sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
    
        sglang/srt/lora/mem_pool.py
    CHANGED
    
    | 
         @@ -4,7 +4,7 @@ from typing import Callable, Dict, Iterable, List, Optional, Set, Tuple, Union 
     | 
|
| 
       4 
4 
     | 
    
         
             
            import torch
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            from sglang.srt.distributed import divide
         
     | 
| 
       7 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.lora.eviction_policy import get_eviction_policy
         
     | 
| 
       8 
8 
     | 
    
         
             
            from sglang.srt.lora.layers import BaseLayerWithLoRA
         
     | 
| 
       9 
9 
     | 
    
         
             
            from sglang.srt.lora.lora import LoRAAdapter
         
     | 
| 
       10 
10 
     | 
    
         
             
            from sglang.srt.lora.lora_config import LoRAConfig
         
     | 
| 
         @@ -17,6 +17,7 @@ from sglang.srt.lora.utils import ( 
     | 
|
| 
       17 
17 
     | 
    
         
             
                get_stacked_multiply,
         
     | 
| 
       18 
18 
     | 
    
         
             
                get_target_module_name,
         
     | 
| 
       19 
19 
     | 
    
         
             
            )
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.utils.hf_transformers_utils import AutoConfig
         
     | 
| 
       20 
21 
     | 
    
         | 
| 
       21 
22 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       22 
23 
     | 
    
         | 
| 
         @@ -54,6 +55,7 @@ class LoRAMemoryPool: 
     | 
|
| 
       54 
55 
     | 
    
         
             
                    max_lora_rank: int,
         
     | 
| 
       55 
56 
     | 
    
         
             
                    target_modules: Set[str],
         
     | 
| 
       56 
57 
     | 
    
         
             
                    base_model: torch.nn.Module,
         
     | 
| 
      
 58 
     | 
    
         
            +
                    eviction_policy: str,
         
     | 
| 
       57 
59 
     | 
    
         
             
                ):
         
     | 
| 
       58 
60 
     | 
    
         
             
                    self.base_hf_config: AutoConfig = base_hf_config
         
     | 
| 
       59 
61 
     | 
    
         
             
                    self.num_layer: int = base_hf_config.num_hidden_layers
         
     | 
| 
         @@ -64,6 +66,9 @@ class LoRAMemoryPool: 
     | 
|
| 
       64 
66 
     | 
    
         
             
                    self.max_lora_rank: int = max_lora_rank
         
     | 
| 
       65 
67 
     | 
    
         
             
                    self.target_modules: Set[str] = target_modules
         
     | 
| 
       66 
68 
     | 
    
         | 
| 
      
 69 
     | 
    
         
            +
                    # Initialize eviction policy
         
     | 
| 
      
 70 
     | 
    
         
            +
                    self.eviction_policy = get_eviction_policy(eviction_policy)
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
       67 
72 
     | 
    
         
             
                    # Both A_buffer and B_buffer maps lora weight names to its buffer space.
         
     | 
| 
       68 
73 
     | 
    
         
             
                    # A_buffer contains num_layer number of row-major tensors with shape
         
     | 
| 
       69 
74 
     | 
    
         
             
                    #   (max_loras_per_batch, stacked_num * max_lora_dim, input_dim)
         
     | 
| 
         @@ -189,31 +194,50 @@ class LoRAMemoryPool: 
     | 
|
| 
       189 
194 
     | 
    
         
             
                    lora_refs: Dict[str, LoRARef],
         
     | 
| 
       190 
195 
     | 
    
         
             
                ):
         
     | 
| 
       191 
196 
     | 
    
         
             
                    def get_available_buffer_slot():
         
     | 
| 
      
 197 
     | 
    
         
            +
                        # 1. Prioritize empty slots
         
     | 
| 
       192 
198 
     | 
    
         
             
                        for buffer_id in range(self.max_loras_per_batch):
         
     | 
| 
       193 
     | 
    
         
            -
                            # Prioritize empty slots
         
     | 
| 
       194 
199 
     | 
    
         
             
                            if self.buffer_id_to_uid[buffer_id] == EMPTY_SLOT:
         
     | 
| 
       195 
200 
     | 
    
         
             
                                return buffer_id
         
     | 
| 
       196 
201 
     | 
    
         | 
| 
      
 202 
     | 
    
         
            +
                        # 2. Memory pool is full, need to evict using policy
         
     | 
| 
      
 203 
     | 
    
         
            +
                        candidates = set()
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
       197 
205 
     | 
    
         
             
                        for buffer_id in range(self.max_loras_per_batch):
         
     | 
| 
       198 
206 
     | 
    
         
             
                            uid = self.buffer_id_to_uid[buffer_id]
         
     | 
| 
       199 
207 
     | 
    
         | 
| 
       200 
     | 
    
         
            -
                            #  
     | 
| 
       201 
     | 
    
         
            -
                             
     | 
| 
       202 
     | 
    
         
            -
             
     | 
| 
       203 
     | 
    
         
            -
                                 
     | 
| 
       204 
     | 
    
         
            -
             
     | 
| 
       205 
     | 
    
         
            -
             
     | 
| 
       206 
     | 
    
         
            -
             
     | 
| 
       207 
     | 
    
         
            -
             
     | 
| 
       208 
     | 
    
         
            -
             
     | 
| 
       209 
     | 
    
         
            -
             
     | 
| 
       210 
     | 
    
         
            -
             
     | 
| 
       211 
     | 
    
         
            -
                                self.buffer_id_to_uid[buffer_id] = EMPTY_SLOT
         
     | 
| 
       212 
     | 
    
         
            -
                                return buffer_id
         
     | 
| 
      
 208 
     | 
    
         
            +
                            # Skip if this adapter is needed by current batch
         
     | 
| 
      
 209 
     | 
    
         
            +
                            # TODO (lifuhuang): we might consider supporting pinning base model (uid == None) in the future.
         
     | 
| 
      
 210 
     | 
    
         
            +
                            if uid in cur_uids:
         
     | 
| 
      
 211 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 212 
     | 
    
         
            +
             
     | 
| 
      
 213 
     | 
    
         
            +
                            # Skip if this adapter is pinned (base model cannot be pinned, so can be evicted)
         
     | 
| 
      
 214 
     | 
    
         
            +
                            if uid is not None:
         
     | 
| 
      
 215 
     | 
    
         
            +
                                lora_ref = lora_refs.get(uid)
         
     | 
| 
      
 216 
     | 
    
         
            +
                                if lora_ref and lora_ref.pinned:
         
     | 
| 
      
 217 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 218 
     | 
    
         
            +
                            candidates.add(uid)
         
     | 
| 
       213 
219 
     | 
    
         | 
| 
       214 
     | 
    
         
            -
                         
     | 
| 
       215 
     | 
    
         
            -
                             
     | 
| 
      
 220 
     | 
    
         
            +
                        if not candidates:
         
     | 
| 
      
 221 
     | 
    
         
            +
                            raise ValueError(
         
     | 
| 
      
 222 
     | 
    
         
            +
                                "No available buffer slots found. Please ensure the number of active (pinned) loras is less than max_loras_per_batch."
         
     | 
| 
      
 223 
     | 
    
         
            +
                            )
         
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
                        # Select victim using eviction policy
         
     | 
| 
      
 226 
     | 
    
         
            +
                        victim_uid = self.eviction_policy.select_victim(candidates)
         
     | 
| 
      
 227 
     | 
    
         
            +
             
     | 
| 
      
 228 
     | 
    
         
            +
                        # Evict the selected victim
         
     | 
| 
      
 229 
     | 
    
         
            +
                        victim_buffer_id = self.uid_to_buffer_id[victim_uid]
         
     | 
| 
      
 230 
     | 
    
         
            +
                        self.uid_to_buffer_id.pop(victim_uid)
         
     | 
| 
      
 231 
     | 
    
         
            +
                        self.eviction_policy.remove(victim_uid)
         
     | 
| 
      
 232 
     | 
    
         
            +
                        self.buffer_id_to_uid[victim_buffer_id] = EMPTY_SLOT
         
     | 
| 
      
 233 
     | 
    
         
            +
                        logger.debug(
         
     | 
| 
      
 234 
     | 
    
         
            +
                            f"Evicting LoRA {victim_uid} from buffer slot {victim_buffer_id}."
         
     | 
| 
       216 
235 
     | 
    
         
             
                        )
         
     | 
| 
      
 236 
     | 
    
         
            +
                        return victim_buffer_id
         
     | 
| 
      
 237 
     | 
    
         
            +
             
     | 
| 
      
 238 
     | 
    
         
            +
                    # Mark all adapters in current batch as used (for LRU tracking)
         
     | 
| 
      
 239 
     | 
    
         
            +
                    for uid in cur_uids:
         
     | 
| 
      
 240 
     | 
    
         
            +
                        self.eviction_policy.mark_used(uid)
         
     | 
| 
       217 
241 
     | 
    
         | 
| 
       218 
242 
     | 
    
         
             
                    for uid in cur_uids:
         
     | 
| 
       219 
243 
     | 
    
         
             
                        if uid not in self.uid_to_buffer_id:
         
     | 
| 
         @@ -1,3 +1,5 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from .chunked_sgmv_expand import chunked_sgmv_lora_expand_forward
         
     | 
| 
      
 2 
     | 
    
         
            +
            from .chunked_sgmv_shrink import chunked_sgmv_lora_shrink_forward
         
     | 
| 
       1 
3 
     | 
    
         
             
            from .gate_up_lora_b import gate_up_lora_b_fwd
         
     | 
| 
       2 
4 
     | 
    
         
             
            from .qkv_lora_b import qkv_lora_b_fwd
         
     | 
| 
       3 
5 
     | 
    
         
             
            from .sgemm_lora_a import sgemm_lora_a_fwd
         
     | 
| 
         @@ -8,4 +10,6 @@ __all__ = [ 
     | 
|
| 
       8 
10 
     | 
    
         
             
                "qkv_lora_b_fwd",
         
     | 
| 
       9 
11 
     | 
    
         
             
                "sgemm_lora_a_fwd",
         
     | 
| 
       10 
12 
     | 
    
         
             
                "sgemm_lora_b_fwd",
         
     | 
| 
      
 13 
     | 
    
         
            +
                "chunked_sgmv_lora_shrink_forward",
         
     | 
| 
      
 14 
     | 
    
         
            +
                "chunked_sgmv_lora_expand_forward",
         
     | 
| 
       11 
15 
     | 
    
         
             
            ]
         
     | 
| 
         @@ -0,0 +1,214 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 4 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 5 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.lora.utils import LoRABatchInfo
         
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.utils import cached_triton_kernel
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            @cached_triton_kernel(lambda _, kwargs: (kwargs["NUM_SLICES"], kwargs["BLOCK_M"]))
         
     | 
| 
      
 12 
     | 
    
         
            +
            @triton.jit(do_not_specialize=["num_segs"])
         
     | 
| 
      
 13 
     | 
    
         
            +
            def _chunked_lora_expand_kernel(
         
     | 
| 
      
 14 
     | 
    
         
            +
                # Pointers to matrices
         
     | 
| 
      
 15 
     | 
    
         
            +
                x,
         
     | 
| 
      
 16 
     | 
    
         
            +
                weights,
         
     | 
| 
      
 17 
     | 
    
         
            +
                output,
         
     | 
| 
      
 18 
     | 
    
         
            +
                # Information on sequence lengths and weight id
         
     | 
| 
      
 19 
     | 
    
         
            +
                seg_indptr,
         
     | 
| 
      
 20 
     | 
    
         
            +
                weight_indices,
         
     | 
| 
      
 21 
     | 
    
         
            +
                lora_ranks,
         
     | 
| 
      
 22 
     | 
    
         
            +
                permutation,
         
     | 
| 
      
 23 
     | 
    
         
            +
                num_segs,
         
     | 
| 
      
 24 
     | 
    
         
            +
                # For fused output scaling
         
     | 
| 
      
 25 
     | 
    
         
            +
                scalings,
         
     | 
| 
      
 26 
     | 
    
         
            +
                # Offsets of q/k/v slice on output dimension
         
     | 
| 
      
 27 
     | 
    
         
            +
                slice_offsets,
         
     | 
| 
      
 28 
     | 
    
         
            +
                # Meta parameters
         
     | 
| 
      
 29 
     | 
    
         
            +
                NUM_SLICES: tl.constexpr,
         
     | 
| 
      
 30 
     | 
    
         
            +
                OUTPUT_DIM: tl.constexpr,
         
     | 
| 
      
 31 
     | 
    
         
            +
                MAX_RANK: tl.constexpr,  # K = R
         
     | 
| 
      
 32 
     | 
    
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 
      
 33 
     | 
    
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 
      
 34 
     | 
    
         
            +
                BLOCK_K: tl.constexpr,
         
     | 
| 
      
 35 
     | 
    
         
            +
            ):
         
     | 
| 
      
 36 
     | 
    
         
            +
                """
         
     | 
| 
      
 37 
     | 
    
         
            +
                Computes a chunked SGMV for LoRA expand operations.
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                When a sequence's rank is 0, the kernel is essentially a no-op, following
         
     | 
| 
      
 40 
     | 
    
         
            +
                the convention in pytorch where the product of two matrices of shape (m, 0)
         
     | 
| 
      
 41 
     | 
    
         
            +
                and (0, n) is an all-zero matrix of shape (m, n).
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 44 
     | 
    
         
            +
                    x (Tensor): The input tensor, which is the result of the LoRA A projection.
         
     | 
| 
      
 45 
     | 
    
         
            +
                        Shape: (s, num_slices * K), where s is the sum of all sequence lengths in the
         
     | 
| 
      
 46 
     | 
    
         
            +
                        batch and K is the maximum LoRA rank.
         
     | 
| 
      
 47 
     | 
    
         
            +
                    weights (Tensor): The LoRA B weights for all adapters.
         
     | 
| 
      
 48 
     | 
    
         
            +
                        Shape: (num_lora, output_dim, K).
         
     | 
| 
      
 49 
     | 
    
         
            +
                    output (Tensor): The output tensor where the result is stored.
         
     | 
| 
      
 50 
     | 
    
         
            +
                        Shape: (s, output_dim).
         
     | 
| 
      
 51 
     | 
    
         
            +
                """
         
     | 
| 
      
 52 
     | 
    
         
            +
                tl.static_assert(NUM_SLICES <= 3)
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                x_stride_0: tl.constexpr = NUM_SLICES * MAX_RANK
         
     | 
| 
      
 55 
     | 
    
         
            +
                x_stride_1: tl.constexpr = 1
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
                w_stride_0: tl.constexpr = OUTPUT_DIM * MAX_RANK
         
     | 
| 
      
 58 
     | 
    
         
            +
                w_stride_1: tl.constexpr = MAX_RANK
         
     | 
| 
      
 59 
     | 
    
         
            +
                w_stride_2: tl.constexpr = 1
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                output_stride_0: tl.constexpr = OUTPUT_DIM
         
     | 
| 
      
 62 
     | 
    
         
            +
                output_stride_1: tl.constexpr = 1
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                pid_s = tl.program_id(axis=2)
         
     | 
| 
      
 65 
     | 
    
         
            +
                if pid_s >= num_segs:
         
     | 
| 
      
 66 
     | 
    
         
            +
                    return
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                # Current block computes sequence with batch_id,
         
     | 
| 
      
 69 
     | 
    
         
            +
                # which starts from row seg_start of x with length seg_len.
         
     | 
| 
      
 70 
     | 
    
         
            +
                # qkv_id decides which of q,k,v to compute (0: q, 1: k, 2: v)
         
     | 
| 
      
 71 
     | 
    
         
            +
                w_index = tl.load(weight_indices + pid_s)
         
     | 
| 
      
 72 
     | 
    
         
            +
                cur_rank = tl.load(lora_ranks + w_index)
         
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
                # If rank is 0, this kernel is a no-op.
         
     | 
| 
      
 75 
     | 
    
         
            +
                if cur_rank == 0:
         
     | 
| 
      
 76 
     | 
    
         
            +
                    return
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                seg_start = tl.load(seg_indptr + pid_s)
         
     | 
| 
      
 79 
     | 
    
         
            +
                seg_end = tl.load(seg_indptr + pid_s + 1)
         
     | 
| 
      
 80 
     | 
    
         
            +
             
     | 
| 
      
 81 
     | 
    
         
            +
                slice_id = tl.program_id(axis=1)
         
     | 
| 
      
 82 
     | 
    
         
            +
                slice_start = tl.load(slice_offsets + slice_id)
         
     | 
| 
      
 83 
     | 
    
         
            +
                slice_end = tl.load(slice_offsets + slice_id + 1)
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                scaling = tl.load(scalings + w_index)
         
     | 
| 
      
 86 
     | 
    
         
            +
                # Adjust K (rank) according to the specific LoRA adapter
         
     | 
| 
      
 87 
     | 
    
         
            +
                cur_rank = tl.minimum(MAX_RANK, cur_rank)
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
                # Map logical sequence index to physical index
         
     | 
| 
      
 90 
     | 
    
         
            +
                s_offset_logical = tl.arange(0, BLOCK_M) + seg_start
         
     | 
| 
      
 91 
     | 
    
         
            +
                s_offset_physical = tl.load(
         
     | 
| 
      
 92 
     | 
    
         
            +
                    permutation + s_offset_logical, mask=s_offset_logical < seg_end
         
     | 
| 
      
 93 
     | 
    
         
            +
                )
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                # Create pointers for the first block of x and weights[batch_id][n_start: n_end][:]
         
     | 
| 
      
 96 
     | 
    
         
            +
                # The pointers will be advanced as we move in the K direction
         
     | 
| 
      
 97 
     | 
    
         
            +
                # and accumulate
         
     | 
| 
      
 98 
     | 
    
         
            +
                pid_n = tl.program_id(axis=0)
         
     | 
| 
      
 99 
     | 
    
         
            +
                n_offset = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N + slice_start
         
     | 
| 
      
 100 
     | 
    
         
            +
                k_offset = tl.arange(0, BLOCK_K)
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
                x_ptrs = (
         
     | 
| 
      
 103 
     | 
    
         
            +
                    x
         
     | 
| 
      
 104 
     | 
    
         
            +
                    + slice_id * cur_rank * x_stride_1
         
     | 
| 
      
 105 
     | 
    
         
            +
                    + (s_offset_physical[:, None] * x_stride_0 + k_offset[None, :] * x_stride_1)
         
     | 
| 
      
 106 
     | 
    
         
            +
                )
         
     | 
| 
      
 107 
     | 
    
         
            +
                w_ptrs = (weights + w_index * w_stride_0) + (
         
     | 
| 
      
 108 
     | 
    
         
            +
                    k_offset[:, None] * w_stride_2 + n_offset[None, :] * w_stride_1
         
     | 
| 
      
 109 
     | 
    
         
            +
                )
         
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
      
 111 
     | 
    
         
            +
                # Iterate to compute the block in output matrix
         
     | 
| 
      
 112 
     | 
    
         
            +
                partial_sum = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
         
     | 
| 
      
 113 
     | 
    
         
            +
                for k in range(0, tl.cdiv(cur_rank, BLOCK_K)):
         
     | 
| 
      
 114 
     | 
    
         
            +
                    x_tile = tl.load(
         
     | 
| 
      
 115 
     | 
    
         
            +
                        x_ptrs,
         
     | 
| 
      
 116 
     | 
    
         
            +
                        mask=(s_offset_logical[:, None] < seg_end)
         
     | 
| 
      
 117 
     | 
    
         
            +
                        & (k_offset[None, :] < cur_rank - k * BLOCK_K),
         
     | 
| 
      
 118 
     | 
    
         
            +
                        other=0.0,
         
     | 
| 
      
 119 
     | 
    
         
            +
                    )
         
     | 
| 
      
 120 
     | 
    
         
            +
                    w_tile = tl.load(
         
     | 
| 
      
 121 
     | 
    
         
            +
                        w_ptrs,
         
     | 
| 
      
 122 
     | 
    
         
            +
                        mask=(k_offset[:, None] < cur_rank - k * BLOCK_K)
         
     | 
| 
      
 123 
     | 
    
         
            +
                        & (n_offset[None, :] < slice_end),
         
     | 
| 
      
 124 
     | 
    
         
            +
                        other=0.0,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    )
         
     | 
| 
      
 126 
     | 
    
         
            +
                    partial_sum += tl.dot(x_tile, w_tile)
         
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
                    x_ptrs += BLOCK_K * x_stride_1
         
     | 
| 
      
 129 
     | 
    
         
            +
                    w_ptrs += BLOCK_K * w_stride_2
         
     | 
| 
      
 130 
     | 
    
         
            +
             
     | 
| 
      
 131 
     | 
    
         
            +
                # Store result to output matrix
         
     | 
| 
      
 132 
     | 
    
         
            +
                partial_sum *= scaling
         
     | 
| 
      
 133 
     | 
    
         
            +
                partial_sum = partial_sum.to(x.dtype.element_ty)
         
     | 
| 
      
 134 
     | 
    
         
            +
                output_ptr = output + (
         
     | 
| 
      
 135 
     | 
    
         
            +
                    s_offset_physical[:, None] * output_stride_0
         
     | 
| 
      
 136 
     | 
    
         
            +
                    + n_offset[None, :] * output_stride_1
         
     | 
| 
      
 137 
     | 
    
         
            +
                )
         
     | 
| 
      
 138 
     | 
    
         
            +
                output_mask = (s_offset_logical[:, None] < seg_end) & (
         
     | 
| 
      
 139 
     | 
    
         
            +
                    n_offset[None, :] < slice_end
         
     | 
| 
      
 140 
     | 
    
         
            +
                )
         
     | 
| 
      
 141 
     | 
    
         
            +
                partial_sum += tl.load(output_ptr, mask=output_mask, other=0.0)
         
     | 
| 
      
 142 
     | 
    
         
            +
                tl.store(output_ptr, partial_sum, mask=output_mask)
         
     | 
| 
      
 143 
     | 
    
         
            +
             
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
            def chunked_sgmv_lora_expand_forward(
         
     | 
| 
      
 146 
     | 
    
         
            +
                x: torch.Tensor,
         
     | 
| 
      
 147 
     | 
    
         
            +
                weights: torch.Tensor,
         
     | 
| 
      
 148 
     | 
    
         
            +
                batch_info: LoRABatchInfo,
         
     | 
| 
      
 149 
     | 
    
         
            +
                slice_offsets: torch.Tensor,
         
     | 
| 
      
 150 
     | 
    
         
            +
                max_slice_size: int,
         
     | 
| 
      
 151 
     | 
    
         
            +
                base_output: Optional[torch.Tensor],
         
     | 
| 
      
 152 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
                # x: (s, slice_num * r)
         
     | 
| 
      
 155 
     | 
    
         
            +
                # weights: (num_lora, output_dim, r)
         
     | 
| 
      
 156 
     | 
    
         
            +
                # slice_offsets: boundaries for different slices in the output dimension
         
     | 
| 
      
 157 
     | 
    
         
            +
                # output: (s, output_dim)
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                # Compute lora_output with shape (s, output_dim) as follows:
         
     | 
| 
      
 160 
     | 
    
         
            +
                # For each slice i, accumulates:
         
     | 
| 
      
 161 
     | 
    
         
            +
                # lora_output[:, slice_offsets[i]:slice_offsets[i+1]] += scaling * sgemm(x[:, i*cur_rank:(i+1)*cur_rank], weights[:, slice_offsets[i]:slice_offsets[i+1], :])
         
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
      
 163 
     | 
    
         
            +
                assert x.is_contiguous()
         
     | 
| 
      
 164 
     | 
    
         
            +
                assert weights.is_contiguous()
         
     | 
| 
      
 165 
     | 
    
         
            +
                assert len(x.shape) == 2
         
     | 
| 
      
 166 
     | 
    
         
            +
                assert len(weights.shape) == 3
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
                # Get dims
         
     | 
| 
      
 169 
     | 
    
         
            +
                M = x.shape[0]
         
     | 
| 
      
 170 
     | 
    
         
            +
                input_dim = x.shape[1]
         
     | 
| 
      
 171 
     | 
    
         
            +
                OUTPUT_DIM = weights.shape[1]
         
     | 
| 
      
 172 
     | 
    
         
            +
                MAX_RANK = weights.shape[2]
         
     | 
| 
      
 173 
     | 
    
         
            +
                num_slices = len(slice_offsets) - 1
         
     | 
| 
      
 174 
     | 
    
         
            +
                assert input_dim == num_slices * MAX_RANK
         
     | 
| 
      
 175 
     | 
    
         
            +
             
     | 
| 
      
 176 
     | 
    
         
            +
                # TODO (lifuhuang): fine-tune per operation
         
     | 
| 
      
 177 
     | 
    
         
            +
                BLOCK_M = batch_info.max_len
         
     | 
| 
      
 178 
     | 
    
         
            +
                BLOCK_K = 16
         
     | 
| 
      
 179 
     | 
    
         
            +
                BLOCK_N = 64
         
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
      
 181 
     | 
    
         
            +
                num_segments = batch_info.num_segments
         
     | 
| 
      
 182 
     | 
    
         
            +
             
     | 
| 
      
 183 
     | 
    
         
            +
                grid = (
         
     | 
| 
      
 184 
     | 
    
         
            +
                    triton.cdiv(max_slice_size, BLOCK_N),
         
     | 
| 
      
 185 
     | 
    
         
            +
                    num_slices,  # number of slices in the input/output
         
     | 
| 
      
 186 
     | 
    
         
            +
                    batch_info.bs if batch_info.use_cuda_graph else num_segments,
         
     | 
| 
      
 187 
     | 
    
         
            +
                )
         
     | 
| 
      
 188 
     | 
    
         
            +
             
     | 
| 
      
 189 
     | 
    
         
            +
                if base_output is None:
         
     | 
| 
      
 190 
     | 
    
         
            +
                    output = torch.zeros((M, OUTPUT_DIM), device=x.device, dtype=x.dtype)
         
     | 
| 
      
 191 
     | 
    
         
            +
                else:
         
     | 
| 
      
 192 
     | 
    
         
            +
                    output = base_output
         
     | 
| 
      
 193 
     | 
    
         
            +
             
     | 
| 
      
 194 
     | 
    
         
            +
                _chunked_lora_expand_kernel[grid](
         
     | 
| 
      
 195 
     | 
    
         
            +
                    x=x,
         
     | 
| 
      
 196 
     | 
    
         
            +
                    weights=weights,
         
     | 
| 
      
 197 
     | 
    
         
            +
                    output=output,
         
     | 
| 
      
 198 
     | 
    
         
            +
                    seg_indptr=batch_info.seg_indptr,
         
     | 
| 
      
 199 
     | 
    
         
            +
                    weight_indices=batch_info.weight_indices,
         
     | 
| 
      
 200 
     | 
    
         
            +
                    lora_ranks=batch_info.lora_ranks,
         
     | 
| 
      
 201 
     | 
    
         
            +
                    permutation=batch_info.permutation,
         
     | 
| 
      
 202 
     | 
    
         
            +
                    num_segs=num_segments,
         
     | 
| 
      
 203 
     | 
    
         
            +
                    scalings=batch_info.scalings,
         
     | 
| 
      
 204 
     | 
    
         
            +
                    slice_offsets=slice_offsets,
         
     | 
| 
      
 205 
     | 
    
         
            +
                    # constants
         
     | 
| 
      
 206 
     | 
    
         
            +
                    NUM_SLICES=num_slices,
         
     | 
| 
      
 207 
     | 
    
         
            +
                    OUTPUT_DIM=OUTPUT_DIM,
         
     | 
| 
      
 208 
     | 
    
         
            +
                    MAX_RANK=MAX_RANK,
         
     | 
| 
      
 209 
     | 
    
         
            +
                    BLOCK_M=BLOCK_M,
         
     | 
| 
      
 210 
     | 
    
         
            +
                    BLOCK_N=BLOCK_N,
         
     | 
| 
      
 211 
     | 
    
         
            +
                    BLOCK_K=BLOCK_K,
         
     | 
| 
      
 212 
     | 
    
         
            +
                )
         
     | 
| 
      
 213 
     | 
    
         
            +
             
     | 
| 
      
 214 
     | 
    
         
            +
                return output
         
     | 
| 
         @@ -0,0 +1,176 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 2 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 3 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            from sglang.srt.lora.utils import LoRABatchInfo
         
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.utils import cached_triton_kernel
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            @cached_triton_kernel(
         
     | 
| 
      
 10 
     | 
    
         
            +
                lambda _, kwargs: (kwargs["K"], kwargs["NUM_SLICES"], kwargs["BLOCK_M"])
         
     | 
| 
      
 11 
     | 
    
         
            +
            )
         
     | 
| 
      
 12 
     | 
    
         
            +
            @triton.jit(do_not_specialize=["num_segs"])
         
     | 
| 
      
 13 
     | 
    
         
            +
            def _chunked_lora_shrink_kernel(
         
     | 
| 
      
 14 
     | 
    
         
            +
                # Pointers to matrices
         
     | 
| 
      
 15 
     | 
    
         
            +
                x,
         
     | 
| 
      
 16 
     | 
    
         
            +
                weights,
         
     | 
| 
      
 17 
     | 
    
         
            +
                output,
         
     | 
| 
      
 18 
     | 
    
         
            +
                # Information on sequence lengths,ranks and weight id
         
     | 
| 
      
 19 
     | 
    
         
            +
                seg_indptr,
         
     | 
| 
      
 20 
     | 
    
         
            +
                weight_indices,
         
     | 
| 
      
 21 
     | 
    
         
            +
                lora_ranks,
         
     | 
| 
      
 22 
     | 
    
         
            +
                permutation,
         
     | 
| 
      
 23 
     | 
    
         
            +
                num_segs,
         
     | 
| 
      
 24 
     | 
    
         
            +
                # Meta parameters
         
     | 
| 
      
 25 
     | 
    
         
            +
                N: tl.constexpr,  # num_slices * r
         
     | 
| 
      
 26 
     | 
    
         
            +
                K: tl.constexpr,  # input_dim
         
     | 
| 
      
 27 
     | 
    
         
            +
                NUM_SLICES: tl.constexpr,
         
     | 
| 
      
 28 
     | 
    
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 
      
 29 
     | 
    
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 
      
 30 
     | 
    
         
            +
                BLOCK_K: tl.constexpr,
         
     | 
| 
      
 31 
     | 
    
         
            +
            ):
         
     | 
| 
      
 32 
     | 
    
         
            +
                """
         
     | 
| 
      
 33 
     | 
    
         
            +
                Computes a chunked SGMV for LoRA shrink operations.
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                The kernel ensures that output[seg_start:seg_start + seg_len, :rank * num_slices]
         
     | 
| 
      
 36 
     | 
    
         
            +
                stores the product of the input `x` and the LoRA weights for the corresponding
         
     | 
| 
      
 37 
     | 
    
         
            +
                sequence. This implies that when rank is 0, the kernel is essentially a no-op,
         
     | 
| 
      
 38 
     | 
    
         
            +
                as output[seg_start:seg_start + seg_len, :0] is trivially correct (empty).
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 41 
     | 
    
         
            +
                    x (torch.Tensor): The input activations tensor of shape `(s, K)`, where `s`
         
     | 
| 
      
 42 
     | 
    
         
            +
                        is the sum of all sequence lengths in the batch.
         
     | 
| 
      
 43 
     | 
    
         
            +
                    weights (torch.Tensor): The LoRA A weights for all available adapters,
         
     | 
| 
      
 44 
     | 
    
         
            +
                        with shape `(num_lora, N, K)` where N = num_slices * r.
         
     | 
| 
      
 45 
     | 
    
         
            +
                    output (torch.Tensor): The output tensor of shape `(s, N)`.
         
     | 
| 
      
 46 
     | 
    
         
            +
                """
         
     | 
| 
      
 47 
     | 
    
         
            +
                x_stride_1: tl.constexpr = 1
         
     | 
| 
      
 48 
     | 
    
         
            +
                x_stride_0: tl.constexpr = K
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
                w_stride_0: tl.constexpr = N * K
         
     | 
| 
      
 51 
     | 
    
         
            +
                w_stride_1: tl.constexpr = K
         
     | 
| 
      
 52 
     | 
    
         
            +
                w_stride_2: tl.constexpr = 1
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                output_stride_0: tl.constexpr = N
         
     | 
| 
      
 55 
     | 
    
         
            +
                output_stride_1: tl.constexpr = 1
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
                pid_s = tl.program_id(1)
         
     | 
| 
      
 58 
     | 
    
         
            +
                if pid_s >= num_segs:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    return
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                pid_n = tl.program_id(0)
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
                # Current block computes sequence with batch_id,
         
     | 
| 
      
 64 
     | 
    
         
            +
                # which starts from row seg_start of x with length seg_len
         
     | 
| 
      
 65 
     | 
    
         
            +
                w_index = tl.load(weight_indices + pid_s)
         
     | 
| 
      
 66 
     | 
    
         
            +
                rank = tl.load(lora_ranks + w_index)
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                # If rank is 0, this kernel becomes a no-op as the output is always trivially correct.
         
     | 
| 
      
 69 
     | 
    
         
            +
                if rank == 0:
         
     | 
| 
      
 70 
     | 
    
         
            +
                    return
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                seg_start = tl.load(seg_indptr + pid_s)
         
     | 
| 
      
 73 
     | 
    
         
            +
                seg_end = tl.load(seg_indptr + pid_s + 1)
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
                # Adjust N dim according to the specific LoRA adapter
         
     | 
| 
      
 76 
     | 
    
         
            +
                cur_n = tl.minimum(N, rank * NUM_SLICES)
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
                # Map logical sequence index to physical index
         
     | 
| 
      
 79 
     | 
    
         
            +
                s_offset_logical = tl.arange(0, BLOCK_M) + seg_start
         
     | 
| 
      
 80 
     | 
    
         
            +
                s_offset_physical = tl.load(
         
     | 
| 
      
 81 
     | 
    
         
            +
                    permutation + s_offset_logical, mask=s_offset_logical < seg_end
         
     | 
| 
      
 82 
     | 
    
         
            +
                )
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
                n_offset = tl.arange(0, BLOCK_N) + pid_n * BLOCK_N
         
     | 
| 
      
 85 
     | 
    
         
            +
                k_offset = tl.arange(0, BLOCK_K)
         
     | 
| 
      
 86 
     | 
    
         
            +
                x_ptrs = x + (
         
     | 
| 
      
 87 
     | 
    
         
            +
                    s_offset_physical[:, None] * x_stride_0 + k_offset[None, :] * x_stride_1
         
     | 
| 
      
 88 
     | 
    
         
            +
                )
         
     | 
| 
      
 89 
     | 
    
         
            +
                w_ptrs = (weights + w_index * w_stride_0) + (
         
     | 
| 
      
 90 
     | 
    
         
            +
                    k_offset[:, None] * w_stride_2 + n_offset[None, :] * w_stride_1
         
     | 
| 
      
 91 
     | 
    
         
            +
                )
         
     | 
| 
      
 92 
     | 
    
         
            +
             
     | 
| 
      
 93 
     | 
    
         
            +
                # Iterate to compute the block in output matrix
         
     | 
| 
      
 94 
     | 
    
         
            +
                partial_sum = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
         
     | 
| 
      
 95 
     | 
    
         
            +
                for k in range(0, tl.cdiv(K, BLOCK_K)):
         
     | 
| 
      
 96 
     | 
    
         
            +
                    x_tile = tl.load(
         
     | 
| 
      
 97 
     | 
    
         
            +
                        x_ptrs,
         
     | 
| 
      
 98 
     | 
    
         
            +
                        mask=(s_offset_logical[:, None] < seg_end)
         
     | 
| 
      
 99 
     | 
    
         
            +
                        & (k_offset[None, :] < K - k * BLOCK_K),
         
     | 
| 
      
 100 
     | 
    
         
            +
                        other=0.0,
         
     | 
| 
      
 101 
     | 
    
         
            +
                    )
         
     | 
| 
      
 102 
     | 
    
         
            +
                    w_tile = tl.load(
         
     | 
| 
      
 103 
     | 
    
         
            +
                        w_ptrs,
         
     | 
| 
      
 104 
     | 
    
         
            +
                        mask=(k_offset[:, None] < K - k * BLOCK_K) & (n_offset[None, :] < cur_n),
         
     | 
| 
      
 105 
     | 
    
         
            +
                        other=0.0,
         
     | 
| 
      
 106 
     | 
    
         
            +
                    )
         
     | 
| 
      
 107 
     | 
    
         
            +
                    partial_sum += tl.dot(x_tile, w_tile)
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                    x_ptrs += BLOCK_K * x_stride_1
         
     | 
| 
      
 110 
     | 
    
         
            +
                    w_ptrs += BLOCK_K * w_stride_2
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                # Store result to output matrix
         
     | 
| 
      
 113 
     | 
    
         
            +
                partial_sum = partial_sum.to(x.dtype.element_ty)
         
     | 
| 
      
 114 
     | 
    
         
            +
                output_ptr = output + (
         
     | 
| 
      
 115 
     | 
    
         
            +
                    s_offset_physical[:, None] * output_stride_0
         
     | 
| 
      
 116 
     | 
    
         
            +
                    + n_offset[None, :] * output_stride_1
         
     | 
| 
      
 117 
     | 
    
         
            +
                )
         
     | 
| 
      
 118 
     | 
    
         
            +
                output_mask = (s_offset_logical[:, None] < seg_end) & (n_offset[None, :] < cur_n)
         
     | 
| 
      
 119 
     | 
    
         
            +
                tl.store(output_ptr, partial_sum, mask=output_mask)
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
             
     | 
| 
      
 122 
     | 
    
         
            +
            def chunked_sgmv_lora_shrink_forward(
         
     | 
| 
      
 123 
     | 
    
         
            +
                x: torch.Tensor,
         
     | 
| 
      
 124 
     | 
    
         
            +
                weights: torch.Tensor,
         
     | 
| 
      
 125 
     | 
    
         
            +
                batch_info: LoRABatchInfo,
         
     | 
| 
      
 126 
     | 
    
         
            +
                num_slices: int,
         
     | 
| 
      
 127 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 128 
     | 
    
         
            +
                # x: (s, input_dim)
         
     | 
| 
      
 129 
     | 
    
         
            +
                # weights: (num_lora, num_slices * r, input_dim)
         
     | 
| 
      
 130 
     | 
    
         
            +
                # output: (s, num_slices * r)
         
     | 
| 
      
 131 
     | 
    
         
            +
                # num_slices: qkv=3, gate_up=2, others=1
         
     | 
| 
      
 132 
     | 
    
         
            +
                # when called with multiple slices, the weights.shape[-2] will be num_slices * r
         
     | 
| 
      
 133 
     | 
    
         
            +
                # input_dim is much larger than r
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
                assert x.is_contiguous()
         
     | 
| 
      
 136 
     | 
    
         
            +
                assert weights.is_contiguous()
         
     | 
| 
      
 137 
     | 
    
         
            +
                assert len(x.shape) == 2
         
     | 
| 
      
 138 
     | 
    
         
            +
                assert len(weights.shape) == 3
         
     | 
| 
      
 139 
     | 
    
         
            +
             
     | 
| 
      
 140 
     | 
    
         
            +
                # Block shapes
         
     | 
| 
      
 141 
     | 
    
         
            +
                # TODO (lifuhuang): experiment with split-k
         
     | 
| 
      
 142 
     | 
    
         
            +
                BLOCK_M = batch_info.max_len
         
     | 
| 
      
 143 
     | 
    
         
            +
                BLOCK_N = 16
         
     | 
| 
      
 144 
     | 
    
         
            +
                BLOCK_K = 256
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                S = x.shape[0]
         
     | 
| 
      
 147 
     | 
    
         
            +
                N = weights.shape[1]
         
     | 
| 
      
 148 
     | 
    
         
            +
                K = weights.shape[2]
         
     | 
| 
      
 149 
     | 
    
         
            +
                assert x.shape[-1] == K
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                num_segments = batch_info.num_segments
         
     | 
| 
      
 152 
     | 
    
         
            +
                grid = (
         
     | 
| 
      
 153 
     | 
    
         
            +
                    triton.cdiv(N, BLOCK_N),
         
     | 
| 
      
 154 
     | 
    
         
            +
                    batch_info.bs if batch_info.use_cuda_graph else num_segments,
         
     | 
| 
      
 155 
     | 
    
         
            +
                )
         
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
      
 157 
     | 
    
         
            +
                output = torch.empty((S, N), device=x.device, dtype=x.dtype)
         
     | 
| 
      
 158 
     | 
    
         
            +
                _chunked_lora_shrink_kernel[grid](
         
     | 
| 
      
 159 
     | 
    
         
            +
                    x=x,
         
     | 
| 
      
 160 
     | 
    
         
            +
                    weights=weights,
         
     | 
| 
      
 161 
     | 
    
         
            +
                    output=output,
         
     | 
| 
      
 162 
     | 
    
         
            +
                    seg_indptr=batch_info.seg_indptr,
         
     | 
| 
      
 163 
     | 
    
         
            +
                    weight_indices=batch_info.weight_indices,
         
     | 
| 
      
 164 
     | 
    
         
            +
                    lora_ranks=batch_info.lora_ranks,
         
     | 
| 
      
 165 
     | 
    
         
            +
                    permutation=batch_info.permutation,
         
     | 
| 
      
 166 
     | 
    
         
            +
                    num_segs=num_segments,
         
     | 
| 
      
 167 
     | 
    
         
            +
                    # constants
         
     | 
| 
      
 168 
     | 
    
         
            +
                    N=N,
         
     | 
| 
      
 169 
     | 
    
         
            +
                    K=K,
         
     | 
| 
      
 170 
     | 
    
         
            +
                    NUM_SLICES=num_slices,
         
     | 
| 
      
 171 
     | 
    
         
            +
                    BLOCK_M=BLOCK_M,
         
     | 
| 
      
 172 
     | 
    
         
            +
                    BLOCK_N=BLOCK_N,
         
     | 
| 
      
 173 
     | 
    
         
            +
                    BLOCK_K=BLOCK_K,
         
     | 
| 
      
 174 
     | 
    
         
            +
                )
         
     | 
| 
      
 175 
     | 
    
         
            +
             
     | 
| 
      
 176 
     | 
    
         
            +
                return output
         
     | 
    
        sglang/srt/lora/utils.py
    CHANGED
    
    | 
         @@ -5,7 +5,7 @@ from typing import Iterable, Optional, Set, Tuple 
     | 
|
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
7 
     | 
    
         | 
| 
       8 
     | 
    
         
            -
            from sglang.srt.hf_transformers_utils import AutoConfig
         
     | 
| 
      
 8 
     | 
    
         
            +
            from sglang.srt.utils.hf_transformers_utils import AutoConfig
         
     | 
| 
       9 
9 
     | 
    
         | 
| 
       10 
10 
     | 
    
         | 
| 
       11 
11 
     | 
    
         
             
            @dataclass
         
     | 
| 
         @@ -19,6 +19,9 @@ class LoRABatchInfo: 
     | 
|
| 
       19 
19 
     | 
    
         
             
                # Number of segments. For triton backend, it is equal to batch size.
         
     | 
| 
       20 
20 
     | 
    
         
             
                num_segments: int
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
      
 22 
     | 
    
         
            +
                # Maximum segment length of current batch
         
     | 
| 
      
 23 
     | 
    
         
            +
                max_len: int
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
       22 
25 
     | 
    
         
             
                # Indice pointers of each segment in shape (num_segments + 1, )
         
     | 
| 
       23 
26 
     | 
    
         
             
                seg_indptr: torch.Tensor
         
     | 
| 
       24 
27 
     | 
    
         | 
| 
         @@ -34,9 +37,6 @@ class LoRABatchInfo: 
     | 
|
| 
       34 
37 
     | 
    
         
             
                # Lengths of each segments in shape (num_segments,)
         
     | 
| 
       35 
38 
     | 
    
         
             
                seg_lens: Optional[torch.Tensor]
         
     | 
| 
       36 
39 
     | 
    
         | 
| 
       37 
     | 
    
         
            -
                # Maximum segment length of current batch
         
     | 
| 
       38 
     | 
    
         
            -
                max_len: Optional[int]
         
     | 
| 
       39 
     | 
    
         
            -
             
     | 
| 
       40 
40 
     | 
    
         
             
                # The logical (re)ordering of input rows (tokens), in shape (num_tokens,)
         
     | 
| 
       41 
41 
     | 
    
         
             
                permutation: Optional[torch.Tensor]
         
     | 
| 
       42 
42 
     | 
    
         | 
| 
         @@ -98,6 +98,7 @@ def get_normalized_target_modules( 
     | 
|
| 
       98 
98 
     | 
    
         
             
            ) -> set[str]:
         
     | 
| 
       99 
99 
     | 
    
         
             
                """
         
     | 
| 
       100 
100 
     | 
    
         
             
                Mapping a list of target module name to names of the normalized LoRA weights.
         
     | 
| 
      
 101 
     | 
    
         
            +
                Handles both base module names (e.g., "gate_proj") and prefixed module names (e.g., "feed_forward.gate_proj").
         
     | 
| 
       101 
102 
     | 
    
         
             
                """
         
     | 
| 
       102 
103 
     | 
    
         
             
                params_mapping = {
         
     | 
| 
       103 
104 
     | 
    
         
             
                    "q_proj": "qkv_proj",
         
     | 
| 
         @@ -109,7 +110,8 @@ def get_normalized_target_modules( 
     | 
|
| 
       109 
110 
     | 
    
         | 
| 
       110 
111 
     | 
    
         
             
                result = set()
         
     | 
| 
       111 
112 
     | 
    
         
             
                for name in target_modules:
         
     | 
| 
       112 
     | 
    
         
            -
                     
     | 
| 
      
 113 
     | 
    
         
            +
                    base_name = name.split(".")[-1]
         
     | 
| 
      
 114 
     | 
    
         
            +
                    normalized_name = params_mapping.get(base_name, base_name)
         
     | 
| 
       113 
115 
     | 
    
         
             
                    result.add(normalized_name)
         
     | 
| 
       114 
116 
     | 
    
         
             
                return result
         
     | 
| 
       115 
117 
     | 
    
         |