vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,301 @@
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team.
3
+ # All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ #
17
+ # This code is based off the following work:
18
+ # https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
19
+ # https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
20
+ """Inference-only StabeLM (https://github.com/Stability-AI/StableLM)
21
+ model compatible with HuggingFace weights."""
22
+ from typing import Iterable, List, Optional, Tuple
23
+
24
+ import torch
25
+ from torch import nn
26
+ from transformers import PretrainedConfig
27
+
28
+ from vllm.attention import Attention, AttentionMetadata
29
+ from vllm.distributed import get_tensor_model_parallel_world_size
30
+ from vllm.model_executor.layers.activation import SiluAndMul
31
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
32
+ QKVParallelLinear,
33
+ RowParallelLinear)
34
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
35
+ from vllm.model_executor.layers.quantization.base_config import (
36
+ QuantizationConfig)
37
+ from vllm.model_executor.layers.rotary_embedding import get_rope
38
+ from vllm.model_executor.layers.sampler import Sampler
39
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
40
+ ParallelLMHead, VocabParallelEmbedding)
41
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
42
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
43
+ from vllm.sequence import SamplerOutput
44
+
45
+
46
+ class StablelmMLP(nn.Module):
47
+
48
+ def __init__(self,
49
+ config: PretrainedConfig,
50
+ quant_config: Optional[QuantizationConfig] = None) -> None:
51
+ super().__init__()
52
+ self.config = config
53
+ self.hidden_size = config.hidden_size
54
+ self.intermediate_size = config.intermediate_size
55
+ self.gate_up_proj = MergedColumnParallelLinear(
56
+ config.hidden_size, [config.intermediate_size] * 2,
57
+ bias=False,
58
+ quant_config=quant_config)
59
+ self.down_proj = RowParallelLinear(config.intermediate_size,
60
+ config.hidden_size,
61
+ bias=False)
62
+ self.act_fn = SiluAndMul()
63
+
64
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
65
+ gate_up, _ = self.gate_up_proj(x)
66
+ x = self.act_fn(gate_up)
67
+ x, _ = self.down_proj(x)
68
+ return x
69
+
70
+
71
+ class StablelmAttention(nn.Module):
72
+
73
+ def __init__(self,
74
+ config: PretrainedConfig,
75
+ quant_config: Optional[QuantizationConfig] = None) -> None:
76
+ super().__init__()
77
+ self.config = config
78
+ self.hidden_size = config.hidden_size
79
+ tp_size = get_tensor_model_parallel_world_size()
80
+ self.total_num_heads = config.num_attention_heads
81
+ self.num_heads = self.total_num_heads // tp_size
82
+
83
+ self.total_num_key_value_heads = config.num_key_value_heads
84
+ if self.total_num_key_value_heads >= tp_size:
85
+ # Number of KV heads is greater than TP size, so we partition
86
+ # the KV heads across multiple tensor parallel GPUs.
87
+ assert self.total_num_key_value_heads % tp_size == 0
88
+ else:
89
+ # Number of KV heads is less than TP size, so we replicate
90
+ # the KV heads across multiple tensor parallel GPUs.
91
+ assert tp_size % self.total_num_key_value_heads == 0
92
+ self.num_key_value_heads = max(
93
+ 1, self.total_num_key_value_heads // tp_size)
94
+ self.head_dim = self.hidden_size // self.total_num_heads
95
+ self.max_position_embeddings = config.max_position_embeddings
96
+ rope_pct = getattr(config, "rope_pct",
97
+ getattr(config, "partial_rotary_factor", 1))
98
+ self.rotary_ndims = int(self.head_dim * rope_pct)
99
+ self.scaling = self.head_dim**-0.5
100
+ self.q_size = self.num_heads * self.head_dim
101
+ self.kv_size = self.num_key_value_heads * self.head_dim
102
+ self.qkv_bias = getattr(config, "use_qkv_bias", False)
103
+ if (self.head_dim * self.num_heads * tp_size) != self.hidden_size:
104
+ raise ValueError(f"hidden_size must be divisible by num_heads "
105
+ f"(got `hidden_size`: {self.hidden_size}"
106
+ f" and `num_heads`: {self.num_heads}).")
107
+
108
+ self.qkv_proj = QKVParallelLinear(self.hidden_size,
109
+ self.head_dim,
110
+ self.total_num_heads,
111
+ self.total_num_key_value_heads,
112
+ self.qkv_bias,
113
+ quant_config=quant_config)
114
+ self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
115
+ self.hidden_size,
116
+ bias=False,
117
+ quant_config=quant_config)
118
+ self.rotary_emb = get_rope(
119
+ self.head_dim,
120
+ rotary_dim=self.rotary_ndims,
121
+ max_position=self.config.max_position_embeddings,
122
+ base=self.config.rope_theta,
123
+ )
124
+ self.attn = Attention(self.num_heads,
125
+ self.head_dim,
126
+ self.scaling,
127
+ num_kv_heads=self.num_key_value_heads)
128
+
129
+ def forward(
130
+ self,
131
+ positions: torch.Tensor,
132
+ hidden_states: torch.Tensor,
133
+ kv_cache: torch.Tensor,
134
+ attn_metadata: AttentionMetadata,
135
+ ) -> torch.Tensor:
136
+ qkv, _ = self.qkv_proj(hidden_states)
137
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
138
+ q, k = self.rotary_emb(positions, q, k)
139
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
140
+ output, _ = self.o_proj(attn_output)
141
+ return output
142
+
143
+
144
+ class StablelmDecoderLayer(nn.Module):
145
+
146
+ def __init__(
147
+ self,
148
+ config: PretrainedConfig,
149
+ quant_config: Optional[QuantizationConfig] = None,
150
+ ) -> None:
151
+ super().__init__()
152
+ self.self_attn = StablelmAttention(config)
153
+ self.mlp = StablelmMLP(config, quant_config)
154
+ norm_eps = getattr(config, "norm_eps",
155
+ getattr(config, "layer_norm_eps", 1e-05))
156
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
157
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
158
+ eps=norm_eps)
159
+
160
+ def forward(
161
+ self,
162
+ positions: torch.Tensor,
163
+ hidden_states: torch.Tensor,
164
+ kv_cache: torch.Tensor,
165
+ attn_metadata: AttentionMetadata,
166
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
167
+ # Self Attention
168
+ residual = hidden_states
169
+ hidden_states = self.input_layernorm(hidden_states)
170
+ hidden_states = self.self_attn(
171
+ positions=positions,
172
+ hidden_states=hidden_states,
173
+ kv_cache=kv_cache,
174
+ attn_metadata=attn_metadata,
175
+ )
176
+ hidden_states = residual + hidden_states
177
+
178
+ # Fully Connected
179
+ residual = hidden_states
180
+ hidden_states = self.post_attention_layernorm(hidden_states)
181
+ hidden_states = self.mlp(hidden_states)
182
+ hidden_states = residual + hidden_states
183
+
184
+ return hidden_states, residual
185
+
186
+
187
+ class StableLMEpochModel(nn.Module):
188
+
189
+ def __init__(self,
190
+ config: PretrainedConfig,
191
+ quant_config: Optional[QuantizationConfig] = None) -> None:
192
+ super().__init__()
193
+ self.embed_tokens = VocabParallelEmbedding(
194
+ config.vocab_size,
195
+ config.hidden_size,
196
+ )
197
+ self.layers = nn.ModuleList([
198
+ StablelmDecoderLayer(config, quant_config)
199
+ for _ in range(config.num_hidden_layers)
200
+ ])
201
+ norm_eps = getattr(config, "norm_eps",
202
+ getattr(config, "layer_norm_eps", 1e-05))
203
+ self.norm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
204
+
205
+ def forward(
206
+ self,
207
+ input_ids: torch.Tensor,
208
+ positions: torch.Tensor,
209
+ kv_caches: List[torch.Tensor],
210
+ attn_metadata: AttentionMetadata,
211
+ ) -> torch.Tensor:
212
+ hidden_states = self.embed_tokens(input_ids)
213
+ for i in range(len(self.layers)):
214
+ layer = self.layers[i]
215
+ hidden_states, residual = layer(
216
+ positions,
217
+ hidden_states,
218
+ kv_caches[i],
219
+ attn_metadata,
220
+ )
221
+ hidden_states = self.norm(hidden_states)
222
+ return hidden_states
223
+
224
+
225
+ class StablelmForCausalLM(nn.Module):
226
+
227
+ def __init__(
228
+ self,
229
+ config: PretrainedConfig,
230
+ quant_config: Optional[QuantizationConfig] = None,
231
+ ) -> None:
232
+ super().__init__()
233
+ self.config = config
234
+ self.quant_config = quant_config
235
+ self.model = StableLMEpochModel(config, quant_config)
236
+ self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
237
+ self.logits_processor = LogitsProcessor(config.vocab_size)
238
+ self.sampler = Sampler()
239
+
240
+ def forward(
241
+ self,
242
+ input_ids: torch.Tensor,
243
+ positions: torch.Tensor,
244
+ kv_caches: List[torch.Tensor],
245
+ attn_metadata: AttentionMetadata,
246
+ ) -> torch.Tensor:
247
+ hidden_states = self.model(input_ids, positions, kv_caches,
248
+ attn_metadata)
249
+ return hidden_states
250
+
251
+ def compute_logits(self, hidden_states: torch.Tensor,
252
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
253
+ logits = self.logits_processor(self.lm_head.weight, hidden_states,
254
+ sampling_metadata)
255
+ return logits
256
+
257
+ def sample(
258
+ self,
259
+ logits: torch.Tensor,
260
+ sampling_metadata: SamplingMetadata,
261
+ ) -> Optional[SamplerOutput]:
262
+ next_tokens = self.sampler(logits, sampling_metadata)
263
+ return next_tokens
264
+
265
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
266
+ stacked_params_mapping = [
267
+ # (param_name, shard_name, shard_id)
268
+ ("qkv_proj", "q_proj", "q"),
269
+ ("qkv_proj", "k_proj", "k"),
270
+ ("qkv_proj", "v_proj", "v"),
271
+ ("gate_up_proj", "gate_proj", 0),
272
+ ("gate_up_proj", "up_proj", 1),
273
+ ]
274
+ params_dict = dict(self.named_parameters())
275
+ for name, loaded_weight in weights:
276
+ if "rotary_emb.inv_freq" in name:
277
+ continue
278
+ if ("rotary_emb.cos_cached" in name
279
+ or "rotary_emb.sin_cached" in name):
280
+ # Models trained using ColossalAI may include these tensors in
281
+ # the checkpoint. Skip them.
282
+ continue
283
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
284
+ if weight_name not in name:
285
+ continue
286
+ name = name.replace(weight_name, param_name)
287
+ # Skip loading extra bias for GPTQ models.
288
+ if name.endswith(".bias") and name not in params_dict:
289
+ continue
290
+ param = params_dict[name]
291
+ weight_loader = param.weight_loader
292
+ weight_loader(param, loaded_weight, shard_id)
293
+ break
294
+ else:
295
+ # Skip loading extra bias for GPTQ models.
296
+ if name.endswith(".bias") and name not in params_dict:
297
+ continue
298
+ param = params_dict[name]
299
+ weight_loader = getattr(param, "weight_loader",
300
+ default_weight_loader)
301
+ weight_loader(param, loaded_weight)
@@ -0,0 +1,302 @@
1
+ # coding=utf-8
2
+ # Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Starcoder2 model."""
21
+ from typing import Iterable, List, Optional, Tuple
22
+
23
+ import torch
24
+ from torch import nn
25
+ from transformers import Starcoder2Config
26
+
27
+ from vllm.attention import Attention, AttentionMetadata
28
+ from vllm.distributed import get_tensor_model_parallel_world_size
29
+ from vllm.model_executor.layers.activation import get_act_fn
30
+ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
31
+ QKVParallelLinear,
32
+ RowParallelLinear)
33
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
34
+ from vllm.model_executor.layers.quantization.base_config import (
35
+ QuantizationConfig)
36
+ from vllm.model_executor.layers.rotary_embedding import get_rope
37
+ from vllm.model_executor.layers.sampler import Sampler
38
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
39
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
40
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
41
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
42
+ from vllm.sequence import SamplerOutput
43
+
44
+
45
+ class Starcoder2Attention(nn.Module):
46
+
47
+ def __init__(self,
48
+ config: Starcoder2Config,
49
+ quant_config: Optional[QuantizationConfig] = None):
50
+ super().__init__()
51
+ self.config = config
52
+
53
+ self.hidden_size = config.hidden_size
54
+ tp_size = get_tensor_model_parallel_world_size()
55
+ self.total_num_heads = config.num_attention_heads
56
+ assert self.total_num_heads % tp_size == 0
57
+ self.num_heads = self.total_num_heads // tp_size
58
+ self.total_num_kv_heads = config.num_key_value_heads
59
+ if self.total_num_kv_heads >= tp_size:
60
+ # Number of KV heads is greater than TP size, so we partition
61
+ # the KV heads across multiple tensor parallel GPUs.
62
+ assert self.total_num_kv_heads % tp_size == 0
63
+ else:
64
+ # Number of KV heads is less than TP size, so we replicate
65
+ # the KV heads across multiple tensor parallel GPUs.
66
+ assert tp_size % self.total_num_kv_heads == 0
67
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
68
+ self.head_dim = self.hidden_size // self.total_num_heads
69
+ self.q_size = self.num_heads * self.head_dim
70
+ self.kv_size = self.num_kv_heads * self.head_dim
71
+ self.scaling = self.head_dim**-0.5
72
+ self.rope_theta = config.rope_theta
73
+ self.max_position_embeddings = config.max_position_embeddings
74
+ self.use_bias = config.use_bias
75
+ self.sliding_window = config.sliding_window
76
+
77
+ self.qkv_proj = QKVParallelLinear(
78
+ self.hidden_size,
79
+ self.head_dim,
80
+ self.total_num_heads,
81
+ self.total_num_kv_heads,
82
+ bias=self.use_bias,
83
+ quant_config=quant_config,
84
+ )
85
+ self.o_proj = RowParallelLinear(
86
+ self.total_num_heads * self.head_dim,
87
+ self.hidden_size,
88
+ bias=self.use_bias,
89
+ quant_config=quant_config,
90
+ )
91
+ self.rotary_emb = get_rope(
92
+ self.head_dim,
93
+ rotary_dim=self.head_dim,
94
+ max_position=self.max_position_embeddings,
95
+ base=int(self.rope_theta),
96
+ is_neox_style=True,
97
+ )
98
+ self.attn = Attention(
99
+ self.num_heads,
100
+ self.head_dim,
101
+ self.scaling,
102
+ num_kv_heads=self.num_kv_heads,
103
+ sliding_window=self.sliding_window,
104
+ )
105
+
106
+ def forward(
107
+ self,
108
+ positions: torch.Tensor,
109
+ hidden_states: torch.Tensor,
110
+ kv_cache: torch.Tensor,
111
+ attn_metadata: AttentionMetadata,
112
+ ) -> torch.Tensor:
113
+ qkv, _ = self.qkv_proj(hidden_states)
114
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
115
+ q, k = self.rotary_emb(positions, q, k)
116
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
117
+ output, _ = self.o_proj(attn_output)
118
+ return output
119
+
120
+
121
+ class Starcoder2MLP(nn.Module):
122
+
123
+ def __init__(self,
124
+ config: Starcoder2Config,
125
+ quant_config: Optional[QuantizationConfig] = None):
126
+ super().__init__()
127
+ self.c_fc = ColumnParallelLinear(
128
+ config.hidden_size,
129
+ config.intermediate_size,
130
+ bias=config.use_bias,
131
+ quant_config=quant_config,
132
+ )
133
+ self.c_proj = RowParallelLinear(
134
+ config.intermediate_size,
135
+ config.hidden_size,
136
+ bias=config.use_bias,
137
+ quant_config=quant_config,
138
+ )
139
+ self.act = get_act_fn(config.hidden_act, quant_config,
140
+ config.intermediate_size)
141
+
142
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
143
+ hidden_states, _ = self.c_fc(hidden_states)
144
+ hidden_states = self.act(hidden_states)
145
+ hidden_states, _ = self.c_proj(hidden_states)
146
+ return hidden_states
147
+
148
+
149
+ class Starcoder2DecoderLayer(nn.Module):
150
+
151
+ def __init__(self,
152
+ config: Starcoder2Config,
153
+ quant_config: Optional[QuantizationConfig] = None):
154
+ super().__init__()
155
+ self.hidden_size = config.hidden_size
156
+ self.self_attn = Starcoder2Attention(config, quant_config=quant_config)
157
+ self.mlp = Starcoder2MLP(config, quant_config=quant_config)
158
+ self.input_layernorm = nn.LayerNorm(config.hidden_size,
159
+ eps=config.norm_epsilon)
160
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
161
+ eps=config.norm_epsilon)
162
+
163
+ def forward(
164
+ self,
165
+ positions: torch.Tensor,
166
+ hidden_states: torch.Tensor,
167
+ kv_cache: torch.Tensor,
168
+ attn_metadata: AttentionMetadata,
169
+ ) -> torch.Tensor:
170
+ # Self Attention
171
+ residual = hidden_states
172
+ hidden_states = self.input_layernorm(hidden_states)
173
+ hidden_states = self.self_attn(
174
+ positions=positions,
175
+ hidden_states=hidden_states,
176
+ kv_cache=kv_cache,
177
+ attn_metadata=attn_metadata,
178
+ )
179
+ hidden_states = residual + hidden_states
180
+
181
+ # Fully Connected
182
+ residual = hidden_states
183
+ hidden_states = self.post_attention_layernorm(hidden_states)
184
+ hidden_states = self.mlp(hidden_states)
185
+ hidden_states = residual + hidden_states
186
+
187
+ return hidden_states
188
+
189
+
190
+ class Starcoder2Model(nn.Module):
191
+
192
+ def __init__(self,
193
+ config: Starcoder2Config,
194
+ quant_config: Optional[QuantizationConfig] = None):
195
+ super().__init__()
196
+ self.config = config
197
+ self.padding_idx = config.pad_token_id
198
+ self.vocab_size = config.vocab_size
199
+
200
+ # TODO: consider padding_idx (currently removed)
201
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
202
+ config.hidden_size)
203
+ self.layers = nn.ModuleList([
204
+ Starcoder2DecoderLayer(config, quant_config=quant_config)
205
+ for _ in range(config.num_hidden_layers)
206
+ ])
207
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
208
+
209
+ def forward(
210
+ self,
211
+ input_ids: torch.Tensor,
212
+ positions: torch.Tensor,
213
+ kv_caches: List[torch.Tensor],
214
+ attn_metadata: AttentionMetadata,
215
+ ) -> torch.Tensor:
216
+ hidden_states = self.embed_tokens(input_ids)
217
+ for i in range(len(self.layers)):
218
+ layer = self.layers[i]
219
+ hidden_states = layer(positions, hidden_states, kv_caches[i],
220
+ attn_metadata)
221
+ hidden_states = self.norm(hidden_states)
222
+ return hidden_states
223
+
224
+
225
+ class Starcoder2ForCausalLM(nn.Module):
226
+
227
+ def __init__(self,
228
+ config: Starcoder2Config,
229
+ quant_config: Optional[QuantizationConfig] = None):
230
+ super().__init__()
231
+ self.config = config
232
+ self.model = Starcoder2Model(config, quant_config=quant_config)
233
+ self.vocab_size = config.vocab_size
234
+ self.unpadded_vocab_size = config.vocab_size
235
+ if config.tie_word_embeddings:
236
+ self.lm_head_weight = self.model.embed_tokens.weight
237
+ else:
238
+ self.unpadded_vocab_size = config.vocab_size
239
+ self.lm_head = ParallelLMHead(
240
+ self.unpadded_vocab_size,
241
+ config.hidden_size,
242
+ org_num_embeddings=config.vocab_size,
243
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE,
244
+ )
245
+ self.lm_head_weight = self.lm_head.weight
246
+ self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
247
+ config.vocab_size)
248
+ self.sampler = Sampler()
249
+
250
+ def forward(
251
+ self,
252
+ input_ids: torch.Tensor,
253
+ positions: torch.Tensor,
254
+ kv_caches: List[torch.Tensor],
255
+ attn_metadata: AttentionMetadata,
256
+ ) -> torch.Tensor:
257
+ hidden_states = self.model(input_ids, positions, kv_caches,
258
+ attn_metadata)
259
+ return hidden_states
260
+
261
+ def compute_logits(self, hidden_states: torch.Tensor,
262
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
263
+ logits = self.logits_processor(self.lm_head_weight, hidden_states,
264
+ sampling_metadata)
265
+ return logits
266
+
267
+ def sample(
268
+ self,
269
+ logits: Optional[torch.Tensor],
270
+ sampling_metadata: SamplingMetadata,
271
+ ) -> Optional[SamplerOutput]:
272
+ next_tokens = self.sampler(logits, sampling_metadata)
273
+ return next_tokens
274
+
275
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
276
+ stacked_params_mapping = [
277
+ # (param_name, shard_name, shard_id)
278
+ ("qkv_proj", "q_proj", "q"),
279
+ ("qkv_proj", "k_proj", "k"),
280
+ ("qkv_proj", "v_proj", "v"),
281
+ ]
282
+
283
+ params_dict = dict(self.named_parameters(remove_duplicate=False))
284
+ for name, loaded_weight in weights:
285
+ if "rotary_emb.inv_freq" in name:
286
+ continue
287
+
288
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
289
+ if weight_name not in name:
290
+ continue
291
+ name = name.replace(weight_name, param_name)
292
+ param = params_dict[name]
293
+ weight_loader = param.weight_loader
294
+ weight_loader(param, loaded_weight, shard_id)
295
+ break
296
+ else:
297
+ if self.config.tie_word_embeddings and "lm_head.weight" in name:
298
+ continue
299
+ param = params_dict[name]
300
+ weight_loader = getattr(param, "weight_loader",
301
+ default_weight_loader)
302
+ weight_loader(param, loaded_weight)