vllm-npu 0.4.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (219) hide show
  1. vllm/__init__.py +23 -0
  2. vllm/_custom_ops.py +251 -0
  3. vllm/attention/__init__.py +13 -0
  4. vllm/attention/backends/__init__.py +0 -0
  5. vllm/attention/backends/abstract.py +127 -0
  6. vllm/attention/backends/flash_attn.py +271 -0
  7. vllm/attention/backends/flashinfer.py +220 -0
  8. vllm/attention/backends/rocm_flash_attn.py +374 -0
  9. vllm/attention/backends/torch_sdpa.py +250 -0
  10. vllm/attention/backends/xformers.py +393 -0
  11. vllm/attention/layer.py +56 -0
  12. vllm/attention/ops/__init__.py +0 -0
  13. vllm/attention/ops/paged_attn.py +216 -0
  14. vllm/attention/ops/prefix_prefill.py +792 -0
  15. vllm/attention/ops/triton_flash_attention.py +810 -0
  16. vllm/attention/selector.py +91 -0
  17. vllm/block.py +84 -0
  18. vllm/config.py +1225 -0
  19. vllm/core/__init__.py +0 -0
  20. vllm/core/block/__init__.py +0 -0
  21. vllm/core/block/block_table.py +295 -0
  22. vllm/core/block/common.py +199 -0
  23. vllm/core/block/cpu_gpu_block_allocator.py +228 -0
  24. vllm/core/block/interfaces.py +205 -0
  25. vllm/core/block/naive_block.py +318 -0
  26. vllm/core/block/prefix_caching_block.py +606 -0
  27. vllm/core/block_manager_v1.py +625 -0
  28. vllm/core/block_manager_v2.py +258 -0
  29. vllm/core/evictor_v1.py +105 -0
  30. vllm/core/evictor_v2.py +127 -0
  31. vllm/core/interfaces.py +113 -0
  32. vllm/core/policy.py +45 -0
  33. vllm/core/scheduler.py +1163 -0
  34. vllm/distributed/__init__.py +3 -0
  35. vllm/distributed/communication_op.py +237 -0
  36. vllm/distributed/device_communicators/__init__.py +0 -0
  37. vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
  38. vllm/distributed/device_communicators/pynccl.py +287 -0
  39. vllm/distributed/device_communicators/pynccl_utils.py +66 -0
  40. vllm/distributed/parallel_state.py +339 -0
  41. vllm/distributed/utils.py +136 -0
  42. vllm/engine/__init__.py +0 -0
  43. vllm/engine/arg_utils.py +649 -0
  44. vllm/engine/async_llm_engine.py +737 -0
  45. vllm/engine/llm_engine.py +784 -0
  46. vllm/engine/metrics.py +368 -0
  47. vllm/engine/output_processor/__init__.py +0 -0
  48. vllm/engine/output_processor/interfaces.py +76 -0
  49. vllm/engine/output_processor/multi_step.py +142 -0
  50. vllm/engine/output_processor/single_step.py +284 -0
  51. vllm/engine/output_processor/stop_checker.py +101 -0
  52. vllm/engine/output_processor/util.py +19 -0
  53. vllm/entrypoints/__init__.py +0 -0
  54. vllm/entrypoints/api_server.py +119 -0
  55. vllm/entrypoints/llm.py +259 -0
  56. vllm/entrypoints/openai/__init__.py +0 -0
  57. vllm/entrypoints/openai/api_server.py +186 -0
  58. vllm/entrypoints/openai/cli_args.py +115 -0
  59. vllm/entrypoints/openai/protocol.py +460 -0
  60. vllm/entrypoints/openai/serving_chat.py +392 -0
  61. vllm/entrypoints/openai/serving_completion.py +347 -0
  62. vllm/entrypoints/openai/serving_engine.py +234 -0
  63. vllm/envs.py +217 -0
  64. vllm/executor/__init__.py +0 -0
  65. vllm/executor/cpu_executor.py +152 -0
  66. vllm/executor/distributed_gpu_executor.py +115 -0
  67. vllm/executor/executor_base.py +115 -0
  68. vllm/executor/gpu_executor.py +150 -0
  69. vllm/executor/multiproc_worker_utils.py +263 -0
  70. vllm/executor/neuron_executor.py +91 -0
  71. vllm/executor/ray_gpu_executor.py +327 -0
  72. vllm/executor/ray_utils.py +119 -0
  73. vllm/logger.py +153 -0
  74. vllm/logging/__init__.py +5 -0
  75. vllm/logging/formatter.py +15 -0
  76. vllm/lora/__init__.py +0 -0
  77. vllm/lora/fully_sharded_layers.py +262 -0
  78. vllm/lora/layers.py +1181 -0
  79. vllm/lora/lora.py +167 -0
  80. vllm/lora/models.py +645 -0
  81. vllm/lora/punica.py +213 -0
  82. vllm/lora/request.py +32 -0
  83. vllm/lora/utils.py +98 -0
  84. vllm/lora/worker_manager.py +251 -0
  85. vllm/model_executor/__init__.py +7 -0
  86. vllm/model_executor/guided_decoding/__init__.py +25 -0
  87. vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
  88. vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
  89. vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
  90. vllm/model_executor/layers/__init__.py +0 -0
  91. vllm/model_executor/layers/activation.py +173 -0
  92. vllm/model_executor/layers/fused_moe/__init__.py +7 -0
  93. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  94. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  95. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  96. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  97. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  98. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  99. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  100. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  101. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  102. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  103. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  104. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  105. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
  106. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  107. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  108. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  109. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  110. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  111. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  112. vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
  113. vllm/model_executor/layers/layernorm.py +71 -0
  114. vllm/model_executor/layers/linear.py +709 -0
  115. vllm/model_executor/layers/logits_processor.py +115 -0
  116. vllm/model_executor/layers/ops/__init__.py +0 -0
  117. vllm/model_executor/layers/ops/rand.py +157 -0
  118. vllm/model_executor/layers/ops/sample.py +406 -0
  119. vllm/model_executor/layers/quantization/__init__.py +35 -0
  120. vllm/model_executor/layers/quantization/aqlm.py +376 -0
  121. vllm/model_executor/layers/quantization/awq.py +175 -0
  122. vllm/model_executor/layers/quantization/base_config.py +97 -0
  123. vllm/model_executor/layers/quantization/fp8.py +265 -0
  124. vllm/model_executor/layers/quantization/gptq.py +224 -0
  125. vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
  126. vllm/model_executor/layers/quantization/marlin.py +227 -0
  127. vllm/model_executor/layers/quantization/schema.py +84 -0
  128. vllm/model_executor/layers/quantization/squeezellm.py +137 -0
  129. vllm/model_executor/layers/rejection_sampler.py +405 -0
  130. vllm/model_executor/layers/rotary_embedding.py +525 -0
  131. vllm/model_executor/layers/sampler.py +1051 -0
  132. vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
  133. vllm/model_executor/model_loader/__init__.py +30 -0
  134. vllm/model_executor/model_loader/loader.py +362 -0
  135. vllm/model_executor/model_loader/neuron.py +136 -0
  136. vllm/model_executor/model_loader/tensorizer.py +368 -0
  137. vllm/model_executor/model_loader/utils.py +41 -0
  138. vllm/model_executor/model_loader/weight_utils.py +372 -0
  139. vllm/model_executor/models/__init__.py +119 -0
  140. vllm/model_executor/models/baichuan.py +410 -0
  141. vllm/model_executor/models/bloom.py +327 -0
  142. vllm/model_executor/models/chatglm.py +386 -0
  143. vllm/model_executor/models/commandr.py +373 -0
  144. vllm/model_executor/models/dbrx.py +413 -0
  145. vllm/model_executor/models/decilm.py +122 -0
  146. vllm/model_executor/models/deepseek.py +438 -0
  147. vllm/model_executor/models/falcon.py +444 -0
  148. vllm/model_executor/models/gemma.py +393 -0
  149. vllm/model_executor/models/gpt2.py +266 -0
  150. vllm/model_executor/models/gpt_bigcode.py +274 -0
  151. vllm/model_executor/models/gpt_j.py +281 -0
  152. vllm/model_executor/models/gpt_neox.py +295 -0
  153. vllm/model_executor/models/internlm2.py +323 -0
  154. vllm/model_executor/models/jais.py +333 -0
  155. vllm/model_executor/models/llama.py +442 -0
  156. vllm/model_executor/models/llava.py +239 -0
  157. vllm/model_executor/models/minicpm.py +531 -0
  158. vllm/model_executor/models/mixtral.py +583 -0
  159. vllm/model_executor/models/mixtral_quant.py +404 -0
  160. vllm/model_executor/models/mpt.py +295 -0
  161. vllm/model_executor/models/olmo.py +356 -0
  162. vllm/model_executor/models/opt.py +349 -0
  163. vllm/model_executor/models/orion.py +319 -0
  164. vllm/model_executor/models/phi.py +300 -0
  165. vllm/model_executor/models/qwen.py +284 -0
  166. vllm/model_executor/models/qwen2.py +367 -0
  167. vllm/model_executor/models/qwen2_moe.py +447 -0
  168. vllm/model_executor/models/stablelm.py +301 -0
  169. vllm/model_executor/models/starcoder2.py +302 -0
  170. vllm/model_executor/models/xverse.py +366 -0
  171. vllm/model_executor/sampling_metadata.py +588 -0
  172. vllm/model_executor/utils.py +35 -0
  173. vllm/outputs.py +150 -0
  174. vllm/py.typed +2 -0
  175. vllm/sampling_params.py +340 -0
  176. vllm/sequence.py +766 -0
  177. vllm/spec_decode/__init__.py +0 -0
  178. vllm/spec_decode/batch_expansion.py +397 -0
  179. vllm/spec_decode/interfaces.py +73 -0
  180. vllm/spec_decode/metrics.py +191 -0
  181. vllm/spec_decode/multi_step_worker.py +203 -0
  182. vllm/spec_decode/ngram_worker.py +176 -0
  183. vllm/spec_decode/spec_decode_worker.py +472 -0
  184. vllm/spec_decode/top1_proposer.py +200 -0
  185. vllm/spec_decode/util.py +228 -0
  186. vllm/test_utils.py +41 -0
  187. vllm/transformers_utils/__init__.py +0 -0
  188. vllm/transformers_utils/config.py +58 -0
  189. vllm/transformers_utils/configs/__init__.py +16 -0
  190. vllm/transformers_utils/configs/chatglm.py +68 -0
  191. vllm/transformers_utils/configs/dbrx.py +278 -0
  192. vllm/transformers_utils/configs/falcon.py +87 -0
  193. vllm/transformers_utils/configs/jais.py +236 -0
  194. vllm/transformers_utils/configs/mpt.py +178 -0
  195. vllm/transformers_utils/detokenizer.py +313 -0
  196. vllm/transformers_utils/tokenizer.py +149 -0
  197. vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
  198. vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
  199. vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
  200. vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
  201. vllm/transformers_utils/tokenizers/__init__.py +5 -0
  202. vllm/transformers_utils/tokenizers/baichuan.py +255 -0
  203. vllm/usage/__init__.py +0 -0
  204. vllm/usage/usage_lib.py +209 -0
  205. vllm/utils.py +677 -0
  206. vllm/worker/__init__.py +0 -0
  207. vllm/worker/cache_engine.py +105 -0
  208. vllm/worker/cpu_model_runner.py +346 -0
  209. vllm/worker/cpu_worker.py +321 -0
  210. vllm/worker/model_runner.py +1168 -0
  211. vllm/worker/neuron_model_runner.py +196 -0
  212. vllm/worker/neuron_worker.py +98 -0
  213. vllm/worker/worker.py +345 -0
  214. vllm/worker/worker_base.py +146 -0
  215. vllm_npu-0.4.2.dist-info/LICENSE +201 -0
  216. vllm_npu-0.4.2.dist-info/METADATA +173 -0
  217. vllm_npu-0.4.2.dist-info/RECORD +219 -0
  218. vllm_npu-0.4.2.dist-info/WHEEL +5 -0
  219. vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,373 @@
1
+ # coding=utf-8
2
+ # Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ # This file is based on the LLama model definition file in transformers
22
+ """PyTorch Cohere model."""
23
+ from typing import Iterable, List, Optional, Tuple
24
+
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn.parameter import Parameter
29
+ from transformers import CohereConfig
30
+
31
+ from vllm.attention import Attention, AttentionMetadata
32
+ from vllm.distributed import (get_tensor_model_parallel_rank,
33
+ get_tensor_model_parallel_world_size)
34
+ from vllm.model_executor.layers.activation import SiluAndMul
35
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
36
+ QKVParallelLinear,
37
+ RowParallelLinear)
38
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
39
+ from vllm.model_executor.layers.quantization.base_config import (
40
+ QuantizationConfig)
41
+ from vllm.model_executor.layers.rotary_embedding import get_rope
42
+ from vllm.model_executor.layers.sampler import Sampler
43
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
44
+ VocabParallelEmbedding)
45
+ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
46
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
47
+ from vllm.model_executor.utils import set_weight_attrs
48
+ from vllm.sequence import SamplerOutput
49
+
50
+
51
+ @torch.compile
52
+ def layer_norm_func(hidden_states, weight, variance_epsilon):
53
+ input_dtype = hidden_states.dtype
54
+ hidden_states = hidden_states.to(torch.float32)
55
+ mean = hidden_states.mean(-1, keepdim=True)
56
+ variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
57
+ hidden_states = (hidden_states - mean) * torch.rsqrt(variance +
58
+ variance_epsilon)
59
+ hidden_states = weight.to(torch.float32) * hidden_states
60
+ return hidden_states.to(input_dtype)
61
+
62
+
63
+ class LayerNorm(nn.Module):
64
+
65
+ def __init__(self, param_shape=None, eps=1e-5):
66
+ super().__init__()
67
+ self.weight = nn.Parameter(torch.ones(param_shape))
68
+ self.variance_epsilon = eps
69
+ set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})
70
+
71
+ def forward(self, hidden_states, residuals=None):
72
+ hidden_states = layer_norm_func(hidden_states, self.weight,
73
+ self.variance_epsilon)
74
+ return hidden_states, residuals
75
+
76
+ def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
77
+ tp_rank = get_tensor_model_parallel_rank()
78
+ shard_dim = 0 if param.dim() != 1 else None
79
+ param_data = param.data
80
+ if shard_dim is not None:
81
+ shard_size = param_data.shape[shard_dim]
82
+ start_idx = tp_rank * shard_size
83
+ loaded_weight = loaded_weight.narrow(shard_dim, start_idx,
84
+ shard_size)
85
+ assert param_data.shape == loaded_weight.shape
86
+ param_data.copy_(loaded_weight)
87
+
88
+
89
+ # Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
90
+ class CohereMLP(nn.Module):
91
+
92
+ def __init__(
93
+ self,
94
+ config,
95
+ quant_config: Optional[QuantizationConfig] = None,
96
+ ):
97
+ super().__init__()
98
+ self.config = config
99
+ self.hidden_size = config.hidden_size
100
+ self.intermediate_size = config.intermediate_size
101
+ self.gate_up_proj = MergedColumnParallelLinear(
102
+ self.hidden_size,
103
+ [self.intermediate_size] * 2,
104
+ bias=False,
105
+ quant_config=quant_config,
106
+ )
107
+ self.down_proj = RowParallelLinear(
108
+ self.intermediate_size,
109
+ self.hidden_size,
110
+ bias=False,
111
+ quant_config=quant_config,
112
+ )
113
+ self.act_fn = SiluAndMul()
114
+
115
+ def forward(self, x):
116
+ gate_up, _ = self.gate_up_proj(x)
117
+ x = self.act_fn(gate_up)
118
+ x, _ = self.down_proj(x)
119
+ return x
120
+
121
+
122
+ class CohereAttention(nn.Module):
123
+
124
+ def __init__(
125
+ self,
126
+ config: CohereConfig,
127
+ quant_config: Optional[QuantizationConfig] = None,
128
+ ):
129
+ super().__init__()
130
+ tp_size = get_tensor_model_parallel_world_size()
131
+ self.config = config
132
+ self.attention_dropout = config.attention_dropout
133
+ self.hidden_size = config.hidden_size
134
+ self.total_num_heads = config.num_attention_heads
135
+ self.num_heads = self.total_num_heads // tp_size
136
+ self.head_dim = self.hidden_size // self.total_num_heads
137
+ self.total_num_kv_heads = config.num_key_value_heads
138
+ if self.total_num_kv_heads >= tp_size:
139
+ # Number of KV heads is greater than TP size, so we partition
140
+ # the KV heads across multiple tensor parallel GPUs.
141
+ assert self.total_num_kv_heads % tp_size == 0
142
+ else:
143
+ # Number of KV heads is less than TP size, so we replicate
144
+ # the KV heads across multiple tensor parallel GPUs.
145
+ assert tp_size % self.total_num_kv_heads == 0
146
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
147
+ self.q_size = self.num_heads * self.head_dim
148
+ self.kv_size = self.num_kv_heads * self.head_dim
149
+ self.scaling = self.head_dim**-0.5
150
+ self.max_position_embeddings = getattr(
151
+ config, "model_max_length", None) or getattr(
152
+ config, "max_position_embeddings", 8192)
153
+ self.rope_theta = config.rope_theta
154
+ self.rope_scaling = getattr(config, "rope_scaling", None)
155
+ self.use_qk_norm = getattr(config, "use_qk_norm", False)
156
+ self.qkv_proj = QKVParallelLinear(
157
+ self.hidden_size,
158
+ self.head_dim,
159
+ self.total_num_heads,
160
+ self.total_num_kv_heads,
161
+ bias=False,
162
+ quant_config=quant_config,
163
+ )
164
+ self.o_proj = RowParallelLinear(
165
+ self.total_num_heads * self.head_dim,
166
+ self.hidden_size,
167
+ bias=False,
168
+ quant_config=quant_config,
169
+ )
170
+ self.rotary_emb = get_rope(
171
+ self.head_dim,
172
+ rotary_dim=self.head_dim,
173
+ max_position=self.max_position_embeddings,
174
+ base=self.rope_theta,
175
+ rope_scaling=self.rope_scaling,
176
+ is_neox_style=False,
177
+ )
178
+ self.attn = Attention(
179
+ self.num_heads,
180
+ self.head_dim,
181
+ self.scaling,
182
+ num_kv_heads=self.num_kv_heads,
183
+ )
184
+ if self.use_qk_norm:
185
+ self.q_norm = LayerNorm(param_shape=(self.num_heads,
186
+ self.head_dim),
187
+ eps=config.layer_norm_eps)
188
+ self.k_norm = LayerNorm(param_shape=(self.num_kv_heads,
189
+ self.head_dim),
190
+ eps=config.layer_norm_eps)
191
+
192
+ def _apply_qk_norm(self, q, k):
193
+ q = q.view(*q.shape[:-1], -1, self.head_dim)
194
+ k = k.view(*k.shape[:-1], -1, self.head_dim)
195
+ q, _ = self.q_norm(q)
196
+ k, _ = self.k_norm(k)
197
+ q = q.view(*q.shape[:-2], -1)
198
+ k = k.view(*k.shape[:-2], -1)
199
+ return q, k
200
+
201
+ def forward(
202
+ self,
203
+ positions: torch.Tensor,
204
+ hidden_states: torch.Tensor,
205
+ kv_cache: torch.Tensor,
206
+ attn_metadata: AttentionMetadata,
207
+ ) -> torch.Tensor:
208
+ qkv, _ = self.qkv_proj(hidden_states)
209
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
210
+ if self.use_qk_norm:
211
+ q, k = self._apply_qk_norm(q, k)
212
+ q, k = self.rotary_emb(positions, q, k)
213
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
214
+ output, _ = self.o_proj(attn_output)
215
+ return output
216
+
217
+
218
+ class CohereDecoderLayer(nn.Module):
219
+
220
+ def __init__(self,
221
+ config: CohereConfig,
222
+ quant_config: Optional[QuantizationConfig] = None):
223
+ super().__init__()
224
+ self.hidden_size = config.hidden_size
225
+
226
+ self.self_attn = CohereAttention(config, quant_config=quant_config)
227
+
228
+ self.mlp = CohereMLP(config, quant_config=quant_config)
229
+ self.input_layernorm = LayerNorm(param_shape=(config.hidden_size),
230
+ eps=config.layer_norm_eps)
231
+
232
+ def forward(
233
+ self,
234
+ positions: torch.Tensor,
235
+ hidden_states: torch.Tensor,
236
+ kv_cache: torch.Tensor,
237
+ attn_metadata: AttentionMetadata,
238
+ residual: Optional[torch.Tensor],
239
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
240
+ # Self Attention
241
+ residual = hidden_states
242
+ hidden_states, residual = self.input_layernorm(hidden_states, residual)
243
+ hidden_states_attention = self.self_attn(
244
+ positions=positions,
245
+ hidden_states=hidden_states,
246
+ kv_cache=kv_cache,
247
+ attn_metadata=attn_metadata,
248
+ )
249
+ hidden_states_mlp = self.mlp(hidden_states)
250
+ # Add everything together
251
+ hidden_states = residual + hidden_states_attention + hidden_states_mlp
252
+
253
+ return hidden_states, residual
254
+
255
+
256
+ class CohereModel(nn.Module):
257
+
258
+ def __init__(
259
+ self,
260
+ config: CohereConfig,
261
+ quant_config: Optional[QuantizationConfig] = None,
262
+ ):
263
+ super().__init__()
264
+ self.config = config
265
+ self.vocab_size = config.vocab_size
266
+ self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
267
+ config.hidden_size)
268
+ self.layers = nn.ModuleList([
269
+ CohereDecoderLayer(config, quant_config=quant_config)
270
+ for _ in range(config.num_hidden_layers)
271
+ ])
272
+ self.norm = LayerNorm(param_shape=(config.hidden_size),
273
+ eps=config.layer_norm_eps)
274
+
275
+ def forward(
276
+ self,
277
+ input_ids: torch.Tensor,
278
+ positions: torch.Tensor,
279
+ kv_caches: List[torch.Tensor],
280
+ attn_metadata: AttentionMetadata,
281
+ ) -> torch.Tensor:
282
+ hidden_states = self.embed_tokens(input_ids)
283
+ residual = None
284
+ for i in range(len(self.layers)):
285
+ layer = self.layers[i]
286
+ hidden_states, residual = layer(
287
+ positions,
288
+ hidden_states,
289
+ kv_caches[i],
290
+ attn_metadata,
291
+ residual,
292
+ )
293
+ hidden_states, _ = self.norm(hidden_states, residual)
294
+ return hidden_states
295
+
296
+
297
+ class CohereForCausalLM(nn.Module):
298
+
299
+ def __init__(
300
+ self,
301
+ config: CohereConfig,
302
+ quant_config: Optional[QuantizationConfig] = None,
303
+ ) -> None:
304
+ super().__init__()
305
+ self.config = config
306
+ self.quant_config = quant_config
307
+ self.logits_processor = LogitsProcessor(config.vocab_size,
308
+ scale=config.logit_scale)
309
+ self.model = CohereModel(config, quant_config)
310
+ self.sampler = Sampler()
311
+
312
+ @torch.no_grad()
313
+ def forward(
314
+ self,
315
+ input_ids: torch.Tensor,
316
+ positions: torch.Tensor,
317
+ kv_caches: List[torch.Tensor],
318
+ attn_metadata: AttentionMetadata,
319
+ ) -> torch.Tensor:
320
+ hidden_states = self.model(input_ids, positions, kv_caches,
321
+ attn_metadata)
322
+ return hidden_states
323
+
324
+ def compute_logits(self, hidden_states: torch.Tensor,
325
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
326
+ logits = self.logits_processor(self.model.embed_tokens.weight,
327
+ hidden_states, sampling_metadata)
328
+ return logits
329
+
330
+ def sample(
331
+ self,
332
+ logits: torch.Tensor,
333
+ sampling_metadata: SamplingMetadata,
334
+ ) -> Optional[SamplerOutput]:
335
+ next_tokens = self.sampler(logits, sampling_metadata)
336
+ return next_tokens
337
+
338
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
339
+ stacked_params_mapping = [
340
+ # (param_name, shard_name, shard_id)
341
+ ("qkv_proj", "q_proj", "q"),
342
+ ("qkv_proj", "k_proj", "k"),
343
+ ("qkv_proj", "v_proj", "v"),
344
+ ("gate_up_proj", "gate_proj", 0),
345
+ ("gate_up_proj", "up_proj", 1),
346
+ ]
347
+ params_dict = dict(self.named_parameters())
348
+ loaded_params = set()
349
+ for name, loaded_weight in weights:
350
+ for param_name, shard_name, shard_id in stacked_params_mapping:
351
+ if shard_name not in name:
352
+ continue
353
+ name = name.replace(shard_name, param_name)
354
+ # Skip loading extra bias for GPTQ models.
355
+ if name.endswith(".bias") and name not in params_dict:
356
+ continue
357
+ param = params_dict[name]
358
+ weight_loader = param.weight_loader
359
+ weight_loader(param, loaded_weight, shard_id)
360
+ break
361
+ else:
362
+ # lm_head is not used in vllm as it is tied with embed_token.
363
+ # To prevent errors, skip loading lm_head.weight.
364
+ if "lm_head.weight" in name:
365
+ continue
366
+ # Skip loading extra bias for GPTQ models.
367
+ if name.endswith(".bias") and name not in params_dict:
368
+ continue
369
+ param = params_dict[name]
370
+ weight_loader = getattr(param, "weight_loader",
371
+ default_weight_loader)
372
+ weight_loader(param, loaded_weight)
373
+ loaded_params.add(name)