sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,6 +1,46 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            from typing import Callable, List, Tuple
         
     | 
| 
      
 1 
     | 
    
         
            +
            from typing import Callable, List, Optional, Tuple
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            import torch
         
     | 
| 
      
 4 
     | 
    
         
            +
            import torch.nn as nn
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.configs.mamba_utils import (
         
     | 
| 
      
 7 
     | 
    
         
            +
                Mamba2CacheParams,
         
     | 
| 
      
 8 
     | 
    
         
            +
                extra_groups_for_head_shards,
         
     | 
| 
      
 9 
     | 
    
         
            +
            )
         
     | 
| 
      
 10 
     | 
    
         
            +
            from sglang.srt.distributed import (
         
     | 
| 
      
 11 
     | 
    
         
            +
                divide,
         
     | 
| 
      
 12 
     | 
    
         
            +
                get_tensor_model_parallel_rank,
         
     | 
| 
      
 13 
     | 
    
         
            +
                get_tensor_model_parallel_world_size,
         
     | 
| 
      
 14 
     | 
    
         
            +
            )
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.distributed.utils import divide
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.causal_conv1d import (
         
     | 
| 
      
 17 
     | 
    
         
            +
                causal_conv1d_fn,
         
     | 
| 
      
 18 
     | 
    
         
            +
                causal_conv1d_update,
         
     | 
| 
      
 19 
     | 
    
         
            +
            )
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
         
     | 
| 
      
 21 
     | 
    
         
            +
                causal_conv1d_fn as causal_conv1d_fn_triton,
         
     | 
| 
      
 22 
     | 
    
         
            +
            )
         
     | 
| 
      
 23 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
         
     | 
| 
      
 24 
     | 
    
         
            +
                causal_conv1d_update as causal_conv1d_update_triton,
         
     | 
| 
      
 25 
     | 
    
         
            +
            )
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mamba2_metadata import Mamba2Metadata
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.mixer2_rms_norm_gated import Mixer2RMSNormGated
         
     | 
| 
      
 28 
     | 
    
         
            +
            from sglang.srt.layers.attention.mamba.ops import (
         
     | 
| 
      
 29 
     | 
    
         
            +
                mamba_chunk_scan_combined,
         
     | 
| 
      
 30 
     | 
    
         
            +
                selective_state_update,
         
     | 
| 
      
 31 
     | 
    
         
            +
            )
         
     | 
| 
      
 32 
     | 
    
         
            +
            from sglang.srt.layers.linear import (
         
     | 
| 
      
 33 
     | 
    
         
            +
                ColumnParallelLinear,
         
     | 
| 
      
 34 
     | 
    
         
            +
                MergedColumnParallelLinear,
         
     | 
| 
      
 35 
     | 
    
         
            +
                RowParallelLinear,
         
     | 
| 
      
 36 
     | 
    
         
            +
            )
         
     | 
| 
      
 37 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 38 
     | 
    
         
            +
            from sglang.srt.mem_cache.memory_pool import MambaPool
         
     | 
| 
      
 39 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
      
 40 
     | 
    
         
            +
                composed_weight_loader,
         
     | 
| 
      
 41 
     | 
    
         
            +
                sharded_weight_loader,
         
     | 
| 
      
 42 
     | 
    
         
            +
            )
         
     | 
| 
      
 43 
     | 
    
         
            +
            from sglang.srt.utils import set_weight_attrs
         
     | 
| 
       4 
44 
     | 
    
         | 
| 
       5 
45 
     | 
    
         
             
            LoaderFunction = Callable[[torch.Tensor, torch.Tensor], None]
         
     | 
| 
       6 
46 
     | 
    
         | 
| 
         @@ -62,3 +102,476 @@ def mamba_v2_sharded_weight_loader( 
     | 
|
| 
       62 
102 
     | 
    
         
             
                        loaded_boundary += full_dim - extra
         
     | 
| 
       63 
103 
     | 
    
         | 
| 
       64 
104 
     | 
    
         
             
                return loader
         
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
            class MambaMixer2(torch.nn.Module):
         
     | 
| 
      
 108 
     | 
    
         
            +
                """
         
     | 
| 
      
 109 
     | 
    
         
            +
                Compute ∆, A, B, C, and D the state space parameters and compute
         
     | 
| 
      
 110 
     | 
    
         
            +
                the `contextualized_states`. A, D are input independent
         
     | 
| 
      
 111 
     | 
    
         
            +
                (see Mamba paper [1] Section 3.5.2 "Interpretation of A"
         
     | 
| 
      
 112 
     | 
    
         
            +
                for why A isn't selective) ∆, B, C are input-dependent
         
     | 
| 
      
 113 
     | 
    
         
            +
                (this is a key difference between Mamba and the linear time
         
     | 
| 
      
 114 
     | 
    
         
            +
                invariant S4, and is why Mamba is called
         
     | 
| 
      
 115 
     | 
    
         
            +
                **selective** state spaces)
         
     | 
| 
      
 116 
     | 
    
         
            +
                """
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 119 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 120 
     | 
    
         
            +
                    cache_params: Mamba2CacheParams,
         
     | 
| 
      
 121 
     | 
    
         
            +
                    hidden_size: int,
         
     | 
| 
      
 122 
     | 
    
         
            +
                    use_conv_bias: bool,
         
     | 
| 
      
 123 
     | 
    
         
            +
                    use_bias: bool,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    n_groups: int = 1,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    rms_norm_eps: float = 1e-5,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    activation: str = "silu",
         
     | 
| 
      
 127 
     | 
    
         
            +
                    use_rms_norm: bool = True,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 129 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 130 
     | 
    
         
            +
                ):
         
     | 
| 
      
 131 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
                    # For TP, the sharding plan is as follows:
         
     | 
| 
      
 134 
     | 
    
         
            +
                    # - for the conv modules, since
         
     | 
| 
      
 135 
     | 
    
         
            +
                    #   conv_dim = intermediate_size * 2 * n_groups * ssm_state_size,
         
     | 
| 
      
 136 
     | 
    
         
            +
                    #   we shard intermediate_size and n_groups
         
     | 
| 
      
 137 
     | 
    
         
            +
                    # - since intermediate_size = n_heads * head_dim, sharding on
         
     | 
| 
      
 138 
     | 
    
         
            +
                    #   intermediate_size is achieved by sharding on n_heads.
         
     | 
| 
      
 139 
     | 
    
         
            +
                    # - IF, world_size divides groups, then sharding
         
     | 
| 
      
 140 
     | 
    
         
            +
                    #   (n_groups / world_size, n_heads / world_size)
         
     | 
| 
      
 141 
     | 
    
         
            +
                    #   also maintains the invariant n_heads % n_groups == 0
         
     | 
| 
      
 142 
     | 
    
         
            +
                    # - HOWEVER IF, world_size DOES NOT divide groups, then we need
         
     | 
| 
      
 143 
     | 
    
         
            +
                    #   to allocate extra space in the shard, such that groups
         
     | 
| 
      
 144 
     | 
    
         
            +
                    #   may be replicated to follow the head shard.
         
     | 
| 
      
 145 
     | 
    
         
            +
                    # - NOTE: currently for the world size DOES NOT divide groups
         
     | 
| 
      
 146 
     | 
    
         
            +
                    #   case, we only support the case when n_groups == 1
         
     | 
| 
      
 147 
     | 
    
         
            +
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
      
 148 
     | 
    
         
            +
                    self.tp_rank = get_tensor_model_parallel_rank()
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                    self.num_heads = num_heads = cache_params.shape.num_heads
         
     | 
| 
      
 151 
     | 
    
         
            +
                    self.head_dim = cache_params.shape.head_dim
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 154 
     | 
    
         
            +
                        num_heads % self.tp_size == 0
         
     | 
| 
      
 155 
     | 
    
         
            +
                    ), "Tensor parallel world size must divide num heads."
         
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
      
 157 
     | 
    
         
            +
                    assert (n_groups % self.tp_size) == 0 or n_groups == 1, (
         
     | 
| 
      
 158 
     | 
    
         
            +
                        "If tensor parallel world size does not divide num_groups, "
         
     | 
| 
      
 159 
     | 
    
         
            +
                        "then num_groups must equal 1."
         
     | 
| 
      
 160 
     | 
    
         
            +
                    )
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 163 
     | 
    
         
            +
                        (n_groups % self.tp_size == 0) or self.tp_size == 1 or quant_config is None
         
     | 
| 
      
 164 
     | 
    
         
            +
                    ), (
         
     | 
| 
      
 165 
     | 
    
         
            +
                        "Tensor parallel currently supported for quantized models only "
         
     | 
| 
      
 166 
     | 
    
         
            +
                        "if tensor parallel world size divides num groups."
         
     | 
| 
      
 167 
     | 
    
         
            +
                    )
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                    self.ssm_state_size = cache_params.shape.ssm_state_size
         
     | 
| 
      
 170 
     | 
    
         
            +
                    self.activation = activation
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
                    conv_kernel_size = cache_params.shape.conv_kernel
         
     | 
| 
      
 173 
     | 
    
         
            +
                    self.intermediate_size = intermediate_size = (
         
     | 
| 
      
 174 
     | 
    
         
            +
                        cache_params.shape.intermediate_size
         
     | 
| 
      
 175 
     | 
    
         
            +
                    )
         
     | 
| 
      
 176 
     | 
    
         
            +
                    self.n_groups = n_groups
         
     | 
| 
      
 177 
     | 
    
         
            +
                    if n_groups % self.tp_size != 0:
         
     | 
| 
      
 178 
     | 
    
         
            +
                        # - for TP we shard conv_dim by sharding on n_groups,
         
     | 
| 
      
 179 
     | 
    
         
            +
                        # - but if n_groups cannot divide tp_size, we need to
         
     | 
| 
      
 180 
     | 
    
         
            +
                        #   extend some extra groups
         
     | 
| 
      
 181 
     | 
    
         
            +
                        groups = extra_groups_for_head_shards(n_groups, self.tp_size)
         
     | 
| 
      
 182 
     | 
    
         
            +
                        self.n_groups = n_groups + groups
         
     | 
| 
      
 183 
     | 
    
         
            +
                    self.groups_ssm_state_size = self.n_groups * self.ssm_state_size
         
     | 
| 
      
 184 
     | 
    
         
            +
                    self.conv_dim = cache_params.shape.conv_dim
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                    if n_groups % self.tp_size == 0:
         
     | 
| 
      
 187 
     | 
    
         
            +
                        self.conv1d = MergedColumnParallelLinear(
         
     | 
| 
      
 188 
     | 
    
         
            +
                            input_size=conv_kernel_size,
         
     | 
| 
      
 189 
     | 
    
         
            +
                            output_sizes=[
         
     | 
| 
      
 190 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 191 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 192 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 193 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 194 
     | 
    
         
            +
                            bias=use_conv_bias,
         
     | 
| 
      
 195 
     | 
    
         
            +
                            quant_config=None,
         
     | 
| 
      
 196 
     | 
    
         
            +
                            prefix=f"{prefix}.conv1d",
         
     | 
| 
      
 197 
     | 
    
         
            +
                        )
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
                        self.in_proj = MergedColumnParallelLinear(
         
     | 
| 
      
 200 
     | 
    
         
            +
                            input_size=hidden_size,
         
     | 
| 
      
 201 
     | 
    
         
            +
                            output_sizes=[
         
     | 
| 
      
 202 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 203 
     | 
    
         
            +
                                intermediate_size,
         
     | 
| 
      
 204 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 205 
     | 
    
         
            +
                                self.groups_ssm_state_size,
         
     | 
| 
      
 206 
     | 
    
         
            +
                                self.num_heads,
         
     | 
| 
      
 207 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 208 
     | 
    
         
            +
                            bias=use_bias,
         
     | 
| 
      
 209 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 210 
     | 
    
         
            +
                            prefix=f"{prefix}.in_proj",
         
     | 
| 
      
 211 
     | 
    
         
            +
                        )
         
     | 
| 
      
 212 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 213 
     | 
    
         
            +
                        # This is the n_groups == 1 case,
         
     | 
| 
      
 214 
     | 
    
         
            +
                        # where we need to duplicate groups if TP>1.
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                        self.conv1d = ColumnParallelLinear(
         
     | 
| 
      
 217 
     | 
    
         
            +
                            input_size=conv_kernel_size,
         
     | 
| 
      
 218 
     | 
    
         
            +
                            output_size=self.conv_dim,
         
     | 
| 
      
 219 
     | 
    
         
            +
                            bias=use_conv_bias,
         
     | 
| 
      
 220 
     | 
    
         
            +
                            quant_config=None,
         
     | 
| 
      
 221 
     | 
    
         
            +
                            prefix=f"{prefix}.conv1d",
         
     | 
| 
      
 222 
     | 
    
         
            +
                        )
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
                        self.in_proj = ColumnParallelLinear(
         
     | 
| 
      
 225 
     | 
    
         
            +
                            input_size=hidden_size,
         
     | 
| 
      
 226 
     | 
    
         
            +
                            output_size=intermediate_size + self.conv_dim + self.num_heads,
         
     | 
| 
      
 227 
     | 
    
         
            +
                            bias=use_bias,
         
     | 
| 
      
 228 
     | 
    
         
            +
                            quant_config=quant_config,
         
     | 
| 
      
 229 
     | 
    
         
            +
                            prefix=f"{prefix}.in_proj",
         
     | 
| 
      
 230 
     | 
    
         
            +
                        )
         
     | 
| 
      
 231 
     | 
    
         
            +
             
     | 
| 
      
 232 
     | 
    
         
            +
                        # - because in_proj is a concatenation of 3 weights, we
         
     | 
| 
      
 233 
     | 
    
         
            +
                        #   need to interleave them before sharding
         
     | 
| 
      
 234 
     | 
    
         
            +
                        # - use the custom weight loader mamba_v2_sharded_weight_loader
         
     | 
| 
      
 235 
     | 
    
         
            +
                        #   for conv1d.bias, covn1d.weight and in_proj.weight
         
     | 
| 
      
 236 
     | 
    
         
            +
                        # - need to set these settings, to assign the groups
         
     | 
| 
      
 237 
     | 
    
         
            +
                        #   to the head shards
         
     | 
| 
      
 238 
     | 
    
         
            +
                        group_shard_settings = (
         
     | 
| 
      
 239 
     | 
    
         
            +
                            self.groups_ssm_state_size,  # expected model size
         
     | 
| 
      
 240 
     | 
    
         
            +
                            (self.n_groups - n_groups) * self.ssm_state_size,  # extra dims assigned
         
     | 
| 
      
 241 
     | 
    
         
            +
                            n_groups == 1,  # if there was only one group
         
     | 
| 
      
 242 
     | 
    
         
            +
                        )
         
     | 
| 
      
 243 
     | 
    
         
            +
                        intermediate_settings = (intermediate_size, 0, False)
         
     | 
| 
      
 244 
     | 
    
         
            +
                        head_settings = (self.num_heads, 0, False)
         
     | 
| 
      
 245 
     | 
    
         
            +
             
     | 
| 
      
 246 
     | 
    
         
            +
                        # - the weight already has a "weight_loader" attribute
         
     | 
| 
      
 247 
     | 
    
         
            +
                        #   which set_weight_attrs will raise if we do not
         
     | 
| 
      
 248 
     | 
    
         
            +
                        #   delete before trying to override it
         
     | 
| 
      
 249 
     | 
    
         
            +
                        # - ditto for the other two weights below
         
     | 
| 
      
 250 
     | 
    
         
            +
                        delattr(self.conv1d.bias, "weight_loader")
         
     | 
| 
      
 251 
     | 
    
         
            +
                        set_weight_attrs(
         
     | 
| 
      
 252 
     | 
    
         
            +
                            self.conv1d.bias,
         
     | 
| 
      
 253 
     | 
    
         
            +
                            {
         
     | 
| 
      
 254 
     | 
    
         
            +
                                "weight_loader": mamba_v2_sharded_weight_loader(
         
     | 
| 
      
 255 
     | 
    
         
            +
                                    [
         
     | 
| 
      
 256 
     | 
    
         
            +
                                        intermediate_settings,
         
     | 
| 
      
 257 
     | 
    
         
            +
                                        group_shard_settings,
         
     | 
| 
      
 258 
     | 
    
         
            +
                                        group_shard_settings,
         
     | 
| 
      
 259 
     | 
    
         
            +
                                    ],
         
     | 
| 
      
 260 
     | 
    
         
            +
                                    self.tp_size,
         
     | 
| 
      
 261 
     | 
    
         
            +
                                    self.tp_rank,
         
     | 
| 
      
 262 
     | 
    
         
            +
                                )
         
     | 
| 
      
 263 
     | 
    
         
            +
                            },
         
     | 
| 
      
 264 
     | 
    
         
            +
                        )
         
     | 
| 
      
 265 
     | 
    
         
            +
             
     | 
| 
      
 266 
     | 
    
         
            +
                        delattr(self.conv1d.weight, "weight_loader")
         
     | 
| 
      
 267 
     | 
    
         
            +
                        set_weight_attrs(
         
     | 
| 
      
 268 
     | 
    
         
            +
                            self.conv1d.weight,
         
     | 
| 
      
 269 
     | 
    
         
            +
                            {
         
     | 
| 
      
 270 
     | 
    
         
            +
                                "weight_loader": mamba_v2_sharded_weight_loader(
         
     | 
| 
      
 271 
     | 
    
         
            +
                                    [
         
     | 
| 
      
 272 
     | 
    
         
            +
                                        intermediate_settings,
         
     | 
| 
      
 273 
     | 
    
         
            +
                                        group_shard_settings,
         
     | 
| 
      
 274 
     | 
    
         
            +
                                        group_shard_settings,
         
     | 
| 
      
 275 
     | 
    
         
            +
                                    ],
         
     | 
| 
      
 276 
     | 
    
         
            +
                                    self.tp_size,
         
     | 
| 
      
 277 
     | 
    
         
            +
                                    self.tp_rank,
         
     | 
| 
      
 278 
     | 
    
         
            +
                                )
         
     | 
| 
      
 279 
     | 
    
         
            +
                            },
         
     | 
| 
      
 280 
     | 
    
         
            +
                        )
         
     | 
| 
      
 281 
     | 
    
         
            +
             
     | 
| 
      
 282 
     | 
    
         
            +
                        if quant_config is None:
         
     | 
| 
      
 283 
     | 
    
         
            +
                            # - quant layers do not have a weight loader
         
     | 
| 
      
 284 
     | 
    
         
            +
                            delattr(self.in_proj.weight, "weight_loader")
         
     | 
| 
      
 285 
     | 
    
         
            +
                            set_weight_attrs(
         
     | 
| 
      
 286 
     | 
    
         
            +
                                self.in_proj.weight,
         
     | 
| 
      
 287 
     | 
    
         
            +
                                {
         
     | 
| 
      
 288 
     | 
    
         
            +
                                    "weight_loader": mamba_v2_sharded_weight_loader(
         
     | 
| 
      
 289 
     | 
    
         
            +
                                        [
         
     | 
| 
      
 290 
     | 
    
         
            +
                                            intermediate_settings,  # for gate
         
     | 
| 
      
 291 
     | 
    
         
            +
                                            intermediate_settings,
         
     | 
| 
      
 292 
     | 
    
         
            +
                                            group_shard_settings,
         
     | 
| 
      
 293 
     | 
    
         
            +
                                            group_shard_settings,
         
     | 
| 
      
 294 
     | 
    
         
            +
                                            head_settings,  # for dt
         
     | 
| 
      
 295 
     | 
    
         
            +
                                        ],
         
     | 
| 
      
 296 
     | 
    
         
            +
                                        self.tp_size,
         
     | 
| 
      
 297 
     | 
    
         
            +
                                        self.tp_rank,
         
     | 
| 
      
 298 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 299 
     | 
    
         
            +
                                },
         
     | 
| 
      
 300 
     | 
    
         
            +
                            )
         
     | 
| 
      
 301 
     | 
    
         
            +
             
     | 
| 
      
 302 
     | 
    
         
            +
                    # unsqueeze to fit conv1d weights shape into the linear weights shape.
         
     | 
| 
      
 303 
     | 
    
         
            +
                    # Can't do this in `weight_loader` since it already exists in
         
     | 
| 
      
 304 
     | 
    
         
            +
                    # `ColumnParallelLinear` and `MergedColumnParallelLinear`,
         
     | 
| 
      
 305 
     | 
    
         
            +
                    # and `set_weight_attrs` doesn't allow to override it
         
     | 
| 
      
 306 
     | 
    
         
            +
                    self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
         
     | 
| 
      
 307 
     | 
    
         
            +
             
     | 
| 
      
 308 
     | 
    
         
            +
                    # - these are TPed by heads to reduce the size of the
         
     | 
| 
      
 309 
     | 
    
         
            +
                    #   temporal shape
         
     | 
| 
      
 310 
     | 
    
         
            +
                    self.A = nn.Parameter(
         
     | 
| 
      
 311 
     | 
    
         
            +
                        torch.empty(
         
     | 
| 
      
 312 
     | 
    
         
            +
                            divide(num_heads, self.tp_size),
         
     | 
| 
      
 313 
     | 
    
         
            +
                            dtype=torch.float32,
         
     | 
| 
      
 314 
     | 
    
         
            +
                        )
         
     | 
| 
      
 315 
     | 
    
         
            +
                    )
         
     | 
| 
      
 316 
     | 
    
         
            +
                    self.D = nn.Parameter(torch.ones(num_heads // self.tp_size))
         
     | 
| 
      
 317 
     | 
    
         
            +
                    self.dt_bias = nn.Parameter(torch.ones(num_heads // self.tp_size))
         
     | 
| 
      
 318 
     | 
    
         
            +
                    self.use_rms_norm = use_rms_norm
         
     | 
| 
      
 319 
     | 
    
         
            +
             
     | 
| 
      
 320 
     | 
    
         
            +
                    set_weight_attrs(self.D, {"weight_loader": sharded_weight_loader(0)})
         
     | 
| 
      
 321 
     | 
    
         
            +
                    a_weight_loader = composed_weight_loader(
         
     | 
| 
      
 322 
     | 
    
         
            +
                        sharded_weight_loader(0), lambda x: -torch.exp(x.float())
         
     | 
| 
      
 323 
     | 
    
         
            +
                    )
         
     | 
| 
      
 324 
     | 
    
         
            +
                    set_weight_attrs(self.A, {"weight_loader": a_weight_loader})
         
     | 
| 
      
 325 
     | 
    
         
            +
                    set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
         
     | 
| 
      
 326 
     | 
    
         
            +
             
     | 
| 
      
 327 
     | 
    
         
            +
                    self.out_proj = RowParallelLinear(
         
     | 
| 
      
 328 
     | 
    
         
            +
                        intermediate_size,
         
     | 
| 
      
 329 
     | 
    
         
            +
                        hidden_size,
         
     | 
| 
      
 330 
     | 
    
         
            +
                        bias=use_bias,
         
     | 
| 
      
 331 
     | 
    
         
            +
                        input_is_parallel=True,
         
     | 
| 
      
 332 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 333 
     | 
    
         
            +
                        prefix=f"{prefix}.out_proj",
         
     | 
| 
      
 334 
     | 
    
         
            +
                        reduce_results=False,
         
     | 
| 
      
 335 
     | 
    
         
            +
                    )
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
                    self.norm = Mixer2RMSNormGated(
         
     | 
| 
      
 338 
     | 
    
         
            +
                        intermediate_size, n_groups, self.use_rms_norm, eps=rms_norm_eps
         
     | 
| 
      
 339 
     | 
    
         
            +
                    )
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
                    self.prefix = prefix
         
     | 
| 
      
 342 
     | 
    
         
            +
             
     | 
| 
      
 343 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 344 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 345 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 346 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 347 
     | 
    
         
            +
                    output: torch.Tensor,
         
     | 
| 
      
 348 
     | 
    
         
            +
                    layer_cache: MambaPool.State,
         
     | 
| 
      
 349 
     | 
    
         
            +
                    metadata: Mamba2Metadata,
         
     | 
| 
      
 350 
     | 
    
         
            +
                    mup_vector: Optional[torch.Tensor] = None,
         
     | 
| 
      
 351 
     | 
    
         
            +
                    use_triton_causal_conv: bool = False,
         
     | 
| 
      
 352 
     | 
    
         
            +
                ):
         
     | 
| 
      
 353 
     | 
    
         
            +
                    # metadata contains metadata necessary for the mamba2 triton
         
     | 
| 
      
 354 
     | 
    
         
            +
                    # kernels to operate in continuous batching and in chunked prefill
         
     | 
| 
      
 355 
     | 
    
         
            +
                    # modes; they are computed at top-level model forward since they
         
     | 
| 
      
 356 
     | 
    
         
            +
                    # stay the same and reused for all mamba layers in the same iteration
         
     | 
| 
      
 357 
     | 
    
         
            +
                    state_indices_tensor = metadata.mamba_cache_indices
         
     | 
| 
      
 358 
     | 
    
         
            +
                    conv_state = layer_cache.conv
         
     | 
| 
      
 359 
     | 
    
         
            +
                    ssm_state = layer_cache.temporal
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                    query_start_loc = metadata.query_start_loc
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
                    # 1. Gated MLP's linear projection
         
     | 
| 
      
 364 
     | 
    
         
            +
                    projected_states, _ = self.in_proj(hidden_states)
         
     | 
| 
      
 365 
     | 
    
         
            +
             
     | 
| 
      
 366 
     | 
    
         
            +
                    if mup_vector is not None:
         
     | 
| 
      
 367 
     | 
    
         
            +
                        projected_states = projected_states * mup_vector
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
                    gate, hidden_states_B_C, dt = torch.split(
         
     | 
| 
      
 370 
     | 
    
         
            +
                        projected_states,
         
     | 
| 
      
 371 
     | 
    
         
            +
                        [
         
     | 
| 
      
 372 
     | 
    
         
            +
                            self.intermediate_size // self.tp_size,
         
     | 
| 
      
 373 
     | 
    
         
            +
                            self.conv_dim // self.tp_size,
         
     | 
| 
      
 374 
     | 
    
         
            +
                            self.num_heads // self.tp_size,
         
     | 
| 
      
 375 
     | 
    
         
            +
                        ],
         
     | 
| 
      
 376 
     | 
    
         
            +
                        dim=-1,
         
     | 
| 
      
 377 
     | 
    
         
            +
                    )
         
     | 
| 
      
 378 
     | 
    
         
            +
                    conv_weights = self.conv1d.weight.view(
         
     | 
| 
      
 379 
     | 
    
         
            +
                        self.conv1d.weight.size(0), self.conv1d.weight.size(2)
         
     | 
| 
      
 380 
     | 
    
         
            +
                    )
         
     | 
| 
      
 381 
     | 
    
         
            +
             
     | 
| 
      
 382 
     | 
    
         
            +
                    # - get hidden_states, B and C after depthwise convolution.
         
     | 
| 
      
 383 
     | 
    
         
            +
                    split_hidden_states_B_C_fn = lambda hidden_states_B_C: torch.split(
         
     | 
| 
      
 384 
     | 
    
         
            +
                        hidden_states_B_C,
         
     | 
| 
      
 385 
     | 
    
         
            +
                        [
         
     | 
| 
      
 386 
     | 
    
         
            +
                            self.intermediate_size // self.tp_size,
         
     | 
| 
      
 387 
     | 
    
         
            +
                            self.groups_ssm_state_size // self.tp_size,
         
     | 
| 
      
 388 
     | 
    
         
            +
                            self.groups_ssm_state_size // self.tp_size,
         
     | 
| 
      
 389 
     | 
    
         
            +
                        ],
         
     | 
| 
      
 390 
     | 
    
         
            +
                        dim=-1,
         
     | 
| 
      
 391 
     | 
    
         
            +
                    )
         
     | 
| 
      
 392 
     | 
    
         
            +
             
     | 
| 
      
 393 
     | 
    
         
            +
                    num_prefills = metadata.num_prefills  # request count
         
     | 
| 
      
 394 
     | 
    
         
            +
                    num_decodes = metadata.num_decodes  # token count (=request)
         
     | 
| 
      
 395 
     | 
    
         
            +
                    num_prefill_tokens = metadata.num_prefill_tokens  # token count
         
     | 
| 
      
 396 
     | 
    
         
            +
                    has_prefill = num_prefills > 0
         
     | 
| 
      
 397 
     | 
    
         
            +
                    has_decode = num_decodes > 0
         
     | 
| 
      
 398 
     | 
    
         
            +
                    num_actual_tokens = num_prefill_tokens + num_decodes
         
     | 
| 
      
 399 
     | 
    
         
            +
                    assert num_actual_tokens == projected_states.shape[0]
         
     | 
| 
      
 400 
     | 
    
         
            +
             
     | 
| 
      
 401 
     | 
    
         
            +
                    # NOTE: V0 put prefill before decode
         
     | 
| 
      
 402 
     | 
    
         
            +
                    # Separate prefill and decode by splitting varlen input
         
     | 
| 
      
 403 
     | 
    
         
            +
                    # Split along token dimension
         
     | 
| 
      
 404 
     | 
    
         
            +
                    hidden_states_B_C_p, hidden_states_B_C_d = torch.split(
         
     | 
| 
      
 405 
     | 
    
         
            +
                        hidden_states_B_C,
         
     | 
| 
      
 406 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 407 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 408 
     | 
    
         
            +
                    )
         
     | 
| 
      
 409 
     | 
    
         
            +
                    dt_p, dt_d = torch.split(
         
     | 
| 
      
 410 
     | 
    
         
            +
                        dt,
         
     | 
| 
      
 411 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 412 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 413 
     | 
    
         
            +
                    )
         
     | 
| 
      
 414 
     | 
    
         
            +
                    # Split along batch dimension
         
     | 
| 
      
 415 
     | 
    
         
            +
                    state_indices_tensor_p, state_indices_tensor_d = torch.split(
         
     | 
| 
      
 416 
     | 
    
         
            +
                        state_indices_tensor,
         
     | 
| 
      
 417 
     | 
    
         
            +
                        [num_prefills, num_decodes],
         
     | 
| 
      
 418 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 419 
     | 
    
         
            +
                    )
         
     | 
| 
      
 420 
     | 
    
         
            +
                    query_start_loc_p = query_start_loc[: num_prefills + 1] if has_prefill else None
         
     | 
| 
      
 421 
     | 
    
         
            +
             
     | 
| 
      
 422 
     | 
    
         
            +
                    # Preallocate output tensor to avoid memcpy cost for merging prefill
         
     | 
| 
      
 423 
     | 
    
         
            +
                    # and decode outputs
         
     | 
| 
      
 424 
     | 
    
         
            +
             
     | 
| 
      
 425 
     | 
    
         
            +
                    preallocated_ssm_out = torch.empty(
         
     | 
| 
      
 426 
     | 
    
         
            +
                        [
         
     | 
| 
      
 427 
     | 
    
         
            +
                            projected_states.shape[0],
         
     | 
| 
      
 428 
     | 
    
         
            +
                            (self.num_heads * self.head_dim) // self.tp_size,
         
     | 
| 
      
 429 
     | 
    
         
            +
                        ],
         
     | 
| 
      
 430 
     | 
    
         
            +
                        dtype=hidden_states.dtype,
         
     | 
| 
      
 431 
     | 
    
         
            +
                        device=hidden_states.device,
         
     | 
| 
      
 432 
     | 
    
         
            +
                    )
         
     | 
| 
      
 433 
     | 
    
         
            +
                    preallocated_ssm_out_p, preallocated_ssm_out_d = torch.split(
         
     | 
| 
      
 434 
     | 
    
         
            +
                        preallocated_ssm_out,
         
     | 
| 
      
 435 
     | 
    
         
            +
                        [num_prefill_tokens, num_decodes],
         
     | 
| 
      
 436 
     | 
    
         
            +
                        dim=0,
         
     | 
| 
      
 437 
     | 
    
         
            +
                    )
         
     | 
| 
      
 438 
     | 
    
         
            +
             
     | 
| 
      
 439 
     | 
    
         
            +
                    # Process prefill requests
         
     | 
| 
      
 440 
     | 
    
         
            +
                    if has_prefill:
         
     | 
| 
      
 441 
     | 
    
         
            +
                        mixed_metadata = metadata.mixed_metadata
         
     | 
| 
      
 442 
     | 
    
         
            +
                        assert mixed_metadata is not None
         
     | 
| 
      
 443 
     | 
    
         
            +
                        # 2. Convolution sequence transformation
         
     | 
| 
      
 444 
     | 
    
         
            +
                        # - "cache_indices" updates the conv_state cache in positions
         
     | 
| 
      
 445 
     | 
    
         
            +
                        #   pointed to by "state_indices_tensor"
         
     | 
| 
      
 446 
     | 
    
         
            +
                        has_initial_states_p = mixed_metadata.has_initial_states
         
     | 
| 
      
 447 
     | 
    
         
            +
                        prep_initial_states = mixed_metadata.prep_initial_states
         
     | 
| 
      
 448 
     | 
    
         
            +
                        cache_indices = state_indices_tensor_p
         
     | 
| 
      
 449 
     | 
    
         
            +
                        x = hidden_states_B_C_p.transpose(
         
     | 
| 
      
 450 
     | 
    
         
            +
                            0, 1
         
     | 
| 
      
 451 
     | 
    
         
            +
                        )  # this is the form that causal-conv see
         
     | 
| 
      
 452 
     | 
    
         
            +
                        ccfn = (
         
     | 
| 
      
 453 
     | 
    
         
            +
                            causal_conv1d_fn
         
     | 
| 
      
 454 
     | 
    
         
            +
                            if not use_triton_causal_conv
         
     | 
| 
      
 455 
     | 
    
         
            +
                            else causal_conv1d_fn_triton
         
     | 
| 
      
 456 
     | 
    
         
            +
                        )
         
     | 
| 
      
 457 
     | 
    
         
            +
                        hidden_states_B_C_p = ccfn(
         
     | 
| 
      
 458 
     | 
    
         
            +
                            x,
         
     | 
| 
      
 459 
     | 
    
         
            +
                            conv_weights,
         
     | 
| 
      
 460 
     | 
    
         
            +
                            self.conv1d.bias,
         
     | 
| 
      
 461 
     | 
    
         
            +
                            activation=self.activation,
         
     | 
| 
      
 462 
     | 
    
         
            +
                            conv_states=conv_state,
         
     | 
| 
      
 463 
     | 
    
         
            +
                            has_initial_state=has_initial_states_p,
         
     | 
| 
      
 464 
     | 
    
         
            +
                            cache_indices=cache_indices,
         
     | 
| 
      
 465 
     | 
    
         
            +
                            query_start_loc=query_start_loc_p,
         
     | 
| 
      
 466 
     | 
    
         
            +
                            seq_lens_cpu=mixed_metadata.extend_seq_lens_cpu,
         
     | 
| 
      
 467 
     | 
    
         
            +
                        ).transpose(0, 1)[:num_prefill_tokens]
         
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
      
 469 
     | 
    
         
            +
                        hidden_states_p, B_p, C_p = split_hidden_states_B_C_fn(hidden_states_B_C_p)
         
     | 
| 
      
 470 
     | 
    
         
            +
             
     | 
| 
      
 471 
     | 
    
         
            +
                        # 3. State Space Model sequence transformation
         
     | 
| 
      
 472 
     | 
    
         
            +
                        initial_states = None
         
     | 
| 
      
 473 
     | 
    
         
            +
                        if has_initial_states_p is not None and prep_initial_states:
         
     | 
| 
      
 474 
     | 
    
         
            +
                            initial_states = torch.where(
         
     | 
| 
      
 475 
     | 
    
         
            +
                                has_initial_states_p[:, None, None, None],
         
     | 
| 
      
 476 
     | 
    
         
            +
                                ssm_state[state_indices_tensor_p],
         
     | 
| 
      
 477 
     | 
    
         
            +
                                0,
         
     | 
| 
      
 478 
     | 
    
         
            +
                            )
         
     | 
| 
      
 479 
     | 
    
         
            +
             
     | 
| 
      
 480 
     | 
    
         
            +
                        # NOTE: final output is an in-place update of out tensor
         
     | 
| 
      
 481 
     | 
    
         
            +
                        varlen_state = mamba_chunk_scan_combined(
         
     | 
| 
      
 482 
     | 
    
         
            +
                            hidden_states_p.view(
         
     | 
| 
      
 483 
     | 
    
         
            +
                                1, num_prefill_tokens, self.num_heads // self.tp_size, self.head_dim
         
     | 
| 
      
 484 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 485 
     | 
    
         
            +
                            dt_p.unsqueeze(0),
         
     | 
| 
      
 486 
     | 
    
         
            +
                            self.A,
         
     | 
| 
      
 487 
     | 
    
         
            +
                            B_p.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
         
     | 
| 
      
 488 
     | 
    
         
            +
                            C_p.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
         
     | 
| 
      
 489 
     | 
    
         
            +
                            chunk_size=mixed_metadata.chunk_size,
         
     | 
| 
      
 490 
     | 
    
         
            +
                            D=self.D,
         
     | 
| 
      
 491 
     | 
    
         
            +
                            z=None,
         
     | 
| 
      
 492 
     | 
    
         
            +
                            dt_bias=self.dt_bias,
         
     | 
| 
      
 493 
     | 
    
         
            +
                            seq_idx=mixed_metadata.seq_idx,
         
     | 
| 
      
 494 
     | 
    
         
            +
                            chunk_indices=mixed_metadata.chunk_indices,
         
     | 
| 
      
 495 
     | 
    
         
            +
                            chunk_offsets=mixed_metadata.chunk_offsets,
         
     | 
| 
      
 496 
     | 
    
         
            +
                            cu_seqlens=query_start_loc_p,
         
     | 
| 
      
 497 
     | 
    
         
            +
                            initial_states=initial_states,
         
     | 
| 
      
 498 
     | 
    
         
            +
                            return_varlen_states=True,
         
     | 
| 
      
 499 
     | 
    
         
            +
                            return_final_states=False,
         
     | 
| 
      
 500 
     | 
    
         
            +
                            dt_softplus=True,
         
     | 
| 
      
 501 
     | 
    
         
            +
                            dt_limit=(0.0, float("inf")),
         
     | 
| 
      
 502 
     | 
    
         
            +
                            out=preallocated_ssm_out_p.view(
         
     | 
| 
      
 503 
     | 
    
         
            +
                                1, num_prefill_tokens, -1, self.head_dim
         
     | 
| 
      
 504 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 505 
     | 
    
         
            +
                            state_dtype=ssm_state.dtype,
         
     | 
| 
      
 506 
     | 
    
         
            +
                        )
         
     | 
| 
      
 507 
     | 
    
         
            +
             
     | 
| 
      
 508 
     | 
    
         
            +
                        # update ssm states
         
     | 
| 
      
 509 
     | 
    
         
            +
                        # - varlen state is a (num_prefills, nheads, headdim, dstate) tensor
         
     | 
| 
      
 510 
     | 
    
         
            +
                        ssm_state[state_indices_tensor_p] = varlen_state
         
     | 
| 
      
 511 
     | 
    
         
            +
             
     | 
| 
      
 512 
     | 
    
         
            +
                    # Process decode requests
         
     | 
| 
      
 513 
     | 
    
         
            +
                    if has_decode:
         
     | 
| 
      
 514 
     | 
    
         
            +
                        # 2. Convolution sequence transformation
         
     | 
| 
      
 515 
     | 
    
         
            +
                        ccu = (
         
     | 
| 
      
 516 
     | 
    
         
            +
                            causal_conv1d_update
         
     | 
| 
      
 517 
     | 
    
         
            +
                            if not use_triton_causal_conv
         
     | 
| 
      
 518 
     | 
    
         
            +
                            else causal_conv1d_update_triton
         
     | 
| 
      
 519 
     | 
    
         
            +
                        )
         
     | 
| 
      
 520 
     | 
    
         
            +
                        hidden_states_B_C_d = ccu(
         
     | 
| 
      
 521 
     | 
    
         
            +
                            hidden_states_B_C_d,
         
     | 
| 
      
 522 
     | 
    
         
            +
                            conv_state,
         
     | 
| 
      
 523 
     | 
    
         
            +
                            conv_weights,
         
     | 
| 
      
 524 
     | 
    
         
            +
                            self.conv1d.bias,
         
     | 
| 
      
 525 
     | 
    
         
            +
                            self.activation,
         
     | 
| 
      
 526 
     | 
    
         
            +
                            conv_state_indices=state_indices_tensor_d,
         
     | 
| 
      
 527 
     | 
    
         
            +
                        )
         
     | 
| 
      
 528 
     | 
    
         
            +
             
     | 
| 
      
 529 
     | 
    
         
            +
                        hidden_states_d, B_d, C_d = split_hidden_states_B_C_fn(hidden_states_B_C_d)
         
     | 
| 
      
 530 
     | 
    
         
            +
             
     | 
| 
      
 531 
     | 
    
         
            +
                        # 3. State Space Model sequence transformation
         
     | 
| 
      
 532 
     | 
    
         
            +
                        n_groups = self.n_groups // self.tp_size
         
     | 
| 
      
 533 
     | 
    
         
            +
                        A_d = (
         
     | 
| 
      
 534 
     | 
    
         
            +
                            self.A[:, None, ...][:, :, None]
         
     | 
| 
      
 535 
     | 
    
         
            +
                            .expand(-1, self.head_dim, self.ssm_state_size)
         
     | 
| 
      
 536 
     | 
    
         
            +
                            .to(dtype=torch.float32)
         
     | 
| 
      
 537 
     | 
    
         
            +
                        )
         
     | 
| 
      
 538 
     | 
    
         
            +
                        dt_d = dt_d[:, :, None].expand(-1, -1, self.head_dim)
         
     | 
| 
      
 539 
     | 
    
         
            +
                        dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
         
     | 
| 
      
 540 
     | 
    
         
            +
                        D_d = self.D[:, None, ...].expand(-1, self.head_dim)
         
     | 
| 
      
 541 
     | 
    
         
            +
                        B_d = B_d.view(-1, n_groups, B_d.shape[1] // n_groups)
         
     | 
| 
      
 542 
     | 
    
         
            +
                        C_d = C_d.view(-1, n_groups, C_d.shape[1] // n_groups)
         
     | 
| 
      
 543 
     | 
    
         
            +
                        hidden_states_d = hidden_states_d.view(
         
     | 
| 
      
 544 
     | 
    
         
            +
                            -1, self.num_heads // self.tp_size, self.head_dim
         
     | 
| 
      
 545 
     | 
    
         
            +
                        )
         
     | 
| 
      
 546 
     | 
    
         
            +
             
     | 
| 
      
 547 
     | 
    
         
            +
                        # - the hidden is reshaped into (bs, num_heads, head_dim)
         
     | 
| 
      
 548 
     | 
    
         
            +
                        # - layer_state.ssm_state's slots will be selected
         
     | 
| 
      
 549 
     | 
    
         
            +
                        #   using state_indices_tensor_d
         
     | 
| 
      
 550 
     | 
    
         
            +
                        # NOTE: final output is an in-place update of out tensor
         
     | 
| 
      
 551 
     | 
    
         
            +
                        selective_state_update(
         
     | 
| 
      
 552 
     | 
    
         
            +
                            ssm_state,
         
     | 
| 
      
 553 
     | 
    
         
            +
                            hidden_states_d,
         
     | 
| 
      
 554 
     | 
    
         
            +
                            dt_d,
         
     | 
| 
      
 555 
     | 
    
         
            +
                            A_d,
         
     | 
| 
      
 556 
     | 
    
         
            +
                            B_d,
         
     | 
| 
      
 557 
     | 
    
         
            +
                            C_d,
         
     | 
| 
      
 558 
     | 
    
         
            +
                            D_d,
         
     | 
| 
      
 559 
     | 
    
         
            +
                            z=None,
         
     | 
| 
      
 560 
     | 
    
         
            +
                            dt_bias=dt_bias,
         
     | 
| 
      
 561 
     | 
    
         
            +
                            dt_softplus=True,
         
     | 
| 
      
 562 
     | 
    
         
            +
                            state_batch_indices=state_indices_tensor_d,
         
     | 
| 
      
 563 
     | 
    
         
            +
                            out=preallocated_ssm_out_d.view(num_decodes, -1, self.head_dim),
         
     | 
| 
      
 564 
     | 
    
         
            +
                        )
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
                    # 4. gated MLP
         
     | 
| 
      
 567 
     | 
    
         
            +
                    # GatedRMSNorm internally applying SiLU to the gate
         
     | 
| 
      
 568 
     | 
    
         
            +
                    # SiLU is applied internally before normalization, unlike standard
         
     | 
| 
      
 569 
     | 
    
         
            +
                    # norm usage
         
     | 
| 
      
 570 
     | 
    
         
            +
                    hidden_states = self.norm(preallocated_ssm_out, gate[:num_actual_tokens])
         
     | 
| 
      
 571 
     | 
    
         
            +
             
     | 
| 
      
 572 
     | 
    
         
            +
                    # 5. Final linear projection
         
     | 
| 
      
 573 
     | 
    
         
            +
                    output[:num_actual_tokens], _ = self.out_proj(hidden_states)
         
     | 
| 
      
 574 
     | 
    
         
            +
             
     | 
| 
      
 575 
     | 
    
         
            +
                @property
         
     | 
| 
      
 576 
     | 
    
         
            +
                def mamba_type(self) -> str:
         
     | 
| 
      
 577 
     | 
    
         
            +
                    return "mamba2"
         
     |