vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
vllm/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
1
|
+
"""vLLM: a high-throughput and memory-efficient inference engine for LLMs"""
|
2
|
+
import vllm_npu
|
3
|
+
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
|
4
|
+
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
5
|
+
from vllm.engine.llm_engine import LLMEngine
|
6
|
+
from vllm.entrypoints.llm import LLM
|
7
|
+
from vllm.executor.ray_utils import initialize_ray_cluster
|
8
|
+
from vllm.model_executor.models import ModelRegistry
|
9
|
+
from vllm.outputs import CompletionOutput, RequestOutput
|
10
|
+
from vllm.sampling_params import SamplingParams
|
11
|
+
__version__ = "0.4.2"
|
12
|
+
__all__ = [
|
13
|
+
"LLM",
|
14
|
+
"ModelRegistry",
|
15
|
+
"SamplingParams",
|
16
|
+
"RequestOutput",
|
17
|
+
"CompletionOutput",
|
18
|
+
"LLMEngine",
|
19
|
+
"EngineArgs",
|
20
|
+
"AsyncLLMEngine",
|
21
|
+
"AsyncEngineArgs",
|
22
|
+
"initialize_ray_cluster",
|
23
|
+
]
|
vllm/_custom_ops.py
ADDED
@@ -0,0 +1,251 @@
|
|
1
|
+
from typing import Dict, Optional, Tuple
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
try:
|
6
|
+
from vllm._C import cache_ops as vllm_cache_ops
|
7
|
+
from vllm._C import ops as vllm_ops
|
8
|
+
except ImportError:
|
9
|
+
pass
|
10
|
+
|
11
|
+
|
12
|
+
# activation ops
|
13
|
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
14
|
+
vllm_ops.silu_and_mul(out, x)
|
15
|
+
|
16
|
+
|
17
|
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
18
|
+
vllm_ops.gelu_and_mul(out, x)
|
19
|
+
|
20
|
+
|
21
|
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
22
|
+
vllm_ops.gelu_tanh_and_mul(out, x)
|
23
|
+
|
24
|
+
|
25
|
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
26
|
+
vllm_ops.gelu_fast(out, x)
|
27
|
+
|
28
|
+
|
29
|
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
30
|
+
vllm_ops.gelu_new(out, x)
|
31
|
+
|
32
|
+
|
33
|
+
# page attention ops
|
34
|
+
def paged_attention_v1(
|
35
|
+
out: torch.Tensor,
|
36
|
+
query: torch.Tensor,
|
37
|
+
key_cache: torch.Tensor,
|
38
|
+
value_cache: torch.Tensor,
|
39
|
+
num_kv_heads: int,
|
40
|
+
scale: float,
|
41
|
+
block_tables: torch.Tensor,
|
42
|
+
seq_lens: torch.Tensor,
|
43
|
+
block_size: int,
|
44
|
+
max_seq_len: int,
|
45
|
+
alibi_slopes: Optional[torch.Tensor],
|
46
|
+
kv_cache_dtype: str,
|
47
|
+
kv_scale: float,
|
48
|
+
) -> None:
|
49
|
+
vllm_ops.paged_attention_v1(out, query, key_cache, value_cache,
|
50
|
+
num_kv_heads, scale, block_tables, seq_lens,
|
51
|
+
block_size, max_seq_len, alibi_slopes,
|
52
|
+
kv_cache_dtype, kv_scale)
|
53
|
+
|
54
|
+
|
55
|
+
def paged_attention_v2(
|
56
|
+
out: torch.Tensor,
|
57
|
+
exp_sum: torch.Tensor,
|
58
|
+
max_logits: torch.Tensor,
|
59
|
+
tmp_out: torch.Tensor,
|
60
|
+
query: torch.Tensor,
|
61
|
+
key_cache: torch.Tensor,
|
62
|
+
value_cache: torch.Tensor,
|
63
|
+
num_kv_heads: int,
|
64
|
+
scale: float,
|
65
|
+
block_tables: torch.Tensor,
|
66
|
+
seq_lens: torch.Tensor,
|
67
|
+
block_size: int,
|
68
|
+
max_seq_len: int,
|
69
|
+
alibi_slopes: Optional[torch.Tensor],
|
70
|
+
kv_cache_dtype: str,
|
71
|
+
kv_scale: float,
|
72
|
+
) -> None:
|
73
|
+
vllm_ops.paged_attention_v2(out, exp_sum, max_logits, tmp_out, query,
|
74
|
+
key_cache, value_cache, num_kv_heads, scale,
|
75
|
+
block_tables, seq_lens, block_size,
|
76
|
+
max_seq_len, alibi_slopes, kv_cache_dtype,
|
77
|
+
kv_scale)
|
78
|
+
|
79
|
+
|
80
|
+
# pos encoding ops
|
81
|
+
def rotary_embedding(
|
82
|
+
positions: torch.Tensor,
|
83
|
+
query: torch.Tensor,
|
84
|
+
key: torch.Tensor,
|
85
|
+
head_size: int,
|
86
|
+
cos_sin_cache: torch.Tensor,
|
87
|
+
is_neox: bool,
|
88
|
+
) -> None:
|
89
|
+
vllm_ops.rotary_embedding(positions, query, key, head_size, cos_sin_cache,
|
90
|
+
is_neox)
|
91
|
+
|
92
|
+
|
93
|
+
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
|
94
|
+
key: torch.Tensor, head_size: int,
|
95
|
+
cos_sin_cache: torch.Tensor, is_neox: bool,
|
96
|
+
rot_dim: int,
|
97
|
+
cos_sin_cache_offsets: torch.Tensor) -> None:
|
98
|
+
vllm_ops.batched_rotary_embedding(positions, query, key, head_size,
|
99
|
+
cos_sin_cache, is_neox, rot_dim,
|
100
|
+
cos_sin_cache_offsets)
|
101
|
+
|
102
|
+
|
103
|
+
# layer norm ops
|
104
|
+
def rms_norm(out: torch.Tensor, input: torch.Tensor, weight: torch.Tensor,
|
105
|
+
epsilon: float) -> None:
|
106
|
+
vllm_ops.rms_norm(out, input, weight, epsilon)
|
107
|
+
|
108
|
+
|
109
|
+
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
|
110
|
+
weight: torch.Tensor, epsilon: float) -> None:
|
111
|
+
vllm_ops.fused_add_rms_norm(input, residual, weight, epsilon)
|
112
|
+
|
113
|
+
|
114
|
+
# quantization ops
|
115
|
+
# awq
|
116
|
+
def awq_dequantize(qweight: torch.Tensor, scales: torch.Tensor,
|
117
|
+
zeros: torch.Tensor, split_k_iters: int, thx: int,
|
118
|
+
thy: int) -> torch.Tensor:
|
119
|
+
return vllm_ops.awq_dequantize(qweight, scales, zeros, split_k_iters, thx,
|
120
|
+
thy)
|
121
|
+
|
122
|
+
|
123
|
+
def awq_gemm(input: torch.Tensor, qweight: torch.Tensor, qzeros: torch.Tensor,
|
124
|
+
scales: torch.Tensor, split_k_iters: int) -> torch.Tensor:
|
125
|
+
return vllm_ops.awq_gemm(input, qweight, qzeros, scales, split_k_iters)
|
126
|
+
|
127
|
+
|
128
|
+
# gptq
|
129
|
+
def gptq_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
130
|
+
b_gptq_qzeros: torch.Tensor, b_gptq_scales: torch.Tensor,
|
131
|
+
b_g_idx: torch.Tensor, use_exllama: bool,
|
132
|
+
bit: int) -> torch.Tensor:
|
133
|
+
return vllm_ops.gptq_gemm(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
|
134
|
+
b_g_idx, use_exllama, bit)
|
135
|
+
|
136
|
+
|
137
|
+
def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor,
|
138
|
+
bit: int) -> None:
|
139
|
+
vllm_ops.gptq_shuffle(q_weight, q_perm, bit)
|
140
|
+
|
141
|
+
|
142
|
+
# squeezellm
|
143
|
+
def squeezellm_gemm(vec: torch.Tensor, mat: torch.Tensor, mul: torch.Tensor,
|
144
|
+
lookup_table: torch.Tensor) -> None:
|
145
|
+
vllm_ops.squeezellm_gemm(vec, mat, mul, lookup_table)
|
146
|
+
|
147
|
+
|
148
|
+
# marlin
|
149
|
+
def marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
150
|
+
b_scales: torch.Tensor, workspace: torch.Tensor, size_m: int,
|
151
|
+
size_n: int, size_k: int) -> torch.Tensor:
|
152
|
+
return vllm_ops.marlin_gemm(a, b_q_weight, b_scales, workspace, size_m,
|
153
|
+
size_n, size_k)
|
154
|
+
|
155
|
+
|
156
|
+
# aqlm
|
157
|
+
def aqlm_gemm(input: torch.Tensor, codes: torch.Tensor,
|
158
|
+
codebooks: torch.Tensor, scales: torch.Tensor,
|
159
|
+
codebook_partition_sizes: torch.Tensor,
|
160
|
+
bias: Optional[torch.Tensor]) -> torch.Tensor:
|
161
|
+
return vllm_ops.aqlm_gemm(input, codes, codebooks, scales,
|
162
|
+
codebook_partition_sizes, bias)
|
163
|
+
|
164
|
+
|
165
|
+
def aqlm_dequant(codes: torch.Tensor, codebooks: torch.Tensor,
|
166
|
+
codebook_partition_sizes: torch.Tensor) -> torch.Tensor:
|
167
|
+
return vllm_ops.aqlm_dequant(codes, codebooks, codebook_partition_sizes)
|
168
|
+
|
169
|
+
|
170
|
+
# gptq_marlin
|
171
|
+
def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor,
|
172
|
+
size_k: int, size_n: int,
|
173
|
+
num_bits: int) -> torch.Tensor:
|
174
|
+
return vllm_ops.gptq_marlin_repack(b_q_weight, perm, size_k, size_n,
|
175
|
+
num_bits)
|
176
|
+
|
177
|
+
|
178
|
+
def gptq_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor,
|
179
|
+
b_scales: torch.Tensor, g_idx: torch.Tensor,
|
180
|
+
perm: torch.Tensor, workspace: torch.Tensor,
|
181
|
+
num_bits: int, size_m: int, size_n: int, size_k: int,
|
182
|
+
is_k_full: bool) -> torch.Tensor:
|
183
|
+
return vllm_ops.gptq_marlin_gemm(a, b_q_weight, b_scales, g_idx, perm,
|
184
|
+
workspace, num_bits, size_m, size_n,
|
185
|
+
size_k, is_k_full)
|
186
|
+
|
187
|
+
|
188
|
+
# fp8
|
189
|
+
def scaled_fp8_quant(
|
190
|
+
input: torch.Tensor,
|
191
|
+
scale: Optional[torch.Tensor] = None,
|
192
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
193
|
+
output = torch.empty_like(input, dtype=torch.float8_e4m3fn)
|
194
|
+
if scale is None:
|
195
|
+
scale = torch.zeros(1, device=input.device, dtype=torch.float32)
|
196
|
+
vllm_ops.dynamic_scaled_fp8_quant(output, input, scale)
|
197
|
+
else:
|
198
|
+
vllm_ops.static_scaled_fp8_quant(output, input, scale)
|
199
|
+
return output, scale
|
200
|
+
|
201
|
+
|
202
|
+
# moe
|
203
|
+
def moe_align_block_size(topk_ids: torch.Tensor, num_experts: int,
|
204
|
+
block_size: int, sorted_token_ids: torch.Tensor,
|
205
|
+
experts_ids: torch.Tensor,
|
206
|
+
num_tokens_post_pad: torch.Tensor) -> None:
|
207
|
+
vllm_ops.moe_align_block_size(topk_ids, num_experts, block_size,
|
208
|
+
sorted_token_ids, experts_ids,
|
209
|
+
num_tokens_post_pad)
|
210
|
+
|
211
|
+
|
212
|
+
def reshape_and_cache(
|
213
|
+
key: torch.Tensor,
|
214
|
+
value: torch.Tensor,
|
215
|
+
key_cache: torch.Tensor,
|
216
|
+
value_cache: torch.Tensor,
|
217
|
+
slot_mapping: torch.Tensor,
|
218
|
+
kv_cache_dtype: str,
|
219
|
+
kv_scale: float,
|
220
|
+
) -> None:
|
221
|
+
vllm_cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
|
222
|
+
slot_mapping, kv_cache_dtype, kv_scale)
|
223
|
+
|
224
|
+
|
225
|
+
def reshape_and_cache_flash(
|
226
|
+
key: torch.Tensor,
|
227
|
+
value: torch.Tensor,
|
228
|
+
key_cache: torch.Tensor,
|
229
|
+
value_cache: torch.Tensor,
|
230
|
+
slot_mapping: torch.Tensor,
|
231
|
+
kv_cache_dtype: str,
|
232
|
+
) -> None:
|
233
|
+
vllm_cache_ops.reshape_and_cache_flash(key, value, key_cache, value_cache,
|
234
|
+
slot_mapping, kv_cache_dtype)
|
235
|
+
|
236
|
+
|
237
|
+
def copy_blocks(key_caches: torch.Tensor, value_caches: torch.Tensor,
|
238
|
+
block_mapping: torch.Tensor) -> None:
|
239
|
+
vllm_cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
|
240
|
+
|
241
|
+
|
242
|
+
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
|
243
|
+
block_mapping: Dict[int, int]) -> None:
|
244
|
+
vllm_cache_ops.swap_blocks(src, dst, block_mapping)
|
245
|
+
|
246
|
+
|
247
|
+
def convert_fp8(output: torch.Tensor, input: torch.Tensor) -> None:
|
248
|
+
vllm_cache_ops.convert_fp8(output, input)
|
249
|
+
|
250
|
+
|
251
|
+
#TODO: cuda_utils, custom_ar
|
@@ -0,0 +1,13 @@
|
|
1
|
+
from vllm.attention.backends.abstract import (AttentionBackend,
|
2
|
+
AttentionMetadata,
|
3
|
+
AttentionMetadataPerStage)
|
4
|
+
from vllm.attention.layer import Attention
|
5
|
+
from vllm.attention.selector import get_attn_backend
|
6
|
+
|
7
|
+
__all__ = [
|
8
|
+
"AttentionBackend",
|
9
|
+
"AttentionMetadata",
|
10
|
+
"Attention",
|
11
|
+
"get_attn_backend",
|
12
|
+
"AttentionMetadataPerStage",
|
13
|
+
]
|
File without changes
|
@@ -0,0 +1,127 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
from dataclasses import dataclass, fields
|
3
|
+
from typing import (Any, Dict, Generic, List, Optional, Set, Tuple, Type,
|
4
|
+
TypeVar)
|
5
|
+
|
6
|
+
import torch
|
7
|
+
|
8
|
+
|
9
|
+
class AttentionBackend(ABC):
|
10
|
+
"""Abstract class for attention backends."""
|
11
|
+
|
12
|
+
@staticmethod
|
13
|
+
@abstractmethod
|
14
|
+
def get_impl_cls() -> Type["AttentionImpl"]:
|
15
|
+
raise NotImplementedError
|
16
|
+
|
17
|
+
@staticmethod
|
18
|
+
@abstractmethod
|
19
|
+
def make_metadata(*args, **kwargs) -> "AttentionMetadataPerStage":
|
20
|
+
raise NotImplementedError
|
21
|
+
|
22
|
+
@staticmethod
|
23
|
+
@abstractmethod
|
24
|
+
def get_kv_cache_shape(
|
25
|
+
num_blocks: int,
|
26
|
+
block_size: int,
|
27
|
+
num_kv_heads: int,
|
28
|
+
head_size: int,
|
29
|
+
) -> Tuple[int, ...]:
|
30
|
+
raise NotImplementedError
|
31
|
+
|
32
|
+
@staticmethod
|
33
|
+
@abstractmethod
|
34
|
+
def swap_blocks(
|
35
|
+
src_kv_cache: torch.Tensor,
|
36
|
+
dst_kv_cache: torch.Tensor,
|
37
|
+
src_to_dst: Dict[int, int],
|
38
|
+
) -> None:
|
39
|
+
raise NotImplementedError
|
40
|
+
|
41
|
+
@staticmethod
|
42
|
+
@abstractmethod
|
43
|
+
def copy_blocks(
|
44
|
+
kv_caches: List[torch.Tensor],
|
45
|
+
src_to_dists: Dict[int, List[int]],
|
46
|
+
) -> None:
|
47
|
+
raise NotImplementedError
|
48
|
+
|
49
|
+
|
50
|
+
@dataclass
|
51
|
+
class AttentionMetadataPerStage:
|
52
|
+
"""Attention metadata for a specific stage. I.e., prefill or decode."""
|
53
|
+
|
54
|
+
def asdict_zerocopy(self,
|
55
|
+
skip_fields: Optional[Set[str]] = None
|
56
|
+
) -> Dict[str, Any]:
|
57
|
+
"""Similar to dataclasses.asdict, but avoids deepcopying."""
|
58
|
+
if skip_fields is None:
|
59
|
+
skip_fields = set()
|
60
|
+
# Note that if we add dataclasses as fields, they will need
|
61
|
+
# similar handling.
|
62
|
+
return {
|
63
|
+
field.name: getattr(self, field.name)
|
64
|
+
for field in fields(self) if field.name not in skip_fields
|
65
|
+
}
|
66
|
+
|
67
|
+
|
68
|
+
T = TypeVar("T", bound=AttentionMetadataPerStage)
|
69
|
+
|
70
|
+
|
71
|
+
@dataclass
|
72
|
+
class AttentionMetadata(Generic[T]):
|
73
|
+
"""Attention metadata for prefill and decode batched together."""
|
74
|
+
# Total number of prefill requests.
|
75
|
+
num_prefills: int
|
76
|
+
# Number of prefill tokens.
|
77
|
+
num_prefill_tokens: int
|
78
|
+
# Number of decode tokens. Note that it is equivalent to the number of
|
79
|
+
# decode requests.
|
80
|
+
num_decode_tokens: int
|
81
|
+
# The attention metadata for prefill requests in a batch.
|
82
|
+
# None if there's no prefill requests in a batch.
|
83
|
+
prefill_metadata: Optional[T]
|
84
|
+
# The attention metadata for decode requests in a batch.
|
85
|
+
# None if there's no decode requests in a batch.
|
86
|
+
decode_metadata: Optional[T]
|
87
|
+
# (num_tokens,). The indices of the token slots that input tokens will be
|
88
|
+
# stored into. E.g., if `slot_mapping` is [35, 2, 17] and the block size
|
89
|
+
# is 16, the three tokens are stored in the 3rd slot in block 2, 2nd slot
|
90
|
+
# in block 0, and 1st slot in block 1, respectively.
|
91
|
+
slot_mapping: torch.Tensor
|
92
|
+
# The kv cache's data type.
|
93
|
+
kv_cache_dtype: str
|
94
|
+
|
95
|
+
def __post_init__(self):
|
96
|
+
if self.num_prefill_tokens > 0:
|
97
|
+
assert self.num_prefills > 0
|
98
|
+
assert self.prefill_metadata is not None
|
99
|
+
if self.num_decode_tokens > 0:
|
100
|
+
assert self.decode_metadata is not None
|
101
|
+
|
102
|
+
|
103
|
+
class AttentionImpl(ABC):
|
104
|
+
|
105
|
+
@abstractmethod
|
106
|
+
def __init__(
|
107
|
+
self,
|
108
|
+
num_heads: int,
|
109
|
+
head_size: int,
|
110
|
+
scale: float,
|
111
|
+
num_kv_heads: Optional[int] = None,
|
112
|
+
alibi_slopes: Optional[List[float]] = None,
|
113
|
+
sliding_window: Optional[int] = None,
|
114
|
+
) -> None:
|
115
|
+
raise NotImplementedError
|
116
|
+
|
117
|
+
@abstractmethod
|
118
|
+
def forward(
|
119
|
+
self,
|
120
|
+
query: torch.Tensor,
|
121
|
+
key: torch.Tensor,
|
122
|
+
value: torch.Tensor,
|
123
|
+
kv_cache: torch.Tensor,
|
124
|
+
attn_metadata: AttentionMetadata,
|
125
|
+
kv_scale: float,
|
126
|
+
) -> torch.Tensor:
|
127
|
+
raise NotImplementedError
|
@@ -0,0 +1,271 @@
|
|
1
|
+
"""Attention layer with Flash and PagedAttention.
|
2
|
+
|
3
|
+
NOTE(woosuk): At the moment, this file includes a lot of duplicated code from
|
4
|
+
XFormers backend. The duplicated code will be removed once we use flash-attn or
|
5
|
+
flashinfer for all the attention operations.
|
6
|
+
"""
|
7
|
+
from dataclasses import dataclass
|
8
|
+
from typing import Dict, List, Optional, Tuple, Type
|
9
|
+
|
10
|
+
import torch
|
11
|
+
from flash_attn import flash_attn_varlen_func
|
12
|
+
|
13
|
+
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
14
|
+
AttentionMetadata,
|
15
|
+
AttentionMetadataPerStage)
|
16
|
+
from vllm.attention.ops.paged_attn import (PagedAttention,
|
17
|
+
PagedAttentionMetadata)
|
18
|
+
|
19
|
+
|
20
|
+
class FlashAttentionBackend(AttentionBackend):
|
21
|
+
|
22
|
+
@staticmethod
|
23
|
+
def get_impl_cls() -> Type["FlashAttentionImpl"]:
|
24
|
+
return FlashAttentionImpl
|
25
|
+
|
26
|
+
@staticmethod
|
27
|
+
def make_metadata(*args, **kwargs) -> "FlashAttentionMetadata":
|
28
|
+
return FlashAttentionMetadata(*args, **kwargs)
|
29
|
+
|
30
|
+
@staticmethod
|
31
|
+
def get_kv_cache_shape(
|
32
|
+
num_blocks: int,
|
33
|
+
block_size: int,
|
34
|
+
num_kv_heads: int,
|
35
|
+
head_size: int,
|
36
|
+
) -> Tuple[int, ...]:
|
37
|
+
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
38
|
+
num_kv_heads, head_size)
|
39
|
+
|
40
|
+
@staticmethod
|
41
|
+
def swap_blocks(
|
42
|
+
src_kv_cache: torch.Tensor,
|
43
|
+
dst_kv_cache: torch.Tensor,
|
44
|
+
src_to_dst: Dict[int, int],
|
45
|
+
) -> None:
|
46
|
+
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
47
|
+
|
48
|
+
@staticmethod
|
49
|
+
def copy_blocks(
|
50
|
+
kv_caches: List[torch.Tensor],
|
51
|
+
src_to_dists: Dict[int, List[int]],
|
52
|
+
) -> None:
|
53
|
+
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
54
|
+
|
55
|
+
|
56
|
+
@dataclass
|
57
|
+
class FlashAttentionMetadata(AttentionMetadataPerStage,
|
58
|
+
PagedAttentionMetadata):
|
59
|
+
"""Metadata for FlashAttentionBackend.
|
60
|
+
|
61
|
+
NOTE: Any python object stored here is not updated when it is
|
62
|
+
cuda-graph replayed. If you have values that need to be changed
|
63
|
+
dynamically, it should be stored in tensor. The tensor has to be
|
64
|
+
updated from `CUDAGraphRunner.forward` API.
|
65
|
+
"""
|
66
|
+
# Currently, input sequences can only contain all prompts
|
67
|
+
# or all decoding. True if all sequences are prompts.
|
68
|
+
is_prompt: bool
|
69
|
+
# (batch_size,). The sequence length per sequence. Sequence length means
|
70
|
+
# the computed tokens + new tokens None if it is a decoding.
|
71
|
+
seq_lens: Optional[List[int]]
|
72
|
+
# seq_lens stored as a tensor.
|
73
|
+
seq_lens_tensor: Optional[torch.Tensor]
|
74
|
+
|
75
|
+
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
76
|
+
# |---------- N-1 iteration --------|
|
77
|
+
# |---------------- N iteration ---------------------|
|
78
|
+
# |- tokenA -|......................|-- newTokens ---|
|
79
|
+
# |---------- context_len ----------|
|
80
|
+
# |-------------------- seq_len ----------------------|
|
81
|
+
# |-- query_len ---|
|
82
|
+
|
83
|
+
# Maximum query length in the batch.
|
84
|
+
max_query_len: Optional[int]
|
85
|
+
# Maximum sequence length in the batch.
|
86
|
+
max_seq_len: Optional[int]
|
87
|
+
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
88
|
+
# the batch, used to index into subquery. E.g., if the subquery length
|
89
|
+
# is [4, 6], it is [0, 4, 10].
|
90
|
+
subquery_start_loc: Optional[torch.Tensor]
|
91
|
+
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
92
|
+
# the batch, used to index into sequence. E.g., if the sequence length is
|
93
|
+
# [4, 6], it is [0, 4, 10].
|
94
|
+
seq_start_loc: Optional[torch.Tensor]
|
95
|
+
# (batch_size,) A tensor of context lengths (tokens that are computed
|
96
|
+
# so far).
|
97
|
+
context_lens_tensor: Optional[torch.Tensor]
|
98
|
+
|
99
|
+
# Whether or not if cuda graph is enabled.
|
100
|
+
# Cuda-graph is currently enabled for decoding only.
|
101
|
+
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
102
|
+
use_cuda_graph: bool
|
103
|
+
|
104
|
+
|
105
|
+
class FlashAttentionImpl(AttentionImpl):
|
106
|
+
"""
|
107
|
+
If the input tensors contain prompt tokens, the layout is as follows:
|
108
|
+
|<--------------- num_prefill_tokens ----------------->|
|
109
|
+
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
110
|
+
|
111
|
+
Otherwise, the layout is as follows:
|
112
|
+
|<----------------- num_decode_tokens ------------------>|
|
113
|
+
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
114
|
+
|
115
|
+
Generation tokens can contain padding when cuda-graph is used.
|
116
|
+
Currently, prompt tokens don't contain any padding.
|
117
|
+
|
118
|
+
The prompts might have different lengths, while the generation tokens
|
119
|
+
always have length 1.
|
120
|
+
|
121
|
+
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
122
|
+
batched together in a flattened 1D query.
|
123
|
+
|
124
|
+
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
125
|
+
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
126
|
+
|
127
|
+
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
128
|
+
padding between prefill and decode tokens.
|
129
|
+
"""
|
130
|
+
|
131
|
+
def __init__(
|
132
|
+
self,
|
133
|
+
num_heads: int,
|
134
|
+
head_size: int,
|
135
|
+
scale: float,
|
136
|
+
num_kv_heads: Optional[int] = None,
|
137
|
+
alibi_slopes: Optional[List[float]] = None,
|
138
|
+
sliding_window: Optional[int] = None,
|
139
|
+
) -> None:
|
140
|
+
self.num_heads = num_heads
|
141
|
+
self.head_size = head_size
|
142
|
+
self.scale = float(scale)
|
143
|
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
144
|
+
self.sliding_window = ((sliding_window, sliding_window)
|
145
|
+
if sliding_window is not None else (-1, -1))
|
146
|
+
if alibi_slopes is not None:
|
147
|
+
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
148
|
+
self.alibi_slopes = alibi_slopes
|
149
|
+
|
150
|
+
assert self.num_heads % self.num_kv_heads == 0
|
151
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
152
|
+
|
153
|
+
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
154
|
+
if head_size not in suppored_head_sizes:
|
155
|
+
raise ValueError(
|
156
|
+
f"Head size {head_size} is not supported by PagedAttention. "
|
157
|
+
f"Supported head sizes are: {suppored_head_sizes}.")
|
158
|
+
|
159
|
+
def forward(
|
160
|
+
self,
|
161
|
+
query: torch.Tensor,
|
162
|
+
key: torch.Tensor,
|
163
|
+
value: torch.Tensor,
|
164
|
+
kv_cache: torch.Tensor,
|
165
|
+
attn_metadata: AttentionMetadata[FlashAttentionMetadata],
|
166
|
+
kv_scale: float,
|
167
|
+
) -> torch.Tensor:
|
168
|
+
"""Forward pass with FlashAttention and PagedAttention.
|
169
|
+
|
170
|
+
Args:
|
171
|
+
query: shape = [num_tokens, num_heads * head_size]
|
172
|
+
key: shape = [num_tokens, num_kv_heads * head_size]
|
173
|
+
value: shape = [num_tokens, num_kv_heads * head_size]
|
174
|
+
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
175
|
+
attn_metadata: Metadata for attention.
|
176
|
+
Returns:
|
177
|
+
shape = [num_tokens, num_heads * head_size]
|
178
|
+
"""
|
179
|
+
num_tokens, hidden_size = query.shape
|
180
|
+
# Reshape the query, key, and value tensors.
|
181
|
+
query = query.view(-1, self.num_heads, self.head_size)
|
182
|
+
key = key.view(-1, self.num_kv_heads, self.head_size)
|
183
|
+
value = value.view(-1, self.num_kv_heads, self.head_size)
|
184
|
+
|
185
|
+
if kv_cache is not None:
|
186
|
+
key_cache, value_cache = PagedAttention.split_kv_cache(
|
187
|
+
kv_cache, self.num_kv_heads, self.head_size)
|
188
|
+
|
189
|
+
# Reshape the input keys and values and store them in the cache.
|
190
|
+
# If kv_cache is not provided, the new key and value tensors are
|
191
|
+
# not cached. This happens during the initial memory profiling run.
|
192
|
+
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
193
|
+
value_cache,
|
194
|
+
attn_metadata.slot_mapping,
|
195
|
+
attn_metadata.kv_cache_dtype,
|
196
|
+
kv_scale)
|
197
|
+
|
198
|
+
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
199
|
+
num_decode_tokens = attn_metadata.num_decode_tokens
|
200
|
+
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
201
|
+
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
202
|
+
|
203
|
+
output = torch.empty_like(query)
|
204
|
+
# Query for decode. KV is not needed because it is already cached.
|
205
|
+
decode_query = query[num_prefill_tokens:]
|
206
|
+
# QKV for prefill.
|
207
|
+
query = query[:num_prefill_tokens]
|
208
|
+
key = key[:num_prefill_tokens]
|
209
|
+
value = value[:num_prefill_tokens]
|
210
|
+
|
211
|
+
assert query.shape[0] == num_prefill_tokens
|
212
|
+
assert decode_query.shape[0] == num_decode_tokens
|
213
|
+
|
214
|
+
if prefill_meta := attn_metadata.prefill_metadata:
|
215
|
+
# Prompt run.
|
216
|
+
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
|
217
|
+
# normal attention
|
218
|
+
# When block_tables are not filled, it means q and k are the
|
219
|
+
# prompt, and they have the same length.
|
220
|
+
out = flash_attn_varlen_func(
|
221
|
+
q=query,
|
222
|
+
k=key,
|
223
|
+
v=value,
|
224
|
+
cu_seqlens_q=prefill_meta.seq_start_loc,
|
225
|
+
cu_seqlens_k=prefill_meta.seq_start_loc,
|
226
|
+
max_seqlen_q=prefill_meta.max_seq_len,
|
227
|
+
max_seqlen_k=prefill_meta.max_seq_len,
|
228
|
+
softmax_scale=self.scale,
|
229
|
+
causal=True,
|
230
|
+
window_size=self.sliding_window,
|
231
|
+
alibi_slopes=self.alibi_slopes,
|
232
|
+
)
|
233
|
+
assert output[:num_prefill_tokens].shape == out.shape
|
234
|
+
output[:num_prefill_tokens] = out
|
235
|
+
else:
|
236
|
+
# prefix-enabled attention
|
237
|
+
# TODO(Hai) this triton kernel has regression issue (broke) to
|
238
|
+
# deal with different data types between KV and FP8 KV cache,
|
239
|
+
# to be addressed separately.
|
240
|
+
output[:num_prefill_tokens] = PagedAttention.forward_prefix(
|
241
|
+
query,
|
242
|
+
key,
|
243
|
+
value,
|
244
|
+
key_cache,
|
245
|
+
value_cache,
|
246
|
+
prefill_meta.block_tables,
|
247
|
+
prefill_meta.subquery_start_loc,
|
248
|
+
prefill_meta.seq_lens_tensor,
|
249
|
+
prefill_meta.context_lens_tensor,
|
250
|
+
prefill_meta.max_query_len,
|
251
|
+
self.alibi_slopes,
|
252
|
+
self.sliding_window[0],
|
253
|
+
)
|
254
|
+
if decode_meta := attn_metadata.decode_metadata:
|
255
|
+
# Decoding run.
|
256
|
+
output[num_prefill_tokens:] = PagedAttention.forward_decode(
|
257
|
+
decode_query,
|
258
|
+
key_cache,
|
259
|
+
value_cache,
|
260
|
+
decode_meta.block_tables,
|
261
|
+
decode_meta.seq_lens_tensor,
|
262
|
+
decode_meta.max_seq_len,
|
263
|
+
attn_metadata.kv_cache_dtype,
|
264
|
+
self.num_kv_heads,
|
265
|
+
self.scale,
|
266
|
+
self.alibi_slopes,
|
267
|
+
kv_scale,
|
268
|
+
)
|
269
|
+
|
270
|
+
# Reshape the output tensor.
|
271
|
+
return output.view(num_tokens, hidden_size)
|