedding implementation.
|
351
|
+
"""
|
352
|
+
|
353
|
+
def __init__(
|
354
|
+
self,
|
355
|
+
head_size: int,
|
356
|
+
rotary_dim: int,
|
357
|
+
max_position_embeddings: int,
|
358
|
+
original_max_position_embeddings: int,
|
359
|
+
base: int,
|
360
|
+
is_neox_style: bool,
|
361
|
+
short_factor: List[float],
|
362
|
+
long_factor: List[float],
|
363
|
+
short_mscale: float = 1.1,
|
364
|
+
long_mscale: float = 1.225,
|
365
|
+
):
|
366
|
+
super().__init__()
|
367
|
+
|
368
|
+
if rotary_dim != head_size:
|
369
|
+
raise ValueError(
|
370
|
+
f"`Phi3SuScaledRotaryEmbedding` does not support rotary_dim != \
|
371
|
+
head_size ({rotary_dim}!={head_size}).")
|
372
|
+
if is_neox_style is False:
|
373
|
+
raise ValueError(
|
374
|
+
"`Phi3SuScaledRotaryEmbedding` only supports neox_style.")
|
375
|
+
|
376
|
+
self.head_size = head_size
|
377
|
+
self.max_position_embeddings = max_position_embeddings
|
378
|
+
self.original_max_position_embeddings = original_max_position_embeddings
|
379
|
+
self.base = base
|
380
|
+
self.short_factor = short_factor
|
381
|
+
self.long_factor = long_factor
|
382
|
+
self.short_mscale = short_mscale
|
383
|
+
self.long_mscale = long_mscale
|
384
|
+
|
385
|
+
short_cache = self._compute_cos_sin_cache(
|
386
|
+
original_max_position_embeddings, short_factor, short_mscale)
|
387
|
+
short_cache = short_cache.to(torch.get_default_dtype())
|
388
|
+
self.register_buffer("short_cos_sin_cache",
|
389
|
+
short_cache,
|
390
|
+
persistent=False)
|
391
|
+
|
392
|
+
long_cache = self._compute_cos_sin_cache(max_position_embeddings,
|
393
|
+
long_factor, long_mscale)
|
394
|
+
long_cache = long_cache.to(torch.get_default_dtype())
|
395
|
+
self.register_buffer("long_cos_sin_cache",
|
396
|
+
long_cache,
|
397
|
+
persistent=False)
|
398
|
+
|
399
|
+
long_short_cache = torch.cat(
|
400
|
+
[self.short_cos_sin_cache, self.long_cos_sin_cache], dim=0)
|
401
|
+
self.register_buffer("long_short_cos_sin_cache",
|
402
|
+
long_short_cache,
|
403
|
+
persistent=False)
|
404
|
+
|
405
|
+
def _compute_inv_freq(self, rescale_factors: List[float]) -> torch.Tensor:
|
406
|
+
rescale_factors = torch.tensor(rescale_factors, dtype=torch.float32)
|
407
|
+
inv_freq = 1.0 / (rescale_factors * (self.base**(torch.arange(
|
408
|
+
0, self.head_size, 2, dtype=torch.float) / self.head_size)))
|
409
|
+
return inv_freq
|
410
|
+
|
411
|
+
def _compute_cos_sin_cache(
|
412
|
+
self,
|
413
|
+
max_position_embeddings: int,
|
414
|
+
rescale_factors: List[float],
|
415
|
+
mscale: float,
|
416
|
+
) -> torch.Tensor:
|
417
|
+
inv_freq = self._compute_inv_freq(rescale_factors)
|
418
|
+
t = torch.arange(max_position_embeddings, dtype=torch.float)
|
419
|
+
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
420
|
+
cos = freqs.cos() * mscale
|
421
|
+
sin = freqs.sin() * mscale
|
422
|
+
cache = torch.cat((cos, sin), dim=-1)
|
423
|
+
return cache
|
424
|
+
|
425
|
+
def forward(
|
426
|
+
self,
|
427
|
+
positions: torch.Tensor,
|
428
|
+
query: torch.Tensor,
|
429
|
+
key: torch.Tensor,
|
430
|
+
offsets: Optional[torch.Tensor] = None,
|
431
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
432
|
+
query = query.view(*query.shape[:-1], -1, self.head_size)
|
433
|
+
key = key.view(*key.shape[:-1], -1, self.head_size)
|
434
|
+
|
435
|
+
k = self.original_max_position_embeddings
|
436
|
+
long_prompt_offset = (torch.any(positions > k).float() *
|
437
|
+
torch.full_like(positions, k)).long()
|
438
|
+
idx = (torch.add(positions, long_prompt_offset)
|
439
|
+
if long_prompt_offset is not None else positions)
|
440
|
+
self.long_short_cos_sin_cache: torch.Tensor = (
|
441
|
+
self.long_short_cos_sin_cache.to(idx.device))
|
442
|
+
idx = torch.add(idx, offsets) if offsets is not None else idx
|
443
|
+
cos_sin = torch.index_select(self.long_short_cos_sin_cache, 0, idx)
|
444
|
+
|
445
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
446
|
+
cos = cos.repeat(1, 2).unsqueeze(-2)
|
447
|
+
sin = sin.repeat(1, 2).unsqueeze(-2)
|
448
|
+
|
449
|
+
query = query * cos + _rotate_neox(query) * sin
|
450
|
+
key = key * cos + _rotate_neox(key) * sin
|
451
|
+
|
452
|
+
return query.flatten(-2), key.flatten(-2)
|
453
|
+
|
454
|
+
|
455
|
+
_ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {}
|
456
|
+
|
457
|
+
|
458
|
+
def get_rope(
|
459
|
+
head_size: int,
|
460
|
+
rotary_dim: int,
|
461
|
+
max_position: int,
|
462
|
+
base: int,
|
463
|
+
is_neox_style: bool = True,
|
464
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
465
|
+
) -> RotaryEmbedding:
|
466
|
+
if rope_scaling is not None:
|
467
|
+
# Transforms every value that is a list into a tuple for caching calls
|
468
|
+
rope_scaling_tuple = {
|
469
|
+
k: tuple(v) if isinstance(v, list) else v
|
470
|
+
for k, v in rope_scaling.items()
|
471
|
+
}
|
472
|
+
rope_scaling_args = tuple(rope_scaling_tuple.items())
|
473
|
+
else:
|
474
|
+
rope_scaling_args = None
|
475
|
+
key = (head_size, rotary_dim, max_position, base, is_neox_style,
|
476
|
+
rope_scaling_args)
|
477
|
+
if key in _ROPE_DICT:
|
478
|
+
return _ROPE_DICT[key]
|
479
|
+
if rope_scaling is None:
|
480
|
+
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base,
|
481
|
+
is_neox_style)
|
482
|
+
else:
|
483
|
+
scaling_type = rope_scaling["type"]
|
484
|
+
if scaling_type != "su":
|
485
|
+
scaling_factor = rope_scaling["factor"]
|
486
|
+
if scaling_type == "linear":
|
487
|
+
rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
|
488
|
+
max_position, base,
|
489
|
+
is_neox_style,
|
490
|
+
scaling_factor)
|
491
|
+
elif scaling_type == "dynamic":
|
492
|
+
rotary_emb = DynamicNTKScalingRotaryEmbedding(
|
493
|
+
head_size, rotary_dim, max_position, base, is_neox_style,
|
494
|
+
scaling_factor)
|
495
|
+
elif scaling_type == "yarn":
|
496
|
+
original_max_position = rope_scaling[
|
497
|
+
"original_max_position_embeddings"]
|
498
|
+
extra_kwargs = {
|
499
|
+
k: v
|
500
|
+
for k, v in rope_scaling.items()
|
501
|
+
if k in ("extrapolation_factor", "attn_factor", "beta_fast",
|
502
|
+
"beta_slow")
|
503
|
+
}
|
504
|
+
rotary_emb = YaRNScalingRotaryEmbedding(head_size, rotary_dim,
|
505
|
+
original_max_position,
|
506
|
+
base, is_neox_style,
|
507
|
+
scaling_factor,
|
508
|
+
**extra_kwargs)
|
509
|
+
elif scaling_type == "su":
|
510
|
+
short_factor = rope_scaling["short_factor"]
|
511
|
+
long_factor = rope_scaling["long_factor"]
|
512
|
+
original_max_position = rope_scaling[
|
513
|
+
"original_max_position_embeddings"]
|
514
|
+
extra_kwargs = {
|
515
|
+
k: v
|
516
|
+
for k, v in rope_scaling.items()
|
517
|
+
if k in ("short_mscale", "long_mscale")
|
518
|
+
}
|
519
|
+
rotary_emb = Phi3SuScaledRotaryEmbedding(
|
520
|
+
head_size, rotary_dim, max_position, original_max_position,
|
521
|
+
base, is_neox_style, short_factor, long_factor, **extra_kwargs)
|
522
|
+
else:
|
523
|
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
524
|
+
_ROPE_DICT[key] = rotary_emb
|
525
|
+
return rotary_emb
|