vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,203 @@
|
|
1
|
+
import copy
|
2
|
+
from typing import List, Tuple
|
3
|
+
|
4
|
+
import torch
|
5
|
+
|
6
|
+
from vllm.sequence import (ExecuteModelRequest, SamplerOutput,
|
7
|
+
SequenceGroupMetadata)
|
8
|
+
from vllm.spec_decode.interfaces import SpeculativeProposals
|
9
|
+
from vllm.spec_decode.top1_proposer import Top1Proposer
|
10
|
+
from vllm.worker.worker import Worker
|
11
|
+
|
12
|
+
|
13
|
+
class MultiStepWorker(Worker):
|
14
|
+
"""The MultiStepWorker is equivalent to a Worker except that it allows
|
15
|
+
multiple forward passes in a single call, assuming the scheduler has
|
16
|
+
allocated enough space to store the additional KV. This reduces overhead
|
17
|
+
by invoking the scheduler less.
|
18
|
+
|
19
|
+
The MultiStepWorker does not support cache swap operations, or beam search.
|
20
|
+
Cache swap operations do not require large modifications. On the other hand,
|
21
|
+
beam search requires memory allocations during sequence forks and thus
|
22
|
+
requires more thought for MultiStepWorker support.
|
23
|
+
"""
|
24
|
+
|
25
|
+
def __init__(self, *args, **kwargs):
|
26
|
+
super().__init__(*args, **kwargs)
|
27
|
+
|
28
|
+
# Lazy initialization list.
|
29
|
+
self._proposer: Top1Proposer
|
30
|
+
|
31
|
+
def init_device(self):
|
32
|
+
super().init_device()
|
33
|
+
|
34
|
+
self._proposer = Top1Proposer(
|
35
|
+
self,
|
36
|
+
self.device,
|
37
|
+
self.vocab_size,
|
38
|
+
max_proposal_len=self.max_model_len,
|
39
|
+
)
|
40
|
+
|
41
|
+
def set_include_gpu_probs_tensor(self):
|
42
|
+
# Need include_gpu_probs_tensor for multi_step_worker
|
43
|
+
self.model_runner.model.sampler.include_gpu_probs_tensor = True
|
44
|
+
|
45
|
+
@torch.inference_mode()
|
46
|
+
def sampler_output(
|
47
|
+
self,
|
48
|
+
execute_model_req: ExecuteModelRequest,
|
49
|
+
sample_len: int,
|
50
|
+
) -> Tuple[List[SamplerOutput], bool]:
|
51
|
+
"""Run the model forward pass sample_len times. Returns the list of
|
52
|
+
sampler output, one per model forward pass, along with indicator of
|
53
|
+
whether torch tensor in sampler output need to be transposed in latter
|
54
|
+
sampler_output_to_torch logic.
|
55
|
+
|
56
|
+
For multi step worker, this indicator shall be True.
|
57
|
+
"""
|
58
|
+
self._raise_if_unsupported(execute_model_req)
|
59
|
+
|
60
|
+
# Shallow copy input data so modifications (such as appending tokens)
|
61
|
+
# do not cause side-effects.
|
62
|
+
copied_seq_group_metadata_list = self._shallow_copy_inputs(
|
63
|
+
execute_model_req.seq_group_metadata_list)
|
64
|
+
copied_execute_model_req = execute_model_req.clone(
|
65
|
+
copied_seq_group_metadata_list)
|
66
|
+
|
67
|
+
# Assert enough KV space for sample_len tokens per sequence.
|
68
|
+
self._assert_enough_kv_space(execute_model_req.seq_group_metadata_list,
|
69
|
+
sample_len)
|
70
|
+
|
71
|
+
# Run model sample_len times.
|
72
|
+
model_outputs = []
|
73
|
+
for _ in range(sample_len):
|
74
|
+
model_output = super().execute_model(
|
75
|
+
execute_model_req=copied_execute_model_req)
|
76
|
+
assert (len(model_output) == 1
|
77
|
+
), "composing multistep workers not supported"
|
78
|
+
model_output = model_output[0]
|
79
|
+
|
80
|
+
self._append_new_tokens(model_output,
|
81
|
+
copied_seq_group_metadata_list)
|
82
|
+
model_outputs.append(model_output)
|
83
|
+
|
84
|
+
return model_outputs, True
|
85
|
+
|
86
|
+
def get_spec_proposals(
|
87
|
+
self,
|
88
|
+
execute_model_req: ExecuteModelRequest,
|
89
|
+
) -> SpeculativeProposals:
|
90
|
+
"""Produce speculations given an input batch of sequences. The number of
|
91
|
+
speculative tokens per sequence is determined by max_proposal_len.
|
92
|
+
"""
|
93
|
+
|
94
|
+
return self._proposer.get_proposals(execute_model_req)
|
95
|
+
|
96
|
+
def _append_new_tokens(
|
97
|
+
self, model_output: SamplerOutput,
|
98
|
+
seq_group_metadata_list: SequenceGroupMetadata) -> None:
|
99
|
+
"""Given model output from a single run, append the tokens to the
|
100
|
+
sequences. This is normally done outside of the worker, but it is
|
101
|
+
required if the worker is to perform multiple forward passes.
|
102
|
+
"""
|
103
|
+
for seq_group_metadata, sequence_group_outputs in zip(
|
104
|
+
seq_group_metadata_list, model_output):
|
105
|
+
seq_group_metadata.is_prompt = False
|
106
|
+
|
107
|
+
for seq_output in sequence_group_outputs.samples:
|
108
|
+
# NOTE: Beam search is not supported, so we can assume that
|
109
|
+
# parent_seq_id == seq_id.
|
110
|
+
seq = seq_group_metadata.seq_data[seq_output.parent_seq_id]
|
111
|
+
|
112
|
+
token_id = seq_output.output_token
|
113
|
+
token_logprob = seq_output.logprobs[token_id]
|
114
|
+
|
115
|
+
seq.append_token_id(token_id, token_logprob.logprob)
|
116
|
+
|
117
|
+
def _shallow_copy_inputs(
|
118
|
+
self, seq_group_metadata_list: List[SequenceGroupMetadata]
|
119
|
+
) -> List[SequenceGroupMetadata]:
|
120
|
+
"""Copy input data structures to remove side-effects when input data
|
121
|
+
structures are shared with other modules.
|
122
|
+
|
123
|
+
Helpful when the vLLM scheduler runs in the same process as the worker.
|
124
|
+
The alternative is deep-copying (or other form of deep copy); this has
|
125
|
+
performance downsides.
|
126
|
+
"""
|
127
|
+
|
128
|
+
# Shallow-copy the list of SequenceGroupMetadata. This allows us to
|
129
|
+
# append tokens and change is_prompt without external side-effects.
|
130
|
+
new_seq_group_metadata_list = []
|
131
|
+
|
132
|
+
for old_seq_group_metadata in seq_group_metadata_list:
|
133
|
+
# We must shallow-copy seq_group_metadata as is_prompt could change.
|
134
|
+
seq_group_metadata = copy.copy(old_seq_group_metadata)
|
135
|
+
new_seq_group_metadata_list.append(seq_group_metadata)
|
136
|
+
|
137
|
+
# We must shallow-copy seq_data as we will append token ids
|
138
|
+
new_seq_data = {}
|
139
|
+
for seq_id, old_seq_data in seq_group_metadata.seq_data.items():
|
140
|
+
new_seq_data[seq_id] = copy.copy(old_seq_data)
|
141
|
+
new_seq_data[
|
142
|
+
seq_id].output_token_ids = old_seq_data.output_token_ids[:]
|
143
|
+
|
144
|
+
seq_group_metadata.seq_data = new_seq_data
|
145
|
+
|
146
|
+
return new_seq_group_metadata_list
|
147
|
+
|
148
|
+
def _assert_enough_kv_space(
|
149
|
+
self, seq_group_metadata_list: List[SequenceGroupMetadata],
|
150
|
+
num_steps: int) -> None:
|
151
|
+
"""Assert there are enough physical blocks per sequence to store the
|
152
|
+
current KV plus additional KV from num_steps tokens.
|
153
|
+
"""
|
154
|
+
assert self.model_runner.block_size is not None
|
155
|
+
for seq_group_metadata in seq_group_metadata_list:
|
156
|
+
# Only one seq_id is guaranteed because there is no beam search.
|
157
|
+
seq_id = list(seq_group_metadata.seq_data.keys())[0]
|
158
|
+
seq = seq_group_metadata.seq_data[seq_id]
|
159
|
+
|
160
|
+
# After num_steps, the seq len will be the current seq len
|
161
|
+
# plus one token per step.
|
162
|
+
final_seq_len = seq.get_len() + num_steps
|
163
|
+
|
164
|
+
# We will have final_seq_len - 1 KV because vLLM saves KV for a
|
165
|
+
# token in the iteration after the token was generated.
|
166
|
+
required_num_kv_slots = final_seq_len - 1
|
167
|
+
|
168
|
+
# The allocated number of kv slots is the number of allocated blocks
|
169
|
+
# times the number of slots of block.
|
170
|
+
number_physical_blocks = len(
|
171
|
+
seq_group_metadata.block_tables[seq_id])
|
172
|
+
allocated_kv_slots = (number_physical_blocks *
|
173
|
+
self.model_runner.block_size)
|
174
|
+
|
175
|
+
if required_num_kv_slots > allocated_kv_slots:
|
176
|
+
request_id = seq_group_metadata.request_id
|
177
|
+
raise ValueError(
|
178
|
+
"The worker attempted to run "
|
179
|
+
f"{num_steps} times but found insufficient KV space for "
|
180
|
+
f"{request_id=} {seq_id=}. ({allocated_kv_slots=} "
|
181
|
+
f"{required_num_kv_slots=}).")
|
182
|
+
|
183
|
+
def _raise_if_unsupported(
|
184
|
+
self,
|
185
|
+
execute_model_req: ExecuteModelRequest,
|
186
|
+
) -> None:
|
187
|
+
"""MultiStepWorker does not yet implement support for cache swap
|
188
|
+
operations or beam search.
|
189
|
+
"""
|
190
|
+
if any([
|
191
|
+
execute_model_req.blocks_to_swap_in,
|
192
|
+
execute_model_req.blocks_to_swap_out,
|
193
|
+
execute_model_req.blocks_to_copy
|
194
|
+
]):
|
195
|
+
raise NotImplementedError(
|
196
|
+
"MultiStepWorker does not support cache operations")
|
197
|
+
|
198
|
+
if any(
|
199
|
+
len(seq_group_metadata.seq_data.keys()) != 1
|
200
|
+
for seq_group_metadata in
|
201
|
+
execute_model_req.seq_group_metadata_list):
|
202
|
+
raise NotImplementedError(
|
203
|
+
"MultiStepWorker does not support beam search.")
|
@@ -0,0 +1,176 @@
|
|
1
|
+
from typing import List, Optional, Tuple
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
6
|
+
from vllm.spec_decode.interfaces import SpeculativeProposals
|
7
|
+
from vllm.spec_decode.top1_proposer import Top1Proposer
|
8
|
+
from vllm.worker.worker_base import LoraNotSupportedWorkerBase
|
9
|
+
|
10
|
+
|
11
|
+
class NGramWorker(LoraNotSupportedWorkerBase):
|
12
|
+
"""NGramWorker provides a light drafter without need for model.
|
13
|
+
|
14
|
+
Current NGramWorker only implement prompt lookup decoding,
|
15
|
+
and in future we may also do RAG type drafter and other scenerios
|
16
|
+
which don't rely on LLM model to give proposals.
|
17
|
+
"""
|
18
|
+
|
19
|
+
def __init__(self, *args, **kwargs):
|
20
|
+
# Get local_rank/vocab_size from kwargs attribute
|
21
|
+
self.local_rank = kwargs["local_rank"]
|
22
|
+
self.vocab_size = kwargs["model_config"].get_vocab_size()
|
23
|
+
|
24
|
+
# Lazy initialization list.
|
25
|
+
self._proposer: Top1Proposer
|
26
|
+
|
27
|
+
def set_ngram_window_size(self, ngram_prompt_lookup_min: int,
|
28
|
+
ngram_prompt_lookup_max: int):
|
29
|
+
# Search valid candidate window between
|
30
|
+
# ngram_prompt_lookup_min/ngram_prompt_lookup_max
|
31
|
+
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max
|
32
|
+
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min
|
33
|
+
|
34
|
+
def init_device(self):
|
35
|
+
self.device = torch.device(f"cuda:{self.local_rank}")
|
36
|
+
self.load_model = lambda *args, **kwargs: None
|
37
|
+
|
38
|
+
# Current only support Top1Proposer
|
39
|
+
self._proposer = Top1Proposer(
|
40
|
+
self,
|
41
|
+
device=self.device,
|
42
|
+
vocab_size=self.vocab_size,
|
43
|
+
)
|
44
|
+
|
45
|
+
def set_include_gpu_probs_tensor(self):
|
46
|
+
# NGram don't need gpu sampler
|
47
|
+
pass
|
48
|
+
|
49
|
+
def execute_model(self, execute_model_req: ExecuteModelRequest) -> None:
|
50
|
+
"""NGram doesn't depend on model execution, just pass this function"""
|
51
|
+
pass
|
52
|
+
|
53
|
+
def determine_num_available_blocks(self) -> None:
|
54
|
+
"""NGram doesn't depend on model execution, no need to check blocks"""
|
55
|
+
pass
|
56
|
+
|
57
|
+
def initialize_cache(self, num_gpu_blocks: int,
|
58
|
+
num_cpu_blocks: int) -> None:
|
59
|
+
"""As there is no cache need to handle, just pass this function"""
|
60
|
+
pass
|
61
|
+
|
62
|
+
def get_cache_block_size_bytes(self):
|
63
|
+
"""Return the size of a cache block in bytes."""
|
64
|
+
return 0
|
65
|
+
|
66
|
+
def sampler_output(
|
67
|
+
self,
|
68
|
+
execute_model_req: ExecuteModelRequest,
|
69
|
+
sample_len: int,
|
70
|
+
) -> Tuple[Optional[List[SamplerOutput]], bool]:
|
71
|
+
"""NGram match algo to pick proposal candidate. Returns the list of
|
72
|
+
sampler output, one per SequenceGroupMetadata.
|
73
|
+
|
74
|
+
For ngram worker, we already done needed transposed internal, so the
|
75
|
+
indicator pass to sampler_output_to_torch shall be False.
|
76
|
+
"""
|
77
|
+
self._raise_if_unsupported(execute_model_req)
|
78
|
+
|
79
|
+
arr = []
|
80
|
+
has_spec_out = False
|
81
|
+
for seq_group_metadata in execute_model_req.seq_group_metadata_list:
|
82
|
+
seq_data = next(iter(seq_group_metadata.seq_data.values()))
|
83
|
+
|
84
|
+
input_ids = torch.as_tensor(seq_data.get_token_ids(),
|
85
|
+
dtype=torch.long,
|
86
|
+
device=self.device)
|
87
|
+
input_length = seq_data.get_len()
|
88
|
+
|
89
|
+
for ngram_size in range(
|
90
|
+
min(self.ngram_prompt_lookup_max, input_length - 1),
|
91
|
+
self.ngram_prompt_lookup_min,
|
92
|
+
-1,
|
93
|
+
):
|
94
|
+
ngram_tensor = input_ids[-1 * ngram_size:]
|
95
|
+
windows = input_ids.unfold(dimension=0,
|
96
|
+
size=ngram_size,
|
97
|
+
step=1)
|
98
|
+
matches = (windows == ngram_tensor).all(dim=1)
|
99
|
+
match_indices = matches.nonzero(as_tuple=True)[0]
|
100
|
+
if match_indices.size()[0] > 1:
|
101
|
+
has_spec_out = True
|
102
|
+
res = seq_data.get_token_ids()
|
103
|
+
res = res[match_indices[0] + ngram_size:match_indices[0] +
|
104
|
+
ngram_size + sample_len]
|
105
|
+
res_len = len(res)
|
106
|
+
# pad 0 towards output as sample_len tokens required
|
107
|
+
res += [0] * (sample_len - res_len)
|
108
|
+
|
109
|
+
break
|
110
|
+
else:
|
111
|
+
# if no candidate found, fill with 0
|
112
|
+
res = [0] * sample_len
|
113
|
+
|
114
|
+
arr.append(res)
|
115
|
+
|
116
|
+
if not has_spec_out:
|
117
|
+
return None, False
|
118
|
+
|
119
|
+
outputs = []
|
120
|
+
token_ids = torch.as_tensor(arr, dtype=torch.long, device=self.device)
|
121
|
+
indices = token_ids.unsqueeze(2)
|
122
|
+
|
123
|
+
token_probs = torch.zeros(
|
124
|
+
(len(execute_model_req.seq_group_metadata_list), sample_len,
|
125
|
+
self.vocab_size),
|
126
|
+
dtype=torch.float32,
|
127
|
+
device=self.device,
|
128
|
+
)
|
129
|
+
token_probs.scatter_(2, indices, 1)
|
130
|
+
token_logprobs = torch.zeros(
|
131
|
+
(len(execute_model_req.seq_group_metadata_list), sample_len,
|
132
|
+
self.vocab_size),
|
133
|
+
dtype=torch.float32,
|
134
|
+
device=self.device,
|
135
|
+
)
|
136
|
+
for i in range(len(execute_model_req.seq_group_metadata_list)):
|
137
|
+
outputs.append(
|
138
|
+
SamplerOutput(
|
139
|
+
outputs=None,
|
140
|
+
sampled_token_probs=token_probs[i],
|
141
|
+
logprobs=token_logprobs,
|
142
|
+
sampled_token_ids=token_ids[i],
|
143
|
+
))
|
144
|
+
return outputs, False
|
145
|
+
|
146
|
+
def get_spec_proposals(
|
147
|
+
self,
|
148
|
+
execute_model_req: ExecuteModelRequest,
|
149
|
+
) -> SpeculativeProposals:
|
150
|
+
"""Produce speculations given an input batch of sequences. The number of
|
151
|
+
speculative tokens per sequence is determined by max_proposal_len.
|
152
|
+
"""
|
153
|
+
|
154
|
+
return self._proposer.get_proposals(execute_model_req)
|
155
|
+
|
156
|
+
def _raise_if_unsupported(
|
157
|
+
self,
|
158
|
+
execute_model_req: ExecuteModelRequest,
|
159
|
+
) -> None:
|
160
|
+
"""NGramWorker does not yet implement support for cache swap
|
161
|
+
operations or beam search.
|
162
|
+
"""
|
163
|
+
if any([
|
164
|
+
execute_model_req.blocks_to_swap_in,
|
165
|
+
execute_model_req.blocks_to_swap_out,
|
166
|
+
execute_model_req.blocks_to_copy
|
167
|
+
]):
|
168
|
+
raise NotImplementedError(
|
169
|
+
"NGramWorker does not support cache operations")
|
170
|
+
|
171
|
+
if any(
|
172
|
+
len(seq_group_metadata.seq_data.keys()) != 1
|
173
|
+
for seq_group_metadata in
|
174
|
+
execute_model_req.seq_group_metadata_list):
|
175
|
+
raise NotImplementedError(
|
176
|
+
"NGramWorker does not support beam search.")
|