sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -47,6 +47,7 @@ if TYPE_CHECKING: 
     | 
|
| 
       47 
47 
     | 
    
         
             
                    CombineInput,
         
     | 
| 
       48 
48 
     | 
    
         
             
                    StandardDispatchOutput,
         
     | 
| 
       49 
49 
     | 
    
         
             
                )
         
     | 
| 
      
 50 
     | 
    
         
            +
                from sglang.srt.single_batch_overlap import DownGemmOverlapArgs
         
     | 
| 
       50 
51 
     | 
    
         | 
| 
       51 
52 
     | 
    
         
             
            if is_cuda():
         
     | 
| 
       52 
53 
     | 
    
         
             
                from sgl_kernel import scaled_fp4_quant
         
     | 
| 
         @@ -77,12 +78,62 @@ logger = logging.getLogger(__name__) 
     | 
|
| 
       77 
78 
     | 
    
         
             
            CUTEDSL_MOE_SCALAR_INPUT_SCALE = get_bool_env_var(
         
     | 
| 
       78 
79 
     | 
    
         
             
                "SGLANG_CUTEDSL_MOE_SCALAR_INPUT_SCALE", "true"
         
     | 
| 
       79 
80 
     | 
    
         
             
            )
         
     | 
| 
      
 81 
     | 
    
         
            +
            USE_CUTLASS_BACKEND_FOR_FP4_GEMM = get_bool_env_var(
         
     | 
| 
      
 82 
     | 
    
         
            +
                "SGLANG_USE_CUTLASS_BACKEND_FOR_FP4_GEMM", "true"
         
     | 
| 
      
 83 
     | 
    
         
            +
            )
         
     | 
| 
      
 84 
     | 
    
         
            +
            # TODO make it true by default when the DeepEP PR is merged
         
     | 
| 
      
 85 
     | 
    
         
            +
            CUTEDSL_MOE_NVFP4_DISPATCH = get_bool_env_var(
         
     | 
| 
      
 86 
     | 
    
         
            +
                "SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH", "false"
         
     | 
| 
      
 87 
     | 
    
         
            +
            )
         
     | 
| 
       80 
88 
     | 
    
         | 
| 
       81 
89 
     | 
    
         
             
            # Supported activation schemes for the current configuration
         
     | 
| 
       82 
90 
     | 
    
         
             
            ACTIVATION_SCHEMES = ["static"]
         
     | 
| 
       83 
91 
     | 
    
         | 
| 
       84 
92 
     | 
    
         | 
| 
       85 
     | 
    
         
            -
            class  
     | 
| 
      
 93 
     | 
    
         
            +
            class ModelOptQuantConfig(QuantizationConfig):
         
     | 
| 
      
 94 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 95 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 96 
     | 
    
         
            +
                    kv_cache_quant_algo: Optional[str],
         
     | 
| 
      
 97 
     | 
    
         
            +
                    exclude_modules: Optional[List[str]],
         
     | 
| 
      
 98 
     | 
    
         
            +
                    packed_modules_mapping: Optional[Dict[str, List[str]]],
         
     | 
| 
      
 99 
     | 
    
         
            +
                ):
         
     | 
| 
      
 100 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 101 
     | 
    
         
            +
                    self.packed_modules_mapping = packed_modules_mapping
         
     | 
| 
      
 102 
     | 
    
         
            +
                    self.exclude_modules = exclude_modules or []
         
     | 
| 
      
 103 
     | 
    
         
            +
                    self.kv_cache_quant_algo = kv_cache_quant_algo
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                def _get_quant_method(
         
     | 
| 
      
 106 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    layer: torch.nn.Module,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    prefix: str,
         
     | 
| 
      
 109 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 110 
     | 
    
         
            +
                    Linear: type[LinearMethodBase],
         
     | 
| 
      
 111 
     | 
    
         
            +
                    Moe: type[FusedMoEMethodBase],
         
     | 
| 
      
 112 
     | 
    
         
            +
                ) -> Optional[QuantizeMethodBase]:
         
     | 
| 
      
 113 
     | 
    
         
            +
                    from sglang.srt.layers.linear import LinearBase
         
     | 
| 
      
 114 
     | 
    
         
            +
                    from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
      
 115 
     | 
    
         
            +
             
     | 
| 
      
 116 
     | 
    
         
            +
                    if isinstance(layer, LinearBase):
         
     | 
| 
      
 117 
     | 
    
         
            +
                        if is_layer_skipped(
         
     | 
| 
      
 118 
     | 
    
         
            +
                            prefix, self.exclude_modules, self.packed_modules_mapping
         
     | 
| 
      
 119 
     | 
    
         
            +
                        ) or self.is_layer_excluded(prefix):
         
     | 
| 
      
 120 
     | 
    
         
            +
                            return UnquantizedLinearMethod()
         
     | 
| 
      
 121 
     | 
    
         
            +
                        return Linear(self)
         
     | 
| 
      
 122 
     | 
    
         
            +
                    elif self.kv_cache_quant_algo and isinstance(layer, RadixAttention):
         
     | 
| 
      
 123 
     | 
    
         
            +
                        return ModelOptFp8KVCacheMethod(self)
         
     | 
| 
      
 124 
     | 
    
         
            +
                    elif isinstance(layer, FusedMoE):
         
     | 
| 
      
 125 
     | 
    
         
            +
                        return Moe(self)
         
     | 
| 
      
 126 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 129 
     | 
    
         
            +
                def get_config_filenames(cls) -> List[str]:
         
     | 
| 
      
 130 
     | 
    
         
            +
                    return ["hf_quant_config.json"]
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
                def get_scaled_act_names(self) -> List[str]:
         
     | 
| 
      
 133 
     | 
    
         
            +
                    return []
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
            class ModelOptFp8Config(ModelOptQuantConfig):
         
     | 
| 
       86 
137 
     | 
    
         
             
                """Configuration for ModelOpt FP8 quantization, including serialization and compatibility checks."""
         
     | 
| 
       87 
138 
     | 
    
         | 
| 
       88 
139 
     | 
    
         
             
                def __init__(
         
     | 
| 
         @@ -90,22 +141,27 @@ class ModelOptFp8Config(QuantizationConfig): 
     | 
|
| 
       90 
141 
     | 
    
         
             
                    is_checkpoint_fp8_serialized: bool = False,
         
     | 
| 
       91 
142 
     | 
    
         
             
                    kv_cache_quant_method: Optional[str] = None,
         
     | 
| 
       92 
143 
     | 
    
         
             
                    exclude_modules: Optional[List[str]] = None,
         
     | 
| 
      
 144 
     | 
    
         
            +
                    packed_modules_mapping: Optional[Dict[str, List[str]]] = None,
         
     | 
| 
       93 
145 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       94 
146 
     | 
    
         
             
                    """
         
     | 
| 
       95 
147 
     | 
    
         
             
                    Args:
         
     | 
| 
       96 
148 
     | 
    
         
             
                        is_checkpoint_fp8_serialized (bool): Indicates if the checkpoint uses serialized FP8 format.
         
     | 
| 
       97 
149 
     | 
    
         
             
                    """
         
     | 
| 
      
 150 
     | 
    
         
            +
                    super().__init__(kv_cache_quant_method, exclude_modules, packed_modules_mapping)
         
     | 
| 
       98 
151 
     | 
    
         
             
                    self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
         
     | 
| 
       99 
     | 
    
         
            -
                    self.kv_cache_quant_method = kv_cache_quant_method
         
     | 
| 
       100 
     | 
    
         
            -
                    self.exclude_modules = exclude_modules
         
     | 
| 
       101 
152 
     | 
    
         
             
                    if is_checkpoint_fp8_serialized:
         
     | 
| 
       102 
153 
     | 
    
         
             
                        logger.warning(
         
     | 
| 
       103 
154 
     | 
    
         
             
                            "Detected ModelOpt FP8 checkpoint. The format is experimental and subject to change."
         
     | 
| 
       104 
155 
     | 
    
         
             
                        )
         
     | 
| 
       105 
156 
     | 
    
         | 
| 
      
 157 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 158 
     | 
    
         
            +
                def override_quantization_method(cls, hf_quant_config, user_quant):
         
     | 
| 
      
 159 
     | 
    
         
            +
                    """Override quantization method based on the model's config."""
         
     | 
| 
      
 160 
     | 
    
         
            +
                    return cls._modelopt_override_quantization_method(hf_quant_config, user_quant)
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
       106 
162 
     | 
    
         
             
                @classmethod
         
     | 
| 
       107 
163 
     | 
    
         
             
                def get_name(cls) -> str:
         
     | 
| 
       108 
     | 
    
         
            -
                    return " 
     | 
| 
      
 164 
     | 
    
         
            +
                    return "modelopt_fp8"
         
     | 
| 
       109 
165 
     | 
    
         | 
| 
       110 
166 
     | 
    
         
             
                @classmethod
         
     | 
| 
       111 
167 
     | 
    
         
             
                def get_supported_act_dtypes(cls) -> List[torch.dtype]:
         
     | 
| 
         @@ -115,10 +171,6 @@ class ModelOptFp8Config(QuantizationConfig): 
     | 
|
| 
       115 
171 
     | 
    
         
             
                def get_min_capability(cls) -> int:
         
     | 
| 
       116 
172 
     | 
    
         
             
                    return 89  # Minimum hardware capability (e.g., Hopper GPUs).
         
     | 
| 
       117 
173 
     | 
    
         | 
| 
       118 
     | 
    
         
            -
                @classmethod
         
     | 
| 
       119 
     | 
    
         
            -
                def get_config_filenames(cls) -> List[str]:
         
     | 
| 
       120 
     | 
    
         
            -
                    return ["hf_quant_config.json"]
         
     | 
| 
       121 
     | 
    
         
            -
             
     | 
| 
       122 
174 
     | 
    
         
             
                @classmethod
         
     | 
| 
       123 
175 
     | 
    
         
             
                def from_config(cls, config: Dict[str, Any]) -> ModelOptFp8Config:
         
     | 
| 
       124 
176 
     | 
    
         
             
                    # Handle two different config formats:
         
     | 
| 
         @@ -173,37 +225,27 @@ class ModelOptFp8Config(QuantizationConfig): 
     | 
|
| 
       173 
225 
     | 
    
         
             
                        is_checkpoint_fp8_serialized=True,
         
     | 
| 
       174 
226 
     | 
    
         
             
                        kv_cache_quant_method=kv_cache_quant_method,
         
     | 
| 
       175 
227 
     | 
    
         
             
                        exclude_modules=exclude_modules,
         
     | 
| 
      
 228 
     | 
    
         
            +
                        packed_modules_mapping=config.get("packed_modules_mapping"),
         
     | 
| 
       176 
229 
     | 
    
         
             
                    )
         
     | 
| 
       177 
230 
     | 
    
         | 
| 
       178 
     | 
    
         
            -
                def  
     | 
| 
       179 
     | 
    
         
            -
                    self 
     | 
| 
       180 
     | 
    
         
            -
             
     | 
| 
       181 
     | 
    
         
            -
             
     | 
| 
       182 
     | 
    
         
            -
                    from sglang.srt.layers.linear import LinearBase
         
     | 
| 
       183 
     | 
    
         
            -
                    from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
       184 
     | 
    
         
            -
             
     | 
| 
       185 
     | 
    
         
            -
                    if self.exclude_modules and any(
         
     | 
| 
      
 231 
     | 
    
         
            +
                def is_layer_excluded(self, prefix: str) -> bool:
         
     | 
| 
      
 232 
     | 
    
         
            +
                    if len(self.exclude_modules) == 0:
         
     | 
| 
      
 233 
     | 
    
         
            +
                        return False
         
     | 
| 
      
 234 
     | 
    
         
            +
                    return any(
         
     | 
| 
       186 
235 
     | 
    
         
             
                        module in prefix
         
     | 
| 
       187 
236 
     | 
    
         
             
                        or (
         
     | 
| 
       188 
237 
     | 
    
         
             
                            prefix.startswith("language_model.")
         
     | 
| 
       189 
238 
     | 
    
         
             
                            and module in prefix.removeprefix("language_model.")
         
     | 
| 
       190 
239 
     | 
    
         
             
                        )
         
     | 
| 
       191 
240 
     | 
    
         
             
                        for module in self.exclude_modules
         
     | 
| 
       192 
     | 
    
         
            -
                    ) 
     | 
| 
       193 
     | 
    
         
            -
                        return None
         
     | 
| 
       194 
     | 
    
         
            -
             
     | 
| 
       195 
     | 
    
         
            -
                    if isinstance(layer, LinearBase):
         
     | 
| 
       196 
     | 
    
         
            -
                        return ModelOptFp8LinearMethod(self)
         
     | 
| 
       197 
     | 
    
         
            -
                    if self.kv_cache_quant_method and isinstance(layer, RadixAttention):
         
     | 
| 
       198 
     | 
    
         
            -
                        return ModelOptFp8KVCacheMethod(self)
         
     | 
| 
       199 
     | 
    
         
            -
             
     | 
| 
       200 
     | 
    
         
            -
                    if isinstance(layer, FusedMoE):
         
     | 
| 
       201 
     | 
    
         
            -
                        return ModelOptFp8MoEMethod(self)
         
     | 
| 
       202 
     | 
    
         
            -
             
     | 
| 
       203 
     | 
    
         
            -
                    return None
         
     | 
| 
      
 241 
     | 
    
         
            +
                    )
         
     | 
| 
       204 
242 
     | 
    
         | 
| 
       205 
     | 
    
         
            -
                def  
     | 
| 
       206 
     | 
    
         
            -
                     
     | 
| 
      
 243 
     | 
    
         
            +
                def get_quant_method(
         
     | 
| 
      
 244 
     | 
    
         
            +
                    self, layer: torch.nn.Module, prefix: str
         
     | 
| 
      
 245 
     | 
    
         
            +
                ) -> Optional[QuantizeMethodBase]:
         
     | 
| 
      
 246 
     | 
    
         
            +
                    return self._get_quant_method(
         
     | 
| 
      
 247 
     | 
    
         
            +
                        layer, prefix, Linear=ModelOptFp8LinearMethod, Moe=ModelOptFp8MoEMethod
         
     | 
| 
      
 248 
     | 
    
         
            +
                    )
         
     | 
| 
       207 
249 
     | 
    
         | 
| 
       208 
250 
     | 
    
         | 
| 
       209 
251 
     | 
    
         
             
            class ModelOptFp8LinearMethod(LinearMethodBase):
         
     | 
| 
         @@ -499,7 +541,7 @@ class ModelOptFp8MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       499 
541 
     | 
    
         
             
                    return self.runner.run(dispatch_output, quant_info)
         
     | 
| 
       500 
542 
     | 
    
         | 
| 
       501 
543 
     | 
    
         | 
| 
       502 
     | 
    
         
            -
            class ModelOptFp4Config( 
     | 
| 
      
 544 
     | 
    
         
            +
            class ModelOptFp4Config(ModelOptQuantConfig):
         
     | 
| 
       503 
545 
     | 
    
         
             
                """Config class for FP4."""
         
     | 
| 
       504 
546 
     | 
    
         | 
| 
       505 
547 
     | 
    
         
             
                def __init__(
         
     | 
| 
         @@ -508,7 +550,9 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       508 
550 
     | 
    
         
             
                    kv_cache_quant_algo: str = None,
         
     | 
| 
       509 
551 
     | 
    
         
             
                    group_size: int = None,
         
     | 
| 
       510 
552 
     | 
    
         
             
                    exclude_modules: List[str] = None,
         
     | 
| 
      
 553 
     | 
    
         
            +
                    packed_modules_mapping: Optional[Dict[str, List[str]]] = None,
         
     | 
| 
       511 
554 
     | 
    
         
             
                ) -> None:
         
     | 
| 
      
 555 
     | 
    
         
            +
                    super().__init__(kv_cache_quant_algo, exclude_modules, packed_modules_mapping)
         
     | 
| 
       512 
556 
     | 
    
         
             
                    self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
         
     | 
| 
       513 
557 
     | 
    
         
             
                    if is_checkpoint_nvfp4_serialized:
         
     | 
| 
       514 
558 
     | 
    
         
             
                        logger.warning(
         
     | 
| 
         @@ -516,8 +560,11 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       516 
560 
     | 
    
         
             
                            "format is experimental and subject to change."
         
     | 
| 
       517 
561 
     | 
    
         
             
                        )
         
     | 
| 
       518 
562 
     | 
    
         
             
                    self.group_size = group_size
         
     | 
| 
       519 
     | 
    
         
            -
             
     | 
| 
       520 
     | 
    
         
            -
             
     | 
| 
      
 563 
     | 
    
         
            +
             
     | 
| 
      
 564 
     | 
    
         
            +
                @classmethod
         
     | 
| 
      
 565 
     | 
    
         
            +
                def override_quantization_method(cls, hf_quant_config, user_quant):
         
     | 
| 
      
 566 
     | 
    
         
            +
                    """Override quantization method based on the model's config."""
         
     | 
| 
      
 567 
     | 
    
         
            +
                    return cls._modelopt_override_quantization_method(hf_quant_config, user_quant)
         
     | 
| 
       521 
568 
     | 
    
         | 
| 
       522 
569 
     | 
    
         
             
                @classmethod
         
     | 
| 
       523 
570 
     | 
    
         
             
                def get_name(cls) -> str:
         
     | 
| 
         @@ -531,10 +578,6 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       531 
578 
     | 
    
         
             
                def get_min_capability(cls) -> int:
         
     | 
| 
       532 
579 
     | 
    
         
             
                    return 100
         
     | 
| 
       533 
580 
     | 
    
         | 
| 
       534 
     | 
    
         
            -
                @classmethod
         
     | 
| 
       535 
     | 
    
         
            -
                def get_config_filenames(cls) -> List[str]:
         
     | 
| 
       536 
     | 
    
         
            -
                    return ["hf_quant_config.json"]
         
     | 
| 
       537 
     | 
    
         
            -
             
     | 
| 
       538 
581 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       539 
582 
     | 
    
         
             
                def common_group_size(cfg: dict) -> int:
         
     | 
| 
       540 
583 
     | 
    
         
             
                    """Return the unique group_size across the config; raise if missing/mismatched."""
         
     | 
| 
         @@ -600,7 +643,16 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       600 
643 
     | 
    
         
             
                            else:
         
     | 
| 
       601 
644 
     | 
    
         
             
                                kv_cache_quant_algo = "auto"
         
     | 
| 
       602 
645 
     | 
    
         | 
| 
       603 
     | 
    
         
            -
                        group_size =  
     | 
| 
      
 646 
     | 
    
         
            +
                        group_size = config.get("group_size")
         
     | 
| 
      
 647 
     | 
    
         
            +
                        # If group_size is not at top level, try to extract from config_groups
         
     | 
| 
      
 648 
     | 
    
         
            +
                        if group_size is None:
         
     | 
| 
      
 649 
     | 
    
         
            +
                            config_groups = config.get("config_groups", {})
         
     | 
| 
      
 650 
     | 
    
         
            +
                            if config_groups:
         
     | 
| 
      
 651 
     | 
    
         
            +
                                # Get group_size from the first group's weights config
         
     | 
| 
      
 652 
     | 
    
         
            +
                                first_group = next(iter(config_groups.values()), {})
         
     | 
| 
      
 653 
     | 
    
         
            +
                                weights_config = first_group.get("weights", {})
         
     | 
| 
      
 654 
     | 
    
         
            +
                                group_size = weights_config.get("group_size")
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
       604 
656 
     | 
    
         
             
                        exclude_modules = config.get("ignore", [])
         
     | 
| 
       605 
657 
     | 
    
         
             
                    else:
         
     | 
| 
       606 
658 
     | 
    
         
             
                        # Fall back to nested format (hf_quant_config.json - legacy format)
         
     | 
| 
         @@ -626,29 +678,30 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       626 
678 
     | 
    
         
             
                        )
         
     | 
| 
       627 
679 
     | 
    
         
             
                    is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method
         
     | 
| 
       628 
680 
     | 
    
         | 
| 
       629 
     | 
    
         
            -
                    if  
     | 
| 
      
 681 
     | 
    
         
            +
                    if group_size is None or exclude_modules is None:
         
     | 
| 
       630 
682 
     | 
    
         
             
                        logger.warning(
         
     | 
| 
       631 
683 
     | 
    
         
             
                            f"group_size: {group_size},"
         
     | 
| 
       632 
684 
     | 
    
         
             
                            f"kv_cache_quant_algo: {kv_cache_quant_algo},"
         
     | 
| 
       633 
685 
     | 
    
         
             
                            f"exclude_modules: {exclude_modules}"
         
     | 
| 
       634 
686 
     | 
    
         
             
                        )
         
     | 
| 
       635 
687 
     | 
    
         
             
                        raise ValueError(
         
     | 
| 
       636 
     | 
    
         
            -
                            "NVFP4 quantization requires  
     | 
| 
       637 
     | 
    
         
            -
                            " 
     | 
| 
      
 688 
     | 
    
         
            +
                            "NVFP4 quantization requires group_size and exclude_modules "
         
     | 
| 
      
 689 
     | 
    
         
            +
                            "specified in the quantization config"
         
     | 
| 
       638 
690 
     | 
    
         
             
                        )
         
     | 
| 
       639 
691 
     | 
    
         
             
                    return cls(
         
     | 
| 
       640 
692 
     | 
    
         
             
                        is_checkpoint_nvfp4_serialized,
         
     | 
| 
       641 
693 
     | 
    
         
             
                        kv_cache_quant_algo,
         
     | 
| 
       642 
694 
     | 
    
         
             
                        group_size,
         
     | 
| 
       643 
695 
     | 
    
         
             
                        exclude_modules,
         
     | 
| 
      
 696 
     | 
    
         
            +
                        config.get("packed_modules_mapping"),
         
     | 
| 
       644 
697 
     | 
    
         
             
                    )
         
     | 
| 
       645 
698 
     | 
    
         | 
| 
       646 
     | 
    
         
            -
                def is_layer_excluded(self, prefix: str 
     | 
| 
      
 699 
     | 
    
         
            +
                def is_layer_excluded(self, prefix: str):
         
     | 
| 
       647 
700 
     | 
    
         
             
                    import regex as re
         
     | 
| 
       648 
701 
     | 
    
         | 
| 
       649 
702 
     | 
    
         
             
                    fused_patterns = ["q_a_proj", "q_b_proj", "kv_a_proj_with_mqa", "kv_b_proj"]
         
     | 
| 
       650 
703 
     | 
    
         
             
                    prefix_split = prefix.split(".")
         
     | 
| 
       651 
     | 
    
         
            -
                    for pattern in exclude_modules:
         
     | 
| 
      
 704 
     | 
    
         
            +
                    for pattern in self.exclude_modules:
         
     | 
| 
       652 
705 
     | 
    
         
             
                        regex_str = pattern.replace(".", r"\.").replace("*", r".*")
         
     | 
| 
       653 
706 
     | 
    
         
             
                        pattern_split = pattern.split(".")
         
     | 
| 
       654 
707 
     | 
    
         
             
                        if re.fullmatch(regex_str, prefix):
         
     | 
| 
         @@ -664,30 +717,13 @@ class ModelOptFp4Config(QuantizationConfig): 
     | 
|
| 
       664 
717 
     | 
    
         
             
                            return True
         
     | 
| 
       665 
718 
     | 
    
         
             
                    return False
         
     | 
| 
       666 
719 
     | 
    
         | 
| 
       667 
     | 
    
         
            -
                def get_quant_method(
         
     | 
| 
       668 
     | 
    
         
            -
                    self 
     | 
| 
       669 
     | 
    
         
            -
             
     | 
| 
       670 
     | 
    
         
            -
             
     | 
| 
       671 
     | 
    
         
            -
             
     | 
| 
       672 
     | 
    
         
            -
             
     | 
| 
       673 
     | 
    
         
            -
             
     | 
| 
       674 
     | 
    
         
            -
                    if isinstance(layer, LinearBase):
         
     | 
| 
       675 
     | 
    
         
            -
                        if is_layer_skipped(prefix, self.exclude_modules) or self.is_layer_excluded(
         
     | 
| 
       676 
     | 
    
         
            -
                            prefix, self.exclude_modules
         
     | 
| 
       677 
     | 
    
         
            -
                        ):
         
     | 
| 
       678 
     | 
    
         
            -
                            return UnquantizedLinearMethod()
         
     | 
| 
       679 
     | 
    
         
            -
                        return ModelOptFp4LinearMethod(self)
         
     | 
| 
       680 
     | 
    
         
            -
                    if self.kv_cache_quant_algo and isinstance(layer, RadixAttention):
         
     | 
| 
       681 
     | 
    
         
            -
                        return ModelOptFp8KVCacheMethod(self)
         
     | 
| 
       682 
     | 
    
         
            -
                    elif isinstance(layer, FlashInferFP4MoE):
         
     | 
| 
       683 
     | 
    
         
            -
                        # FlashInferFP4MoE needs the same quantization method but with compatible attribute handling
         
     | 
| 
       684 
     | 
    
         
            -
                        return ModelOptNvFp4FusedMoEMethod(self)
         
     | 
| 
       685 
     | 
    
         
            -
                    elif isinstance(layer, FusedMoE):
         
     | 
| 
       686 
     | 
    
         
            -
                        return ModelOptNvFp4FusedMoEMethod(self)
         
     | 
| 
       687 
     | 
    
         
            -
                    return None
         
     | 
| 
       688 
     | 
    
         
            -
             
     | 
| 
       689 
     | 
    
         
            -
                def get_scaled_act_names(self) -> List[str]:
         
     | 
| 
       690 
     | 
    
         
            -
                    return []
         
     | 
| 
      
 720 
     | 
    
         
            +
                def get_quant_method(self, layer: torch.nn.Module, prefix: str):
         
     | 
| 
      
 721 
     | 
    
         
            +
                    return self._get_quant_method(
         
     | 
| 
      
 722 
     | 
    
         
            +
                        layer,
         
     | 
| 
      
 723 
     | 
    
         
            +
                        prefix,
         
     | 
| 
      
 724 
     | 
    
         
            +
                        Linear=ModelOptFp4LinearMethod,
         
     | 
| 
      
 725 
     | 
    
         
            +
                        Moe=ModelOptNvFp4FusedMoEMethod,  # FlashInferFP4MoE needs the same quantization method but with compatible attribute handling
         
     | 
| 
      
 726 
     | 
    
         
            +
                    )
         
     | 
| 
       691 
727 
     | 
    
         | 
| 
       692 
728 
     | 
    
         | 
| 
       693 
729 
     | 
    
         
             
            class ModelOptFp4LinearMethod(LinearMethodBase):
         
     | 
| 
         @@ -851,6 +887,7 @@ class ModelOptFp4LinearMethod(LinearMethodBase): 
     | 
|
| 
       851 
887 
     | 
    
         
             
                        w_scale_interleaved,
         
     | 
| 
       852 
888 
     | 
    
         
             
                        layer.alpha,
         
     | 
| 
       853 
889 
     | 
    
         
             
                        output_dtype,
         
     | 
| 
      
 890 
     | 
    
         
            +
                        **(dict(backend="cutlass") if USE_CUTLASS_BACKEND_FOR_FP4_GEMM else dict()),
         
     | 
| 
       854 
891 
     | 
    
         
             
                    )
         
     | 
| 
       855 
892 
     | 
    
         
             
                    if bias is not None:
         
     | 
| 
       856 
893 
     | 
    
         
             
                        out = out + bias
         
     | 
| 
         @@ -1050,19 +1087,10 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1050 
1087 
     | 
    
         
             
                    intermediate_size,
         
     | 
| 
       1051 
1088 
     | 
    
         
             
                    num_experts,
         
     | 
| 
       1052 
1089 
     | 
    
         
             
                ):
         
     | 
| 
       1053 
     | 
    
         
            -
                    from flashinfer import  
     | 
| 
       1054 
     | 
    
         
            -
                        RoutingMethodType,
         
     | 
| 
       1055 
     | 
    
         
            -
                        e2m1_and_ufp8sf_scale_to_float,
         
     | 
| 
       1056 
     | 
    
         
            -
                        fp4_quantize,
         
     | 
| 
       1057 
     | 
    
         
            -
                        next_positive_power_of_2,
         
     | 
| 
       1058 
     | 
    
         
            -
                        nvfp4_block_scale_interleave,
         
     | 
| 
       1059 
     | 
    
         
            -
                        reorder_rows_for_gated_act_gemm,
         
     | 
| 
       1060 
     | 
    
         
            -
                        shuffle_matrix_a,
         
     | 
| 
       1061 
     | 
    
         
            -
                        shuffle_matrix_sf_a,
         
     | 
| 
       1062 
     | 
    
         
            -
                    )
         
     | 
| 
      
 1090 
     | 
    
         
            +
                    from flashinfer import nvfp4_block_scale_interleave
         
     | 
| 
       1063 
1091 
     | 
    
         
             
                    from flashinfer.fused_moe.core import (
         
     | 
| 
       1064 
     | 
    
         
            -
                        _maybe_get_cached_w2_permute_indices,
         
     | 
| 
       1065 
1092 
     | 
    
         
             
                        _maybe_get_cached_w3_w1_permute_indices,
         
     | 
| 
      
 1093 
     | 
    
         
            +
                        get_w2_permute_indices_with_cache,
         
     | 
| 
       1066 
1094 
     | 
    
         
             
                    )
         
     | 
| 
       1067 
1095 
     | 
    
         | 
| 
       1068 
1096 
     | 
    
         
             
                    """Prepare quantized weights for kernel (done offline with weights)."""
         
     | 
| 
         @@ -1123,7 +1151,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1123 
1151 
     | 
    
         
             
                            )
         
     | 
| 
       1124 
1152 
     | 
    
         
             
                        )
         
     | 
| 
       1125 
1153 
     | 
    
         | 
| 
       1126 
     | 
    
         
            -
                        permute_indices =  
     | 
| 
      
 1154 
     | 
    
         
            +
                        permute_indices = get_w2_permute_indices_with_cache(
         
     | 
| 
       1127 
1155 
     | 
    
         
             
                            self._cache_permute_indices,
         
     | 
| 
       1128 
1156 
     | 
    
         
             
                            gemm2_weights_fp4[i].view(torch.uint8),
         
     | 
| 
       1129 
1157 
     | 
    
         
             
                            epilogue_tile_m,
         
     | 
| 
         @@ -1134,7 +1162,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1134 
1162 
     | 
    
         
             
                            .contiguous()
         
     | 
| 
       1135 
1163 
     | 
    
         
             
                        )
         
     | 
| 
       1136 
1164 
     | 
    
         | 
| 
       1137 
     | 
    
         
            -
                        permute_sf_indices =  
     | 
| 
      
 1165 
     | 
    
         
            +
                        permute_sf_indices = get_w2_permute_indices_with_cache(
         
     | 
| 
       1138 
1166 
     | 
    
         
             
                            self._cache_permute_indices,
         
     | 
| 
       1139 
1167 
     | 
    
         
             
                            gemm2_scales_linear_fp4[i].view(torch.uint8),
         
     | 
| 
       1140 
1168 
     | 
    
         
             
                            epilogue_tile_m,
         
     | 
| 
         @@ -1220,6 +1248,10 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1220 
1248 
     | 
    
         | 
| 
       1221 
1249 
     | 
    
         
             
                        w13_input_scale = _slice_scale(w13_input_scale)
         
     | 
| 
       1222 
1250 
     | 
    
         
             
                        w2_input_scale = _slice_scale(w2_input_scale)
         
     | 
| 
      
 1251 
     | 
    
         
            +
             
     | 
| 
      
 1252 
     | 
    
         
            +
                        if CUTEDSL_MOE_NVFP4_DISPATCH:
         
     | 
| 
      
 1253 
     | 
    
         
            +
                            assert torch.all(w13_input_scale == w13_input_scale[0])
         
     | 
| 
      
 1254 
     | 
    
         
            +
                            w13_input_scale = w13_input_scale[0]
         
     | 
| 
       1223 
1255 
     | 
    
         
             
                    else:
         
     | 
| 
       1224 
1256 
     | 
    
         
             
                        w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
         
     | 
| 
       1225 
1257 
     | 
    
         
             
                        w2_input_scale = layer.w2_input_scale
         
     | 
| 
         @@ -1240,6 +1272,10 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1240 
1272 
     | 
    
         
             
                        (1 / w2_input_scale).to(torch.float32), requires_grad=False
         
     | 
| 
       1241 
1273 
     | 
    
         
             
                    )
         
     | 
| 
       1242 
1274 
     | 
    
         | 
| 
      
 1275 
     | 
    
         
            +
                    layer.dispatcher.set_quant_config(
         
     | 
| 
      
 1276 
     | 
    
         
            +
                        {"input_global_scale": layer.w13_input_scale_quant}
         
     | 
| 
      
 1277 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1278 
     | 
    
         
            +
             
     | 
| 
       1243 
1279 
     | 
    
         
             
                    # Validate weight scales
         
     | 
| 
       1244 
1280 
     | 
    
         
             
                    for name, weight_scale in [
         
     | 
| 
       1245 
1281 
     | 
    
         
             
                        ("w13", layer.w13_weight_scale),
         
     | 
| 
         @@ -1343,6 +1379,8 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1343 
1379 
     | 
    
         
             
                    self,
         
     | 
| 
       1344 
1380 
     | 
    
         
             
                    layer: FusedMoE,
         
     | 
| 
       1345 
1381 
     | 
    
         
             
                    dispatch_output: StandardDispatchOutput,
         
     | 
| 
      
 1382 
     | 
    
         
            +
                    forward_shared_experts=None,
         
     | 
| 
      
 1383 
     | 
    
         
            +
                    alt_stream=None,
         
     | 
| 
       1346 
1384 
     | 
    
         
             
                ) -> CombineInput:
         
     | 
| 
       1347 
1385 
     | 
    
         | 
| 
       1348 
1386 
     | 
    
         
             
                    from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
         
     | 
| 
         @@ -1414,9 +1452,19 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1414 
1452 
     | 
    
         
             
                        )[0]
         
     | 
| 
       1415 
1453 
     | 
    
         
             
                        if should_use_flashinfer_cutlass_moe_fp4_allgather():
         
     | 
| 
       1416 
1454 
     | 
    
         
             
                            output, global_output = get_local_dp_buffer(), output
         
     | 
| 
      
 1455 
     | 
    
         
            +
             
     | 
| 
      
 1456 
     | 
    
         
            +
                            if forward_shared_experts is not None:
         
     | 
| 
      
 1457 
     | 
    
         
            +
                                alt_stream.wait_stream(torch.cuda.current_stream())
         
     | 
| 
      
 1458 
     | 
    
         
            +
                                with torch.cuda.stream(alt_stream):
         
     | 
| 
      
 1459 
     | 
    
         
            +
                                    forward_shared_experts()
         
     | 
| 
      
 1460 
     | 
    
         
            +
             
     | 
| 
       1417 
1461 
     | 
    
         
             
                            get_tp_group().reduce_scatterv(
         
     | 
| 
       1418 
1462 
     | 
    
         
             
                                global_output, output=output, sizes=get_dp_global_num_tokens()
         
     | 
| 
       1419 
1463 
     | 
    
         
             
                            )
         
     | 
| 
      
 1464 
     | 
    
         
            +
             
     | 
| 
      
 1465 
     | 
    
         
            +
                            if forward_shared_experts is not None:
         
     | 
| 
      
 1466 
     | 
    
         
            +
                                torch.cuda.current_stream().wait_stream(alt_stream)
         
     | 
| 
      
 1467 
     | 
    
         
            +
             
     | 
| 
       1420 
1468 
     | 
    
         
             
                        return StandardCombineInput(hidden_states=output)
         
     | 
| 
       1421 
1469 
     | 
    
         | 
| 
       1422 
1470 
     | 
    
         
             
                    from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
         
     | 
| 
         @@ -1446,6 +1494,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1446 
1494 
     | 
    
         
             
                    x: torch.Tensor,
         
     | 
| 
       1447 
1495 
     | 
    
         
             
                    masked_m: torch.Tensor,
         
     | 
| 
       1448 
1496 
     | 
    
         
             
                    moe_runner_config: MoeRunnerConfig,
         
     | 
| 
      
 1497 
     | 
    
         
            +
                    down_gemm_overlap_args: Optional["DownGemmOverlapArgs"],
         
     | 
| 
       1449 
1498 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       1450 
1499 
     | 
    
         
             
                    assert (
         
     | 
| 
       1451 
1500 
     | 
    
         
             
                        moe_runner_config.activation == "silu"
         
     | 
| 
         @@ -1462,7 +1511,9 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1462 
1511 
     | 
    
         | 
| 
       1463 
1512 
     | 
    
         
             
                    out = flashinfer_cutedsl_moe_masked(
         
     | 
| 
       1464 
1513 
     | 
    
         
             
                        hidden_states=x,
         
     | 
| 
       1465 
     | 
    
         
            -
                        input_global_scale= 
     | 
| 
      
 1514 
     | 
    
         
            +
                        input_global_scale=(
         
     | 
| 
      
 1515 
     | 
    
         
            +
                            None if CUTEDSL_MOE_NVFP4_DISPATCH else layer.w13_input_scale_quant
         
     | 
| 
      
 1516 
     | 
    
         
            +
                        ),
         
     | 
| 
       1466 
1517 
     | 
    
         
             
                        w1=layer.w13_weight,
         
     | 
| 
       1467 
1518 
     | 
    
         
             
                        w1_blockscale=layer.w13_blockscale_swizzled,
         
     | 
| 
       1468 
1519 
     | 
    
         
             
                        w1_alpha=layer.g1_alphas,
         
     | 
| 
         @@ -1471,5 +1522,14 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       1471 
1522 
     | 
    
         
             
                        w2_blockscale=layer.w2_blockscale_swizzled,
         
     | 
| 
       1472 
1523 
     | 
    
         
             
                        w2_alpha=layer.g2_alphas,
         
     | 
| 
       1473 
1524 
     | 
    
         
             
                        masked_m=masked_m,
         
     | 
| 
      
 1525 
     | 
    
         
            +
                        **(
         
     | 
| 
      
 1526 
     | 
    
         
            +
                            dict(
         
     | 
| 
      
 1527 
     | 
    
         
            +
                                down_sm_count=down_gemm_overlap_args.num_sms,
         
     | 
| 
      
 1528 
     | 
    
         
            +
                                down_signals=down_gemm_overlap_args.signal,
         
     | 
| 
      
 1529 
     | 
    
         
            +
                                down_start_event=down_gemm_overlap_args.start_event,
         
     | 
| 
      
 1530 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1531 
     | 
    
         
            +
                            if down_gemm_overlap_args is not None
         
     | 
| 
      
 1532 
     | 
    
         
            +
                            else {}
         
     | 
| 
      
 1533 
     | 
    
         
            +
                        ),
         
     | 
| 
       1474 
1534 
     | 
    
         
             
                    )
         
     | 
| 
       1475 
1535 
     | 
    
         
             
                    return out
         
     | 
| 
         @@ -31,7 +31,7 @@ from sglang.srt.layers.quantization.base_config import ( 
     | 
|
| 
       31 
31 
     | 
    
         
             
                QuantizeMethodBase,
         
     | 
| 
       32 
32 
     | 
    
         
             
            )
         
     | 
| 
       33 
33 
     | 
    
         
             
            from sglang.srt.layers.quantization.utils import is_layer_skipped
         
     | 
| 
       34 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 34 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       35 
35 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       36 
36 
     | 
    
         
             
                direct_register_custom_op,
         
     | 
| 
       37 
37 
     | 
    
         
             
                is_cuda,
         
     | 
| 
         @@ -41,7 +41,6 @@ from sglang.srt.utils import ( 
     | 
|
| 
       41 
41 
     | 
    
         
             
                is_triton_kernels_available,
         
     | 
| 
       42 
42 
     | 
    
         
             
                log_info_on_rank0,
         
     | 
| 
       43 
43 
     | 
    
         
             
                mxfp_supported,
         
     | 
| 
       44 
     | 
    
         
            -
                next_power_of_2,
         
     | 
| 
       45 
44 
     | 
    
         
             
                round_up,
         
     | 
| 
       46 
45 
     | 
    
         
             
                set_weight_attrs,
         
     | 
| 
       47 
46 
     | 
    
         
             
            )
         
     | 
| 
         @@ -265,9 +264,9 @@ class Mxfp4MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       265 
264 
     | 
    
         
             
                    self.use_triton_kernels = get_moe_runner_backend().is_triton_kernel()
         
     | 
| 
       266 
265 
     | 
    
         
             
                    self.with_bias = False
         
     | 
| 
       267 
266 
     | 
    
         
             
                    self.use_flashinfer = get_moe_runner_backend().is_flashinfer_mxfp4()
         
     | 
| 
       268 
     | 
    
         
            -
                    self.flashinfer_mxfp4_moe_precision =  
     | 
| 
       269 
     | 
    
         
            -
                         
     | 
| 
       270 
     | 
    
         
            -
                     
     | 
| 
      
 267 
     | 
    
         
            +
                    self.flashinfer_mxfp4_moe_precision = (
         
     | 
| 
      
 268 
     | 
    
         
            +
                        get_global_server_args().flashinfer_mxfp4_moe_precision
         
     | 
| 
      
 269 
     | 
    
         
            +
                    )
         
     | 
| 
       271 
270 
     | 
    
         | 
| 
       272 
271 
     | 
    
         
             
                    self.triton_kernel_moe_forward = None
         
     | 
| 
       273 
272 
     | 
    
         
             
                    self.triton_kernel_moe_with_bias_forward = None
         
     | 
| 
         @@ -597,30 +596,6 @@ class Mxfp4MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       597 
596 
     | 
    
         
             
                        layer.w2_weight = Parameter(w2_weight.data, requires_grad=False)
         
     | 
| 
       598 
597 
     | 
    
         
             
                    torch.cuda.empty_cache()
         
     | 
| 
       599 
598 
     | 
    
         | 
| 
       600 
     | 
    
         
            -
                def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
         
     | 
| 
       601 
     | 
    
         
            -
                    # Number of tokens in the input tensor.
         
     | 
| 
       602 
     | 
    
         
            -
                    num_tokens = x.shape[0]
         
     | 
| 
       603 
     | 
    
         
            -
                    # Factor to account for the imbalance of the experts.
         
     | 
| 
       604 
     | 
    
         
            -
                    # factor equals to the
         
     | 
| 
       605 
     | 
    
         
            -
                    # max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
         
     | 
| 
       606 
     | 
    
         
            -
                    # - 1.0 means perfect expert distribution.
         
     | 
| 
       607 
     | 
    
         
            -
                    # - > 1.0 means some experts have more
         
     | 
| 
       608 
     | 
    
         
            -
                    #     tokens than the perfect distribution.
         
     | 
| 
       609 
     | 
    
         
            -
                    # - < 1.0 does not make sense.
         
     | 
| 
       610 
     | 
    
         
            -
                    imbalance_factor = 1.3
         
     | 
| 
       611 
     | 
    
         
            -
                    # Calculate the number of tokens per expert
         
     | 
| 
       612 
     | 
    
         
            -
                    # assuming perfect distribution.
         
     | 
| 
       613 
     | 
    
         
            -
                    num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
         
     | 
| 
       614 
     | 
    
         
            -
                    # Apply the imbalance factor.
         
     | 
| 
       615 
     | 
    
         
            -
                    num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
         
     | 
| 
       616 
     | 
    
         
            -
                    # And pad the number to the next power of 2.
         
     | 
| 
       617 
     | 
    
         
            -
                    tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
         
     | 
| 
       618 
     | 
    
         
            -
                    # Cap to 8-64 tokens per CTA tile
         
     | 
| 
       619 
     | 
    
         
            -
                    # as it's the range supported by the kernel.
         
     | 
| 
       620 
     | 
    
         
            -
                    tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)
         
     | 
| 
       621 
     | 
    
         
            -
             
     | 
| 
       622 
     | 
    
         
            -
                    return tile_tokens_dim
         
     | 
| 
       623 
     | 
    
         
            -
             
     | 
| 
       624 
599 
     | 
    
         
             
                def create_moe_runner(
         
     | 
| 
       625 
600 
     | 
    
         
             
                    self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
         
     | 
| 
       626 
601 
     | 
    
         
             
                ):
         
     | 
| 
         @@ -696,7 +671,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       696 
671 
     | 
    
         
             
                            layer.moe_ep_rank * layer.num_local_experts,  # local_expert_offset
         
     | 
| 
       697 
672 
     | 
    
         
             
                            layer.num_local_experts,  # local num experts
         
     | 
| 
       698 
673 
     | 
    
         
             
                            None,
         
     | 
| 
       699 
     | 
    
         
            -
                             
     | 
| 
      
 674 
     | 
    
         
            +
                            None,  # tile_tokens_dim
         
     | 
| 
       700 
675 
     | 
    
         
             
                            1,  # routing_method_type, renormalize
         
     | 
| 
       701 
676 
     | 
    
         
             
                            True,  # do finalize
         
     | 
| 
       702 
677 
     | 
    
         
             
                        )[0]
         
     | 
| 
         @@ -731,8 +706,8 @@ class Mxfp4MoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       731 
706 
     | 
    
         
             
                        quant_info = TritonMoeQuantInfo(
         
     | 
| 
       732 
707 
     | 
    
         
             
                            w13_weight=layer.w13_weight,
         
     | 
| 
       733 
708 
     | 
    
         
             
                            w2_weight=layer.w2_weight,
         
     | 
| 
       734 
     | 
    
         
            -
                             
     | 
| 
       735 
     | 
    
         
            -
                             
     | 
| 
      
 709 
     | 
    
         
            +
                            b13=getattr(layer, "w13_weight_bias", None),
         
     | 
| 
      
 710 
     | 
    
         
            +
                            b2=getattr(layer, "w2_weight_bias", None),
         
     | 
| 
       736 
711 
     | 
    
         
             
                        )
         
     | 
| 
       737 
712 
     | 
    
         
             
                        return self.runner.run(dispatch_output, quant_info)
         
     | 
| 
       738 
713 
     | 
    
         | 
| 
         @@ -843,10 +818,18 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase): 
     | 
|
| 
       843 
818 
     | 
    
         
             
                        topk_weights = topk_weights.to(
         
     | 
| 
       844 
819 
     | 
    
         
             
                            torch.float32
         
     | 
| 
       845 
820 
     | 
    
         
             
                        )  # aiter's moe_sorting requires topk_weights to be FP32
         
     | 
| 
      
 821 
     | 
    
         
            +
             
     | 
| 
      
 822 
     | 
    
         
            +
                    if hasattr(torch, "float4_e2m1fn_x2"):
         
     | 
| 
      
 823 
     | 
    
         
            +
                        w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
         
     | 
| 
      
 824 
     | 
    
         
            +
                        w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
         
     | 
| 
      
 825 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 826 
     | 
    
         
            +
                        w13_weight = layer.w13_weight
         
     | 
| 
      
 827 
     | 
    
         
            +
                        w2_weight = layer.w2_weight
         
     | 
| 
      
 828 
     | 
    
         
            +
             
     | 
| 
       846 
829 
     | 
    
         
             
                    output = fused_moe(
         
     | 
| 
       847 
830 
     | 
    
         
             
                        x,
         
     | 
| 
       848 
     | 
    
         
            -
                         
     | 
| 
       849 
     | 
    
         
            -
                         
     | 
| 
      
 831 
     | 
    
         
            +
                        w13_weight,
         
     | 
| 
      
 832 
     | 
    
         
            +
                        w2_weight,
         
     | 
| 
       850 
833 
     | 
    
         
             
                        topk_weights,
         
     | 
| 
       851 
834 
     | 
    
         
             
                        topk_ids,
         
     | 
| 
       852 
835 
     | 
    
         
             
                        quant_type=QuantType.per_1x32,
         
     | 
| 
         @@ -65,7 +65,9 @@ class QuarkConfig(QuantizationConfig): 
     | 
|
| 
       65 
65 
     | 
    
         
             
                    if should_ignore_layer(
         
     | 
| 
       66 
66 
     | 
    
         
             
                        prefix, ignore=exclude_layers, fused_mapping=self.packed_modules_mapping
         
     | 
| 
       67 
67 
     | 
    
         
             
                    ):
         
     | 
| 
       68 
     | 
    
         
            -
                         
     | 
| 
      
 68 
     | 
    
         
            +
                        if isinstance(layer, LinearBase):
         
     | 
| 
      
 69 
     | 
    
         
            +
                            return UnquantizedLinearMethod()
         
     | 
| 
      
 70 
     | 
    
         
            +
                        return None
         
     | 
| 
       69 
71 
     | 
    
         | 
| 
       70 
72 
     | 
    
         
             
                    if isinstance(layer, LinearBase):
         
     | 
| 
       71 
73 
     | 
    
         
             
                        scheme = self.get_scheme(layer=layer, layer_name=prefix)
         
     | 
| 
         @@ -3,16 +3,16 @@ 
     | 
|
| 
       3 
3 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            import logging
         
     | 
| 
       6 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Any 
     | 
| 
      
 6 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any
         
     | 
| 
       7 
7 
     | 
    
         | 
| 
       8 
8 
     | 
    
         
             
            import torch
         
     | 
| 
       9 
     | 
    
         
            -
            from aiter import ActivationType, QuantType 
     | 
| 
      
 9 
     | 
    
         
            +
            from aiter import ActivationType, QuantType
         
     | 
| 
       10 
10 
     | 
    
         
             
            from aiter.fused_moe import fused_moe
         
     | 
| 
       11 
11 
     | 
    
         
             
            from aiter.utility.fp4_utils import e8m0_shuffle
         
     | 
| 
       12 
12 
     | 
    
         | 
| 
       13 
13 
     | 
    
         
             
            from sglang.srt.layers.moe import MoeRunnerConfig
         
     | 
| 
       14 
14 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
         
     | 
| 
       15 
     | 
    
         
            -
            from sglang.srt.utils import  
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.utils import is_hip, set_weight_attrs
         
     | 
| 
       16 
16 
     | 
    
         | 
| 
       17 
17 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       18 
18 
     | 
    
         
             
                from sglang.srt.layers.moe.token_dispatcher import (
         
     | 
| 
         @@ -23,6 +23,8 @@ if TYPE_CHECKING: 
     | 
|
| 
       23 
23 
     | 
    
         | 
| 
       24 
24 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       25 
25 
     | 
    
         | 
| 
      
 26 
     | 
    
         
            +
            _is_hip = is_hip()
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
       26 
28 
     | 
    
         
             
            __all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
         
     | 
| 
       27 
29 
     | 
    
         | 
| 
       28 
30 
     | 
    
         
             
            OCP_MX_BLOCK_SIZE = 32
         
     | 
| 
         @@ -182,11 +184,22 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod): 
     | 
|
| 
       182 
184 
     | 
    
         
             
                    topk_output = dispatch_output.topk_output
         
     | 
| 
       183 
185 
     | 
    
         
             
                    moe_runner_config = self.moe_runner_config
         
     | 
| 
       184 
186 
     | 
    
         
             
                    topk_weights, topk_ids, _ = topk_output
         
     | 
| 
      
 187 
     | 
    
         
            +
                    if _is_hip:
         
     | 
| 
      
 188 
     | 
    
         
            +
                        topk_weights = topk_weights.to(
         
     | 
| 
      
 189 
     | 
    
         
            +
                            torch.float32
         
     | 
| 
      
 190 
     | 
    
         
            +
                        )  # aiter's moe_sorting requires topk_weights to be FP32
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                    if hasattr(torch, "float4_e2m1fn_x2"):
         
     | 
| 
      
 193 
     | 
    
         
            +
                        w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
         
     | 
| 
      
 194 
     | 
    
         
            +
                        w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
         
     | 
| 
      
 195 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 196 
     | 
    
         
            +
                        w13_weight = layer.w13_weight
         
     | 
| 
      
 197 
     | 
    
         
            +
                        w2_weight = layer.w2_weight
         
     | 
| 
       185 
198 
     | 
    
         | 
| 
       186 
199 
     | 
    
         
             
                    output = fused_moe(
         
     | 
| 
       187 
200 
     | 
    
         
             
                        x,
         
     | 
| 
       188 
     | 
    
         
            -
                         
     | 
| 
       189 
     | 
    
         
            -
                         
     | 
| 
      
 201 
     | 
    
         
            +
                        w13_weight,
         
     | 
| 
      
 202 
     | 
    
         
            +
                        w2_weight,
         
     | 
| 
       190 
203 
     | 
    
         
             
                        topk_weights,
         
     | 
| 
       191 
204 
     | 
    
         
             
                        topk_ids,
         
     | 
| 
       192 
205 
     | 
    
         
             
                        quant_type=QuantType.per_1x32,
         
     | 
| 
         @@ -2,20 +2,13 @@ 
     | 
|
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            from typing import Any, Callable, Optional
         
     | 
| 
       4 
4 
     | 
    
         | 
| 
       5 
     | 
    
         
            -
            import aiter
         
     | 
| 
       6 
5 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
     | 
    
         
            -
            import torch.nn.functional as F
         
     | 
| 
       8 
     | 
    
         
            -
            from aiter.ops.gemm_op_a4w4 import gemm_a4w4
         
     | 
| 
       9 
     | 
    
         
            -
            from aiter.ops.shuffle import shuffle_weight
         
     | 
| 
       10 
6 
     | 
    
         
             
            from aiter.ops.triton.gemm_afp4wfp4 import gemm_afp4wfp4
         
     | 
| 
       11 
7 
     | 
    
         
             
            from aiter.ops.triton.gemm_afp4wfp4_pre_quant_atomic import gemm_afp4wfp4_pre_quant
         
     | 
| 
       12 
8 
     | 
    
         
             
            from aiter.ops.triton.quant import dynamic_mxfp4_quant
         
     | 
| 
       13 
     | 
    
         
            -
            from aiter.utility import dtypes
         
     | 
| 
       14 
     | 
    
         
            -
            from aiter.utility.fp4_utils import e8m0_shuffle
         
     | 
| 
       15 
9 
     | 
    
         | 
| 
       16 
10 
     | 
    
         
             
            from sglang.srt.layers.parameter import GroupQuantScaleParameter, PackedvLLMParameter
         
     | 
| 
       17 
11 
     | 
    
         
             
            from sglang.srt.layers.quantization.quark.schemes import QuarkScheme
         
     | 
| 
       18 
     | 
    
         
            -
            from sglang.srt.utils import get_bool_env_var
         
     | 
| 
       19 
12 
     | 
    
         | 
| 
       20 
13 
     | 
    
         
             
            __all__ = ["QuarkW4A4MXFP4"]
         
     | 
| 
       21 
14 
     | 
    
         | 
| 
         @@ -1,6 +1,5 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            import importlib.util
         
     | 
| 
       4 
3 
     | 
    
         
             
            from typing import TYPE_CHECKING, List, Optional
         
     | 
| 
       5 
4 
     | 
    
         | 
| 
       6 
5 
     | 
    
         
             
            import torch
         
     | 
| 
         @@ -31,8 +30,6 @@ if TYPE_CHECKING: 
     | 
|
| 
       31 
30 
     | 
    
         
             
                    StandardDispatchOutput,
         
     | 
| 
       32 
31 
     | 
    
         
             
                )
         
     | 
| 
       33 
32 
     | 
    
         | 
| 
       34 
     | 
    
         
            -
            has_triton_kernels = importlib.util.find_spec("triton_kernels") is not None
         
     | 
| 
       35 
     | 
    
         
            -
             
     | 
| 
       36 
33 
     | 
    
         | 
| 
       37 
34 
     | 
    
         
             
            _is_cpu_amx_available = cpu_has_amx_support()
         
     | 
| 
       38 
35 
     | 
    
         
             
            _is_hip = is_hip()
         
     | 
| 
         @@ -143,7 +140,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp): 
     | 
|
| 
       143 
140 
     | 
    
         | 
| 
       144 
141 
     | 
    
         
             
                    self.triton_kernel_moe_forward = None
         
     | 
| 
       145 
142 
     | 
    
         
             
                    self.triton_kernel_moe_with_bias_forward = None
         
     | 
| 
       146 
     | 
    
         
            -
                    if torch.cuda.is_available() and  
     | 
| 
      
 143 
     | 
    
         
            +
                    if torch.cuda.is_available() and use_triton_kernels:
         
     | 
| 
       147 
144 
     | 
    
         
             
                        from sglang.srt.layers.moe.fused_moe_triton.triton_kernels_moe import (
         
     | 
| 
       148 
145 
     | 
    
         
             
                            triton_kernel_moe_forward as _tk_forward,
         
     | 
| 
       149 
146 
     | 
    
         
             
                        )
         
     |