vllm-npu 0.4.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vllm/__init__.py +23 -0
- vllm/_custom_ops.py +251 -0
- vllm/attention/__init__.py +13 -0
- vllm/attention/backends/__init__.py +0 -0
- vllm/attention/backends/abstract.py +127 -0
- vllm/attention/backends/flash_attn.py +271 -0
- vllm/attention/backends/flashinfer.py +220 -0
- vllm/attention/backends/rocm_flash_attn.py +374 -0
- vllm/attention/backends/torch_sdpa.py +250 -0
- vllm/attention/backends/xformers.py +393 -0
- vllm/attention/layer.py +56 -0
- vllm/attention/ops/__init__.py +0 -0
- vllm/attention/ops/paged_attn.py +216 -0
- vllm/attention/ops/prefix_prefill.py +792 -0
- vllm/attention/ops/triton_flash_attention.py +810 -0
- vllm/attention/selector.py +91 -0
- vllm/block.py +84 -0
- vllm/config.py +1225 -0
- vllm/core/__init__.py +0 -0
- vllm/core/block/__init__.py +0 -0
- vllm/core/block/block_table.py +295 -0
- vllm/core/block/common.py +199 -0
- vllm/core/block/cpu_gpu_block_allocator.py +228 -0
- vllm/core/block/interfaces.py +205 -0
- vllm/core/block/naive_block.py +318 -0
- vllm/core/block/prefix_caching_block.py +606 -0
- vllm/core/block_manager_v1.py +625 -0
- vllm/core/block_manager_v2.py +258 -0
- vllm/core/evictor_v1.py +105 -0
- vllm/core/evictor_v2.py +127 -0
- vllm/core/interfaces.py +113 -0
- vllm/core/policy.py +45 -0
- vllm/core/scheduler.py +1163 -0
- vllm/distributed/__init__.py +3 -0
- vllm/distributed/communication_op.py +237 -0
- vllm/distributed/device_communicators/__init__.py +0 -0
- vllm/distributed/device_communicators/custom_all_reduce.py +274 -0
- vllm/distributed/device_communicators/pynccl.py +287 -0
- vllm/distributed/device_communicators/pynccl_utils.py +66 -0
- vllm/distributed/parallel_state.py +339 -0
- vllm/distributed/utils.py +136 -0
- vllm/engine/__init__.py +0 -0
- vllm/engine/arg_utils.py +649 -0
- vllm/engine/async_llm_engine.py +737 -0
- vllm/engine/llm_engine.py +784 -0
- vllm/engine/metrics.py +368 -0
- vllm/engine/output_processor/__init__.py +0 -0
- vllm/engine/output_processor/interfaces.py +76 -0
- vllm/engine/output_processor/multi_step.py +142 -0
- vllm/engine/output_processor/single_step.py +284 -0
- vllm/engine/output_processor/stop_checker.py +101 -0
- vllm/engine/output_processor/util.py +19 -0
- vllm/entrypoints/__init__.py +0 -0
- vllm/entrypoints/api_server.py +119 -0
- vllm/entrypoints/llm.py +259 -0
- vllm/entrypoints/openai/__init__.py +0 -0
- vllm/entrypoints/openai/api_server.py +186 -0
- vllm/entrypoints/openai/cli_args.py +115 -0
- vllm/entrypoints/openai/protocol.py +460 -0
- vllm/entrypoints/openai/serving_chat.py +392 -0
- vllm/entrypoints/openai/serving_completion.py +347 -0
- vllm/entrypoints/openai/serving_engine.py +234 -0
- vllm/envs.py +217 -0
- vllm/executor/__init__.py +0 -0
- vllm/executor/cpu_executor.py +152 -0
- vllm/executor/distributed_gpu_executor.py +115 -0
- vllm/executor/executor_base.py +115 -0
- vllm/executor/gpu_executor.py +150 -0
- vllm/executor/multiproc_worker_utils.py +263 -0
- vllm/executor/neuron_executor.py +91 -0
- vllm/executor/ray_gpu_executor.py +327 -0
- vllm/executor/ray_utils.py +119 -0
- vllm/logger.py +153 -0
- vllm/logging/__init__.py +5 -0
- vllm/logging/formatter.py +15 -0
- vllm/lora/__init__.py +0 -0
- vllm/lora/fully_sharded_layers.py +262 -0
- vllm/lora/layers.py +1181 -0
- vllm/lora/lora.py +167 -0
- vllm/lora/models.py +645 -0
- vllm/lora/punica.py +213 -0
- vllm/lora/request.py +32 -0
- vllm/lora/utils.py +98 -0
- vllm/lora/worker_manager.py +251 -0
- vllm/model_executor/__init__.py +7 -0
- vllm/model_executor/guided_decoding/__init__.py +25 -0
- vllm/model_executor/guided_decoding/lm_format_enforcer_decoding.py +70 -0
- vllm/model_executor/guided_decoding/outlines_decoding.py +130 -0
- vllm/model_executor/guided_decoding/outlines_logits_processors.py +184 -0
- vllm/model_executor/layers/__init__.py +0 -0
- vllm/model_executor/layers/activation.py +173 -0
- vllm/model_executor/layers/fused_moe/__init__.py +7 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +140 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
- vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- vllm/model_executor/layers/fused_moe/fused_moe.py +479 -0
- vllm/model_executor/layers/layernorm.py +71 -0
- vllm/model_executor/layers/linear.py +709 -0
- vllm/model_executor/layers/logits_processor.py +115 -0
- vllm/model_executor/layers/ops/__init__.py +0 -0
- vllm/model_executor/layers/ops/rand.py +157 -0
- vllm/model_executor/layers/ops/sample.py +406 -0
- vllm/model_executor/layers/quantization/__init__.py +35 -0
- vllm/model_executor/layers/quantization/aqlm.py +376 -0
- vllm/model_executor/layers/quantization/awq.py +175 -0
- vllm/model_executor/layers/quantization/base_config.py +97 -0
- vllm/model_executor/layers/quantization/fp8.py +265 -0
- vllm/model_executor/layers/quantization/gptq.py +224 -0
- vllm/model_executor/layers/quantization/gptq_marlin.py +438 -0
- vllm/model_executor/layers/quantization/marlin.py +227 -0
- vllm/model_executor/layers/quantization/schema.py +84 -0
- vllm/model_executor/layers/quantization/squeezellm.py +137 -0
- vllm/model_executor/layers/rejection_sampler.py +405 -0
- vllm/model_executor/layers/rotary_embedding.py +525 -0
- vllm/model_executor/layers/sampler.py +1051 -0
- vllm/model_executor/layers/vocab_parallel_embedding.py +155 -0
- vllm/model_executor/model_loader/__init__.py +30 -0
- vllm/model_executor/model_loader/loader.py +362 -0
- vllm/model_executor/model_loader/neuron.py +136 -0
- vllm/model_executor/model_loader/tensorizer.py +368 -0
- vllm/model_executor/model_loader/utils.py +41 -0
- vllm/model_executor/model_loader/weight_utils.py +372 -0
- vllm/model_executor/models/__init__.py +119 -0
- vllm/model_executor/models/baichuan.py +410 -0
- vllm/model_executor/models/bloom.py +327 -0
- vllm/model_executor/models/chatglm.py +386 -0
- vllm/model_executor/models/commandr.py +373 -0
- vllm/model_executor/models/dbrx.py +413 -0
- vllm/model_executor/models/decilm.py +122 -0
- vllm/model_executor/models/deepseek.py +438 -0
- vllm/model_executor/models/falcon.py +444 -0
- vllm/model_executor/models/gemma.py +393 -0
- vllm/model_executor/models/gpt2.py +266 -0
- vllm/model_executor/models/gpt_bigcode.py +274 -0
- vllm/model_executor/models/gpt_j.py +281 -0
- vllm/model_executor/models/gpt_neox.py +295 -0
- vllm/model_executor/models/internlm2.py +323 -0
- vllm/model_executor/models/jais.py +333 -0
- vllm/model_executor/models/llama.py +442 -0
- vllm/model_executor/models/llava.py +239 -0
- vllm/model_executor/models/minicpm.py +531 -0
- vllm/model_executor/models/mixtral.py +583 -0
- vllm/model_executor/models/mixtral_quant.py +404 -0
- vllm/model_executor/models/mpt.py +295 -0
- vllm/model_executor/models/olmo.py +356 -0
- vllm/model_executor/models/opt.py +349 -0
- vllm/model_executor/models/orion.py +319 -0
- vllm/model_executor/models/phi.py +300 -0
- vllm/model_executor/models/qwen.py +284 -0
- vllm/model_executor/models/qwen2.py +367 -0
- vllm/model_executor/models/qwen2_moe.py +447 -0
- vllm/model_executor/models/stablelm.py +301 -0
- vllm/model_executor/models/starcoder2.py +302 -0
- vllm/model_executor/models/xverse.py +366 -0
- vllm/model_executor/sampling_metadata.py +588 -0
- vllm/model_executor/utils.py +35 -0
- vllm/outputs.py +150 -0
- vllm/py.typed +2 -0
- vllm/sampling_params.py +340 -0
- vllm/sequence.py +766 -0
- vllm/spec_decode/__init__.py +0 -0
- vllm/spec_decode/batch_expansion.py +397 -0
- vllm/spec_decode/interfaces.py +73 -0
- vllm/spec_decode/metrics.py +191 -0
- vllm/spec_decode/multi_step_worker.py +203 -0
- vllm/spec_decode/ngram_worker.py +176 -0
- vllm/spec_decode/spec_decode_worker.py +472 -0
- vllm/spec_decode/top1_proposer.py +200 -0
- vllm/spec_decode/util.py +228 -0
- vllm/test_utils.py +41 -0
- vllm/transformers_utils/__init__.py +0 -0
- vllm/transformers_utils/config.py +58 -0
- vllm/transformers_utils/configs/__init__.py +16 -0
- vllm/transformers_utils/configs/chatglm.py +68 -0
- vllm/transformers_utils/configs/dbrx.py +278 -0
- vllm/transformers_utils/configs/falcon.py +87 -0
- vllm/transformers_utils/configs/jais.py +236 -0
- vllm/transformers_utils/configs/mpt.py +178 -0
- vllm/transformers_utils/detokenizer.py +313 -0
- vllm/transformers_utils/tokenizer.py +149 -0
- vllm/transformers_utils/tokenizer_group/__init__.py +33 -0
- vllm/transformers_utils/tokenizer_group/base_tokenizer_group.py +55 -0
- vllm/transformers_utils/tokenizer_group/ray_tokenizer_group.py +169 -0
- vllm/transformers_utils/tokenizer_group/tokenizer_group.py +78 -0
- vllm/transformers_utils/tokenizers/__init__.py +5 -0
- vllm/transformers_utils/tokenizers/baichuan.py +255 -0
- vllm/usage/__init__.py +0 -0
- vllm/usage/usage_lib.py +209 -0
- vllm/utils.py +677 -0
- vllm/worker/__init__.py +0 -0
- vllm/worker/cache_engine.py +105 -0
- vllm/worker/cpu_model_runner.py +346 -0
- vllm/worker/cpu_worker.py +321 -0
- vllm/worker/model_runner.py +1168 -0
- vllm/worker/neuron_model_runner.py +196 -0
- vllm/worker/neuron_worker.py +98 -0
- vllm/worker/worker.py +345 -0
- vllm/worker/worker_base.py +146 -0
- vllm_npu-0.4.2.dist-info/LICENSE +201 -0
- vllm_npu-0.4.2.dist-info/METADATA +173 -0
- vllm_npu-0.4.2.dist-info/RECORD +219 -0
- vllm_npu-0.4.2.dist-info/WHEEL +5 -0
- vllm_npu-0.4.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,169 @@
|
|
1
|
+
import asyncio
|
2
|
+
import os
|
3
|
+
from typing import List, Optional
|
4
|
+
|
5
|
+
from ray.util.scheduling_strategies import NodeAffinitySchedulingStrategy
|
6
|
+
from transformers import PreTrainedTokenizer
|
7
|
+
|
8
|
+
from vllm.config import TokenizerPoolConfig
|
9
|
+
from vllm.executor.ray_utils import ray
|
10
|
+
from vllm.lora.request import LoRARequest
|
11
|
+
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
12
|
+
BaseTokenizerGroup)
|
13
|
+
from vllm.transformers_utils.tokenizer_group.tokenizer_group import (
|
14
|
+
TokenizerGroup)
|
15
|
+
|
16
|
+
|
17
|
+
class RayTokenizerGroupPool(BaseTokenizerGroup):
|
18
|
+
"""A Ray-based pool of TokenizerGroups for async tokenization."""
|
19
|
+
|
20
|
+
# Class to use for workers making up the pool.
|
21
|
+
_worker_cls = TokenizerGroup
|
22
|
+
|
23
|
+
@classmethod
|
24
|
+
def from_config(cls, tokenizer_pool_config: TokenizerPoolConfig,
|
25
|
+
**init_kwargs) -> "RayTokenizerGroupPool":
|
26
|
+
ray_actor_options = (tokenizer_pool_config.extra_config or {
|
27
|
+
"num_cpus": 0
|
28
|
+
})
|
29
|
+
ray_actor_options.setdefault(
|
30
|
+
"scheduling_strategy",
|
31
|
+
NodeAffinitySchedulingStrategy(
|
32
|
+
node_id=ray.get_runtime_context().get_node_id(), soft=True))
|
33
|
+
|
34
|
+
# Carry over the env vars to the actors.
|
35
|
+
# This is necessary for API keys and such.
|
36
|
+
ray_actor_options.setdefault("runtime_env", {})
|
37
|
+
_carry_over_env_vars_to_runtime_env(ray_actor_options["runtime_env"])
|
38
|
+
|
39
|
+
init_kwargs["num_actors"] = tokenizer_pool_config.pool_size
|
40
|
+
init_kwargs["ray_actor_options"] = ray_actor_options
|
41
|
+
|
42
|
+
return cls(**init_kwargs)
|
43
|
+
|
44
|
+
def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
|
45
|
+
max_input_length: Optional[int], num_actors: int,
|
46
|
+
ray_actor_options: dict, **tokenizer_config):
|
47
|
+
# Store a local copy of the TokenizerGroup for quick access
|
48
|
+
# to underlying HF tokenizers.
|
49
|
+
self._local_tokenizer_group = self._worker_cls(
|
50
|
+
tokenizer_id=tokenizer_id,
|
51
|
+
enable_lora=enable_lora,
|
52
|
+
max_num_seqs=max_num_seqs,
|
53
|
+
max_input_length=max_input_length,
|
54
|
+
**tokenizer_config,
|
55
|
+
)
|
56
|
+
|
57
|
+
ray_tokenizer_group_cls = ray.remote(
|
58
|
+
self._worker_cls).options(**ray_actor_options)
|
59
|
+
self.tokenizer_actors = [
|
60
|
+
ray_tokenizer_group_cls.remote(tokenizer_id, enable_lora,
|
61
|
+
max_num_seqs, max_input_length,
|
62
|
+
**tokenizer_config)
|
63
|
+
for _ in range(num_actors)
|
64
|
+
]
|
65
|
+
self._idle_actors: Optional[asyncio.Queue] = None
|
66
|
+
|
67
|
+
@property
|
68
|
+
def pool_size(self) -> int:
|
69
|
+
return len(self.tokenizer_actors)
|
70
|
+
|
71
|
+
def ping(self):
|
72
|
+
return ray.get(
|
73
|
+
[actor.ping.remote() for actor in self.tokenizer_actors])
|
74
|
+
|
75
|
+
def _ensure_queue_initialized(self):
|
76
|
+
if self._idle_actors is None:
|
77
|
+
self._idle_actors = asyncio.Queue()
|
78
|
+
for actor in self.tokenizer_actors:
|
79
|
+
self._idle_actors.put_nowait(actor)
|
80
|
+
|
81
|
+
def encode(self,
|
82
|
+
prompt: str,
|
83
|
+
request_id: Optional[str] = None,
|
84
|
+
lora_request: Optional[LoRARequest] = None) -> List[int]:
|
85
|
+
"""Encode a prompt using the tokenizer group.
|
86
|
+
|
87
|
+
We pick an idle actor and use it to encode the prompt.
|
88
|
+
The actor is then put back in the queue for future use.
|
89
|
+
This is blocking.
|
90
|
+
"""
|
91
|
+
self._ensure_queue_initialized()
|
92
|
+
assert self._idle_actors is not None
|
93
|
+
|
94
|
+
if self._idle_actors.empty():
|
95
|
+
raise RuntimeError("No idle actors available.")
|
96
|
+
actor = self._idle_actors.get_nowait()
|
97
|
+
try:
|
98
|
+
ret = ray.get(
|
99
|
+
actor.encode.remote(request_id=request_id,
|
100
|
+
prompt=prompt,
|
101
|
+
lora_request=lora_request))
|
102
|
+
finally:
|
103
|
+
# Put the actor back in the queue.
|
104
|
+
# This is done in a finally block to ensure that the actor is
|
105
|
+
# always put back in the queue, even if an exception/cancellation
|
106
|
+
# is raised.
|
107
|
+
self._idle_actors.put_nowait(actor)
|
108
|
+
return ret
|
109
|
+
|
110
|
+
async def encode_async(
|
111
|
+
self,
|
112
|
+
prompt: str,
|
113
|
+
request_id: Optional[str] = None,
|
114
|
+
lora_request: Optional[LoRARequest] = None) -> List[int]:
|
115
|
+
"""Encode a prompt using the tokenizer group.
|
116
|
+
|
117
|
+
We pick an idle actor and use it to encode the prompt.
|
118
|
+
If there are no idle actors, we wait until one becomes
|
119
|
+
available.
|
120
|
+
The actor is then put back in the queue for future use.
|
121
|
+
This is non-blocking.
|
122
|
+
"""
|
123
|
+
self._ensure_queue_initialized()
|
124
|
+
assert self._idle_actors is not None
|
125
|
+
|
126
|
+
actor = await self._idle_actors.get()
|
127
|
+
try:
|
128
|
+
ret = await actor.encode.remote(request_id=request_id,
|
129
|
+
prompt=prompt,
|
130
|
+
lora_request=lora_request)
|
131
|
+
finally:
|
132
|
+
# Put the actor back in the queue.
|
133
|
+
# This is done in a finally block to ensure that the actor is
|
134
|
+
# always put back in the queue, even if an exception/cancellation
|
135
|
+
# is raised.
|
136
|
+
self._idle_actors.put_nowait(actor)
|
137
|
+
return ret
|
138
|
+
|
139
|
+
def get_max_input_len(self,
|
140
|
+
lora_request: Optional[LoRARequest] = None
|
141
|
+
) -> Optional[int]:
|
142
|
+
"""Get the maximum input length for the LoRA request."""
|
143
|
+
return self._local_tokenizer_group.get_max_input_len(lora_request)
|
144
|
+
|
145
|
+
def get_lora_tokenizer(
|
146
|
+
self,
|
147
|
+
lora_request: Optional[LoRARequest] = None
|
148
|
+
) -> "PreTrainedTokenizer":
|
149
|
+
return self._local_tokenizer_group.get_lora_tokenizer(lora_request)
|
150
|
+
|
151
|
+
async def get_lora_tokenizer_async(
|
152
|
+
self,
|
153
|
+
lora_request: Optional[LoRARequest] = None
|
154
|
+
) -> "PreTrainedTokenizer":
|
155
|
+
return await self._local_tokenizer_group.get_lora_tokenizer_async(
|
156
|
+
lora_request)
|
157
|
+
|
158
|
+
|
159
|
+
def _carry_over_env_vars_to_runtime_env(runtime_env: dict) -> None:
|
160
|
+
"""Copy over all current process environment variables to the runtime_env.
|
161
|
+
|
162
|
+
The variables in runtime_env will take precedence over the current process
|
163
|
+
environment variables.
|
164
|
+
|
165
|
+
runtime_env will be modified in place."""
|
166
|
+
env_vars = os.environ.copy()
|
167
|
+
runtime_env.setdefault("env_vars", {})
|
168
|
+
env_vars.update(runtime_env["env_vars"])
|
169
|
+
runtime_env["env_vars"] = env_vars
|
@@ -0,0 +1,78 @@
|
|
1
|
+
from typing import List, Optional
|
2
|
+
|
3
|
+
from transformers import PreTrainedTokenizer
|
4
|
+
|
5
|
+
from vllm.lora.request import LoRARequest
|
6
|
+
from vllm.transformers_utils.tokenizer import (get_lora_tokenizer,
|
7
|
+
get_lora_tokenizer_async,
|
8
|
+
get_tokenizer)
|
9
|
+
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
|
10
|
+
BaseTokenizerGroup)
|
11
|
+
from vllm.utils import LRUCache
|
12
|
+
|
13
|
+
|
14
|
+
class TokenizerGroup(BaseTokenizerGroup):
|
15
|
+
"""A group of tokenizers that can be used for LoRA adapters."""
|
16
|
+
|
17
|
+
def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
|
18
|
+
max_input_length: Optional[int], **tokenizer_config):
|
19
|
+
self.tokenizer_id = tokenizer_id
|
20
|
+
self.tokenizer_config = tokenizer_config
|
21
|
+
self.enable_lora = enable_lora
|
22
|
+
self.max_input_length = max_input_length
|
23
|
+
self.tokenizer = get_tokenizer(self.tokenizer_id, **tokenizer_config)
|
24
|
+
self.lora_tokenizers = LRUCache[PreTrainedTokenizer](
|
25
|
+
capacity=max_num_seqs) if enable_lora else None
|
26
|
+
|
27
|
+
def ping(self) -> bool:
|
28
|
+
"""Check if the tokenizer group is alive."""
|
29
|
+
return True
|
30
|
+
|
31
|
+
def get_max_input_len(self,
|
32
|
+
lora_request: Optional[LoRARequest] = None
|
33
|
+
) -> Optional[int]:
|
34
|
+
"""Get the maximum input length for the LoRA request."""
|
35
|
+
return self.max_input_length
|
36
|
+
|
37
|
+
def encode(self,
|
38
|
+
prompt: str,
|
39
|
+
request_id: Optional[str] = None,
|
40
|
+
lora_request: Optional[LoRARequest] = None) -> List[int]:
|
41
|
+
tokenizer = self.get_lora_tokenizer(lora_request)
|
42
|
+
return tokenizer.encode(prompt)
|
43
|
+
|
44
|
+
async def encode_async(
|
45
|
+
self,
|
46
|
+
prompt: str,
|
47
|
+
request_id: Optional[str] = None,
|
48
|
+
lora_request: Optional[LoRARequest] = None) -> List[int]:
|
49
|
+
tokenizer = await self.get_lora_tokenizer_async(lora_request)
|
50
|
+
return tokenizer.encode(prompt)
|
51
|
+
|
52
|
+
def get_lora_tokenizer(
|
53
|
+
self,
|
54
|
+
lora_request: Optional[LoRARequest] = None
|
55
|
+
) -> "PreTrainedTokenizer":
|
56
|
+
if not lora_request or not self.enable_lora:
|
57
|
+
return self.tokenizer
|
58
|
+
if lora_request.lora_int_id not in self.lora_tokenizers:
|
59
|
+
tokenizer = (get_lora_tokenizer(
|
60
|
+
lora_request, **self.tokenizer_config) or self.tokenizer)
|
61
|
+
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
|
62
|
+
return tokenizer
|
63
|
+
else:
|
64
|
+
return self.lora_tokenizers.get(lora_request.lora_int_id)
|
65
|
+
|
66
|
+
async def get_lora_tokenizer_async(
|
67
|
+
self,
|
68
|
+
lora_request: Optional[LoRARequest] = None
|
69
|
+
) -> "PreTrainedTokenizer":
|
70
|
+
if not lora_request or not self.enable_lora:
|
71
|
+
return self.tokenizer
|
72
|
+
if lora_request.lora_int_id not in self.lora_tokenizers:
|
73
|
+
tokenizer = (await get_lora_tokenizer_async(
|
74
|
+
lora_request, **self.tokenizer_config) or self.tokenizer)
|
75
|
+
self.lora_tokenizers.put(lora_request.lora_int_id, tokenizer)
|
76
|
+
return tokenizer
|
77
|
+
else:
|
78
|
+
return self.lora_tokenizers.get(lora_request.lora_int_id)
|
@@ -0,0 +1,255 @@
|
|
1
|
+
# Adapted from
|
2
|
+
# https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/8f6e343d545c503b91429582231d1d354dac2740/tokenization_baichuan.py
|
3
|
+
# This includes a fix suggested in
|
4
|
+
# https://github.com/vllm-project/vllm/issues/1403#issuecomment-1767503058
|
5
|
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
6
|
+
|
7
|
+
import os
|
8
|
+
from shutil import copyfile
|
9
|
+
from typing import Any, Dict, List, Optional, Tuple
|
10
|
+
|
11
|
+
import sentencepiece as spm
|
12
|
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
13
|
+
from transformers.utils import logging
|
14
|
+
|
15
|
+
logger = logging.get_logger(__name__)
|
16
|
+
|
17
|
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
18
|
+
|
19
|
+
PRETRAINED_VOCAB_FILES_MAP = { # type: ignore
|
20
|
+
"vocab_file": {},
|
21
|
+
"tokenizer_file": {},
|
22
|
+
}
|
23
|
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} # type: ignore
|
24
|
+
|
25
|
+
|
26
|
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
27
|
+
"""
|
28
|
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
29
|
+
|
30
|
+
Args:
|
31
|
+
vocab_file (`str`):
|
32
|
+
Path to the vocabulary file.
|
33
|
+
"""
|
34
|
+
|
35
|
+
vocab_files_names = VOCAB_FILES_NAMES
|
36
|
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
37
|
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
38
|
+
model_input_names = ["input_ids", "attention_mask"]
|
39
|
+
|
40
|
+
def __init__(
|
41
|
+
self,
|
42
|
+
vocab_file,
|
43
|
+
unk_token="<unk>",
|
44
|
+
bos_token="<s>",
|
45
|
+
eos_token="</s>",
|
46
|
+
pad_token=None,
|
47
|
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
48
|
+
add_bos_token=True,
|
49
|
+
add_eos_token=False,
|
50
|
+
clean_up_tokenization_spaces=False,
|
51
|
+
**kwargs,
|
52
|
+
):
|
53
|
+
self.sp_model_kwargs = ({} if sp_model_kwargs is None else
|
54
|
+
sp_model_kwargs)
|
55
|
+
bos_token = (AddedToken(bos_token, lstrip=False, rstrip=False)
|
56
|
+
if isinstance(bos_token, str) else bos_token)
|
57
|
+
eos_token = (AddedToken(eos_token, lstrip=False, rstrip=False)
|
58
|
+
if isinstance(eos_token, str) else eos_token)
|
59
|
+
unk_token = (AddedToken(unk_token, lstrip=False, rstrip=False)
|
60
|
+
if isinstance(unk_token, str) else unk_token)
|
61
|
+
pad_token = (AddedToken(pad_token, lstrip=False, rstrip=False)
|
62
|
+
if isinstance(pad_token, str) else pad_token)
|
63
|
+
self.vocab_file = vocab_file
|
64
|
+
self.add_bos_token = add_bos_token
|
65
|
+
self.add_eos_token = add_eos_token
|
66
|
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
67
|
+
self.sp_model.Load(vocab_file)
|
68
|
+
super().__init__(
|
69
|
+
bos_token=bos_token,
|
70
|
+
eos_token=eos_token,
|
71
|
+
unk_token=unk_token,
|
72
|
+
pad_token=pad_token,
|
73
|
+
add_bos_token=add_bos_token,
|
74
|
+
add_eos_token=add_eos_token,
|
75
|
+
sp_model_kwargs=self.sp_model_kwargs,
|
76
|
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77
|
+
**kwargs,
|
78
|
+
)
|
79
|
+
|
80
|
+
def __getstate__(self):
|
81
|
+
state = self.__dict__.copy()
|
82
|
+
state["sp_model"] = None
|
83
|
+
return state
|
84
|
+
|
85
|
+
def __setstate__(self, d):
|
86
|
+
self.__dict__ = d
|
87
|
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
88
|
+
self.sp_model.Load(self.vocab_file)
|
89
|
+
|
90
|
+
@property
|
91
|
+
def vocab_size(self):
|
92
|
+
"""Returns vocab size"""
|
93
|
+
return self.sp_model.get_piece_size()
|
94
|
+
|
95
|
+
def get_vocab(self):
|
96
|
+
"""Returns vocab as a dict"""
|
97
|
+
vocab = {
|
98
|
+
self.convert_ids_to_tokens(i): i
|
99
|
+
for i in range(self.vocab_size)
|
100
|
+
}
|
101
|
+
vocab.update(self.added_tokens_encoder)
|
102
|
+
return vocab
|
103
|
+
|
104
|
+
def _tokenize(self, text):
|
105
|
+
"""Returns a tokenized string."""
|
106
|
+
return self.sp_model.encode(text, out_type=str)
|
107
|
+
|
108
|
+
def _convert_token_to_id(self, token):
|
109
|
+
"""Converts a token (str) in an id using the vocab."""
|
110
|
+
return self.sp_model.piece_to_id(token)
|
111
|
+
|
112
|
+
def _convert_id_to_token(self, index):
|
113
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
114
|
+
token = self.sp_model.IdToPiece(index)
|
115
|
+
return token
|
116
|
+
|
117
|
+
def convert_tokens_to_string(self, tokens: List[str]):
|
118
|
+
"""Converts a sequence of tokens (string) in a single string."""
|
119
|
+
current_sub_tokens: List[str] = []
|
120
|
+
out_string = ""
|
121
|
+
prev_is_special = False
|
122
|
+
for i, token in enumerate(tokens):
|
123
|
+
# make sure that special tokens are not decoded using
|
124
|
+
# sentencepiece model
|
125
|
+
if token in self.all_special_tokens:
|
126
|
+
if not prev_is_special and i != 0:
|
127
|
+
out_string += " "
|
128
|
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
129
|
+
prev_is_special = True
|
130
|
+
current_sub_tokens = []
|
131
|
+
else:
|
132
|
+
current_sub_tokens.append(token)
|
133
|
+
prev_is_special = False
|
134
|
+
out_string += self.sp_model.decode(current_sub_tokens)
|
135
|
+
return out_string
|
136
|
+
|
137
|
+
def save_vocabulary(self,
|
138
|
+
save_directory,
|
139
|
+
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
140
|
+
"""
|
141
|
+
Save the vocabulary and special tokens file to a directory.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
save_directory (`str`):
|
145
|
+
The directory in which to save the vocabulary.
|
146
|
+
|
147
|
+
Returns:
|
148
|
+
`Tuple(str)`: Paths to the files saved.
|
149
|
+
"""
|
150
|
+
if not os.path.isdir(save_directory):
|
151
|
+
raise ValueError(f"Vocabulary path ({save_directory}) "
|
152
|
+
"should be a directory")
|
153
|
+
|
154
|
+
out_vocab_file = os.path.join(
|
155
|
+
save_directory,
|
156
|
+
(filename_prefix + "-" if filename_prefix else "") +
|
157
|
+
VOCAB_FILES_NAMES["vocab_file"],
|
158
|
+
)
|
159
|
+
|
160
|
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
161
|
+
out_vocab_file) and os.path.isfile(self.vocab_file):
|
162
|
+
copyfile(self.vocab_file, out_vocab_file)
|
163
|
+
elif not os.path.isfile(self.vocab_file):
|
164
|
+
with open(out_vocab_file, "wb") as fi:
|
165
|
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
166
|
+
fi.write(content_spiece_model)
|
167
|
+
|
168
|
+
return (out_vocab_file, )
|
169
|
+
|
170
|
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
171
|
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
172
|
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
173
|
+
|
174
|
+
output = bos_token_id + token_ids_0 + eos_token_id
|
175
|
+
|
176
|
+
if token_ids_1 is not None:
|
177
|
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
178
|
+
|
179
|
+
return output
|
180
|
+
|
181
|
+
def get_special_tokens_mask(
|
182
|
+
self,
|
183
|
+
token_ids_0: List[int],
|
184
|
+
token_ids_1: Optional[List[int]] = None,
|
185
|
+
already_has_special_tokens: bool = False,
|
186
|
+
) -> List[int]:
|
187
|
+
"""
|
188
|
+
Retrieve sequence ids from a token list that has no special tokens
|
189
|
+
added. This method is called when adding
|
190
|
+
special tokens using the tokenizer `prepare_for_model` method.
|
191
|
+
|
192
|
+
Args:
|
193
|
+
token_ids_0 (`List[int]`):
|
194
|
+
List of IDs.
|
195
|
+
token_ids_1 (`List[int]`, *optional*):
|
196
|
+
Optional second list of IDs for sequence pairs.
|
197
|
+
already_has_special_tokens (`bool`, *optional*, defaults to
|
198
|
+
`False`):
|
199
|
+
Whether or not the token list is already formatted with
|
200
|
+
special tokens for the model.
|
201
|
+
|
202
|
+
Returns:
|
203
|
+
`List[int]`: A list of integers in the range [0, 1]:
|
204
|
+
1 for a special token, 0 for a sequence token.
|
205
|
+
"""
|
206
|
+
if already_has_special_tokens:
|
207
|
+
return super().get_special_tokens_mask(
|
208
|
+
token_ids_0=token_ids_0,
|
209
|
+
token_ids_1=token_ids_1,
|
210
|
+
already_has_special_tokens=True,
|
211
|
+
)
|
212
|
+
|
213
|
+
bos_token_id = [1] if self.add_bos_token else []
|
214
|
+
eos_token_id = [1] if self.add_eos_token else []
|
215
|
+
|
216
|
+
if token_ids_1 is None:
|
217
|
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
218
|
+
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
219
|
+
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
|
220
|
+
|
221
|
+
def create_token_type_ids_from_sequences(
|
222
|
+
self,
|
223
|
+
token_ids_0: List[int],
|
224
|
+
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
225
|
+
"""
|
226
|
+
Creates a mask from the two sequences passed to be used in a
|
227
|
+
sequence-pair classification task. An ALBERT
|
228
|
+
sequence pair mask has the following format:
|
229
|
+
|
230
|
+
```
|
231
|
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
232
|
+
| first sequence | second sequence |
|
233
|
+
```
|
234
|
+
|
235
|
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
236
|
+
|
237
|
+
Args:
|
238
|
+
token_ids_0 (`List[int]`):
|
239
|
+
List of ids.
|
240
|
+
token_ids_1 (`List[int]`, *optional*):
|
241
|
+
Optional second list of IDs for sequence pairs.
|
242
|
+
|
243
|
+
Returns:
|
244
|
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids)
|
245
|
+
according to the given sequence(s).
|
246
|
+
"""
|
247
|
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
248
|
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
249
|
+
|
250
|
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
251
|
+
|
252
|
+
if token_ids_1 is not None:
|
253
|
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
254
|
+
|
255
|
+
return output
|
vllm/usage/__init__.py
ADDED
File without changes
|