sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,661 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2025 Qwen Team
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Copyright 2025 SGLang Team
         
     | 
| 
      
 3 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 4 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 5 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 6 
     | 
    
         
            +
            #
         
     | 
| 
      
 7 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 8 
     | 
    
         
            +
            #
         
     | 
| 
      
 9 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 10 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 11 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 12 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 13 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 14 
     | 
    
         
            +
            # ==============================================================================
         
     | 
| 
      
 15 
     | 
    
         
            +
            """Inference-only Qwen3-VL model compatible with HuggingFace weights."""
         
     | 
| 
      
 16 
     | 
    
         
            +
            import math
         
     | 
| 
      
 17 
     | 
    
         
            +
            from typing import Iterable, List, Optional, Tuple
         
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 20 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 21 
     | 
    
         
            +
            import torch.nn as nn
         
     | 
| 
      
 22 
     | 
    
         
            +
            import torch.nn.functional as F
         
     | 
| 
      
 23 
     | 
    
         
            +
            from transformers import PreTrainedModel
         
     | 
| 
      
 24 
     | 
    
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 
      
 25 
     | 
    
         
            +
            from transformers.modeling_outputs import BaseModelOutput
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.configs.qwen3_omni import (
         
     | 
| 
      
 28 
     | 
    
         
            +
                Qwen3OmniMoeAudioEncoderConfig,
         
     | 
| 
      
 29 
     | 
    
         
            +
                Qwen3OmniMoeThinkerConfig,
         
     | 
| 
      
 30 
     | 
    
         
            +
                Qwen3OmniMoeVisionEncoderConfig,
         
     | 
| 
      
 31 
     | 
    
         
            +
            )
         
     | 
| 
      
 32 
     | 
    
         
            +
            from sglang.srt.configs.qwen3_vl import Qwen3VLMoeConfig
         
     | 
| 
      
 33 
     | 
    
         
            +
            from sglang.srt.layers.attention.vision import VisionAttention
         
     | 
| 
      
 34 
     | 
    
         
            +
            from sglang.srt.layers.layernorm import RMSNorm
         
     | 
| 
      
 35 
     | 
    
         
            +
            from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
         
     | 
| 
      
 36 
     | 
    
         
            +
            from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
         
     | 
| 
      
 37 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 38 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import MultimodalDataItem
         
     | 
| 
      
 39 
     | 
    
         
            +
            from sglang.srt.model_loader.weight_utils import default_weight_loader
         
     | 
| 
      
 40 
     | 
    
         
            +
            from sglang.srt.models.qwen3_vl import Qwen3VLMoeVisionModel
         
     | 
| 
      
 41 
     | 
    
         
            +
            from sglang.srt.models.qwen3_vl_moe import (
         
     | 
| 
      
 42 
     | 
    
         
            +
                Qwen3MoeLLMModel,
         
     | 
| 
      
 43 
     | 
    
         
            +
                Qwen3VLMoeForConditionalGeneration,
         
     | 
| 
      
 44 
     | 
    
         
            +
                load_fused_expert_weights,
         
     | 
| 
      
 45 
     | 
    
         
            +
            )
         
     | 
| 
      
 46 
     | 
    
         
            +
            from sglang.srt.utils import add_prefix, logger
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
            class Qwen3OmniMoeAudioEncoderLayer(nn.Module):
         
     | 
| 
      
 50 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 51 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 52 
     | 
    
         
            +
                    config: Qwen3OmniMoeAudioEncoderConfig,
         
     | 
| 
      
 53 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 54 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 55 
     | 
    
         
            +
                ):
         
     | 
| 
      
 56 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 57 
     | 
    
         
            +
                    embed_dim = config.d_model
         
     | 
| 
      
 58 
     | 
    
         
            +
                    self.embed_dim = config.d_model
         
     | 
| 
      
 59 
     | 
    
         
            +
                    self.self_attn = VisionAttention(
         
     | 
| 
      
 60 
     | 
    
         
            +
                        embed_dim=embed_dim,
         
     | 
| 
      
 61 
     | 
    
         
            +
                        num_heads=config.encoder_attention_heads,
         
     | 
| 
      
 62 
     | 
    
         
            +
                        projection_size=embed_dim,
         
     | 
| 
      
 63 
     | 
    
         
            +
                        use_qkv_parallel=True,
         
     | 
| 
      
 64 
     | 
    
         
            +
                        rotary_embed="normal",
         
     | 
| 
      
 65 
     | 
    
         
            +
                        proj_bias=True,
         
     | 
| 
      
 66 
     | 
    
         
            +
                        qkv_backend="fa3",
         
     | 
| 
      
 67 
     | 
    
         
            +
                        softmax_in_single_precision=False,
         
     | 
| 
      
 68 
     | 
    
         
            +
                        flatten_batch=True,
         
     | 
| 
      
 69 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 70 
     | 
    
         
            +
                        prefix=add_prefix("attn", prefix),
         
     | 
| 
      
 71 
     | 
    
         
            +
                    )
         
     | 
| 
      
 72 
     | 
    
         
            +
                    self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
         
     | 
| 
      
 73 
     | 
    
         
            +
                    self.dropout = config.dropout
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self.activation_fn = ACT2FN[config.activation_function]
         
     | 
| 
      
 75 
     | 
    
         
            +
                    self.activation_dropout = config.activation_dropout
         
     | 
| 
      
 76 
     | 
    
         
            +
                    self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
         
     | 
| 
      
 77 
     | 
    
         
            +
                    self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
         
     | 
| 
      
 78 
     | 
    
         
            +
                    self.final_layer_norm = nn.LayerNorm(self.embed_dim)
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 81 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 82 
     | 
    
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 
      
 83 
     | 
    
         
            +
                    cu_seqlens: torch.Tensor,
         
     | 
| 
      
 84 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 85 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 86 
     | 
    
         
            +
                    """
         
     | 
| 
      
 87 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 88 
     | 
    
         
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         
     | 
| 
      
 89 
     | 
    
         
            +
                        layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
         
     | 
| 
      
 90 
     | 
    
         
            +
                            `(encoder_attention_heads,)`.
         
     | 
| 
      
 91 
     | 
    
         
            +
                        output_attentions (`bool`, *optional*):
         
     | 
| 
      
 92 
     | 
    
         
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         
     | 
| 
      
 93 
     | 
    
         
            +
                            returned tensors for more detail.
         
     | 
| 
      
 94 
     | 
    
         
            +
                    """
         
     | 
| 
      
 95 
     | 
    
         
            +
                    residual = hidden_states
         
     | 
| 
      
 96 
     | 
    
         
            +
                    hidden_states = self.self_attn_layer_norm(hidden_states)
         
     | 
| 
      
 97 
     | 
    
         
            +
                    hidden_states = self.self_attn(
         
     | 
| 
      
 98 
     | 
    
         
            +
                        x=hidden_states,
         
     | 
| 
      
 99 
     | 
    
         
            +
                        cu_seqlens=cu_seqlens,
         
     | 
| 
      
 100 
     | 
    
         
            +
                    )
         
     | 
| 
      
 101 
     | 
    
         
            +
                    hidden_states = residual + hidden_states
         
     | 
| 
      
 102 
     | 
    
         
            +
                    residual = hidden_states
         
     | 
| 
      
 103 
     | 
    
         
            +
                    hidden_states = self.final_layer_norm(hidden_states)
         
     | 
| 
      
 104 
     | 
    
         
            +
                    hidden_states = self.fc1(hidden_states)
         
     | 
| 
      
 105 
     | 
    
         
            +
                    hidden_states = self.activation_fn(hidden_states)
         
     | 
| 
      
 106 
     | 
    
         
            +
                    hidden_states = self.fc2(hidden_states)
         
     | 
| 
      
 107 
     | 
    
         
            +
                    hidden_states = residual + hidden_states
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
                    if hidden_states.dtype == torch.float16:
         
     | 
| 
      
 110 
     | 
    
         
            +
                        clamp_value = torch.finfo(hidden_states.dtype).max - 1000
         
     | 
| 
      
 111 
     | 
    
         
            +
                        hidden_states = torch.clamp(
         
     | 
| 
      
 112 
     | 
    
         
            +
                            hidden_states, min=-clamp_value, max=clamp_value
         
     | 
| 
      
 113 
     | 
    
         
            +
                        )
         
     | 
| 
      
 114 
     | 
    
         
            +
             
     | 
| 
      
 115 
     | 
    
         
            +
                    outputs = (hidden_states,)
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                    return outputs
         
     | 
| 
      
 118 
     | 
    
         
            +
             
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
            class SinusoidsPositionEmbedding(nn.Module):
         
     | 
| 
      
 121 
     | 
    
         
            +
                def __init__(self, length, channels, max_timescale=10000):
         
     | 
| 
      
 122 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 123 
     | 
    
         
            +
                    if channels % 2 != 0:
         
     | 
| 
      
 124 
     | 
    
         
            +
                        raise ValueError("SinusoidsPositionEmbedding needs even channels input")
         
     | 
| 
      
 125 
     | 
    
         
            +
                    log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
         
     | 
| 
      
 126 
     | 
    
         
            +
                    inv_timescales = torch.exp(
         
     | 
| 
      
 127 
     | 
    
         
            +
                        -log_timescale_increment * torch.arange(channels // 2).float()
         
     | 
| 
      
 128 
     | 
    
         
            +
                    )
         
     | 
| 
      
 129 
     | 
    
         
            +
                    scaled_time = (
         
     | 
| 
      
 130 
     | 
    
         
            +
                        torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
         
     | 
| 
      
 131 
     | 
    
         
            +
                    )
         
     | 
| 
      
 132 
     | 
    
         
            +
                    self.register_buffer(
         
     | 
| 
      
 133 
     | 
    
         
            +
                        "positional_embedding",
         
     | 
| 
      
 134 
     | 
    
         
            +
                        torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1),
         
     | 
| 
      
 135 
     | 
    
         
            +
                        persistent=False,
         
     | 
| 
      
 136 
     | 
    
         
            +
                    )
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
                def forward(self, seqlen: int):
         
     | 
| 
      
 139 
     | 
    
         
            +
                    return self.positional_embedding[:seqlen, :]
         
     | 
| 
      
 140 
     | 
    
         
            +
             
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
            def _get_feat_extract_output_lengths(input_lengths):
         
     | 
| 
      
 143 
     | 
    
         
            +
                """
         
     | 
| 
      
 144 
     | 
    
         
            +
                Computes the output length of the convolutional layers and the output length of the audio encoder
         
     | 
| 
      
 145 
     | 
    
         
            +
                """
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
      
 147 
     | 
    
         
            +
                input_lengths_leave = input_lengths % 100
         
     | 
| 
      
 148 
     | 
    
         
            +
                feat_lengths = (input_lengths_leave - 1) // 2 + 1
         
     | 
| 
      
 149 
     | 
    
         
            +
                output_lengths = (
         
     | 
| 
      
 150 
     | 
    
         
            +
                    ((feat_lengths - 1) // 2 + 1 - 1) // 2 + 1 + (input_lengths // 100) * 13
         
     | 
| 
      
 151 
     | 
    
         
            +
                )
         
     | 
| 
      
 152 
     | 
    
         
            +
                return output_lengths
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
             
     | 
| 
      
 155 
     | 
    
         
            +
            class Qwen3OmniMoeAudioEncoder(PreTrainedModel):
         
     | 
| 
      
 156 
     | 
    
         
            +
                config: Qwen3OmniMoeAudioEncoderConfig
         
     | 
| 
      
 157 
     | 
    
         
            +
             
     | 
| 
      
 158 
     | 
    
         
            +
                def __init__(self, config: Qwen3OmniMoeAudioEncoderConfig):
         
     | 
| 
      
 159 
     | 
    
         
            +
                    super().__init__(config)
         
     | 
| 
      
 160 
     | 
    
         
            +
                    self.dropout = config.dropout
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                    embed_dim = config.d_model
         
     | 
| 
      
 163 
     | 
    
         
            +
                    self.num_mel_bins = config.num_mel_bins
         
     | 
| 
      
 164 
     | 
    
         
            +
                    self.max_source_positions = config.max_source_positions
         
     | 
| 
      
 165 
     | 
    
         
            +
                    self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
         
     | 
| 
      
 166 
     | 
    
         
            +
                    self.n_window = config.n_window
         
     | 
| 
      
 167 
     | 
    
         
            +
                    self.positional_embedding = SinusoidsPositionEmbedding(
         
     | 
| 
      
 168 
     | 
    
         
            +
                        self.max_source_positions, embed_dim
         
     | 
| 
      
 169 
     | 
    
         
            +
                    )
         
     | 
| 
      
 170 
     | 
    
         
            +
                    self.layers = nn.ModuleList(
         
     | 
| 
      
 171 
     | 
    
         
            +
                        [
         
     | 
| 
      
 172 
     | 
    
         
            +
                            Qwen3OmniMoeAudioEncoderLayer(config)
         
     | 
| 
      
 173 
     | 
    
         
            +
                            for _ in range(config.encoder_layers)
         
     | 
| 
      
 174 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 175 
     | 
    
         
            +
                    )
         
     | 
| 
      
 176 
     | 
    
         
            +
                    self.ln_post = nn.LayerNorm(config.d_model)
         
     | 
| 
      
 177 
     | 
    
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 
      
 178 
     | 
    
         
            +
                    self.conv2d1 = nn.Conv2d(1, config.downsample_hidden_size, 3, 2, padding=1)
         
     | 
| 
      
 179 
     | 
    
         
            +
                    self.conv2d2 = nn.Conv2d(
         
     | 
| 
      
 180 
     | 
    
         
            +
                        config.downsample_hidden_size,
         
     | 
| 
      
 181 
     | 
    
         
            +
                        config.downsample_hidden_size,
         
     | 
| 
      
 182 
     | 
    
         
            +
                        3,
         
     | 
| 
      
 183 
     | 
    
         
            +
                        2,
         
     | 
| 
      
 184 
     | 
    
         
            +
                        padding=1,
         
     | 
| 
      
 185 
     | 
    
         
            +
                    )
         
     | 
| 
      
 186 
     | 
    
         
            +
                    self.conv2d3 = nn.Conv2d(
         
     | 
| 
      
 187 
     | 
    
         
            +
                        config.downsample_hidden_size,
         
     | 
| 
      
 188 
     | 
    
         
            +
                        config.downsample_hidden_size,
         
     | 
| 
      
 189 
     | 
    
         
            +
                        3,
         
     | 
| 
      
 190 
     | 
    
         
            +
                        2,
         
     | 
| 
      
 191 
     | 
    
         
            +
                        padding=1,
         
     | 
| 
      
 192 
     | 
    
         
            +
                    )
         
     | 
| 
      
 193 
     | 
    
         
            +
                    self.conv_out = nn.Linear(
         
     | 
| 
      
 194 
     | 
    
         
            +
                        config.downsample_hidden_size
         
     | 
| 
      
 195 
     | 
    
         
            +
                        * ((((config.num_mel_bins + 1) // 2 + 1) // 2 + 1) // 2),
         
     | 
| 
      
 196 
     | 
    
         
            +
                        config.d_model,
         
     | 
| 
      
 197 
     | 
    
         
            +
                        bias=False,
         
     | 
| 
      
 198 
     | 
    
         
            +
                    )
         
     | 
| 
      
 199 
     | 
    
         
            +
                    self.proj1 = nn.Linear(config.d_model, config.d_model)
         
     | 
| 
      
 200 
     | 
    
         
            +
                    self.act = ACT2FN[config.activation_function]
         
     | 
| 
      
 201 
     | 
    
         
            +
                    self.proj2 = nn.Linear(config.d_model, config.output_dim)
         
     | 
| 
      
 202 
     | 
    
         
            +
                    self.n_window_infer = self.config.n_window_infer
         
     | 
| 
      
 203 
     | 
    
         
            +
                    self.conv_chunksize = self.config.conv_chunksize
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                def _freeze_parameters(self):
         
     | 
| 
      
 206 
     | 
    
         
            +
                    for param in self.parameters():
         
     | 
| 
      
 207 
     | 
    
         
            +
                        param.requires_grad = False
         
     | 
| 
      
 208 
     | 
    
         
            +
                    self._requires_grad = False
         
     | 
| 
      
 209 
     | 
    
         
            +
             
     | 
| 
      
 210 
     | 
    
         
            +
                def get_input_embeddings(self) -> nn.Module:
         
     | 
| 
      
 211 
     | 
    
         
            +
                    return self.conv1
         
     | 
| 
      
 212 
     | 
    
         
            +
             
     | 
| 
      
 213 
     | 
    
         
            +
                def set_input_embeddings(self, value: nn.Module):
         
     | 
| 
      
 214 
     | 
    
         
            +
                    self.conv1 = value
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                def forward(
         
     | 
| 
      
 217 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 218 
     | 
    
         
            +
                    input_features,
         
     | 
| 
      
 219 
     | 
    
         
            +
                    feature_lens=None,
         
     | 
| 
      
 220 
     | 
    
         
            +
                    aftercnn_lens=None,
         
     | 
| 
      
 221 
     | 
    
         
            +
                ):
         
     | 
| 
      
 222 
     | 
    
         
            +
                    r"""
         
     | 
| 
      
 223 
     | 
    
         
            +
                    feature_lens (`torch.LongTensor` of shape `(batch_size,)`):
         
     | 
| 
      
 224 
     | 
    
         
            +
                        mel length
         
     | 
| 
      
 225 
     | 
    
         
            +
                    aftercnn_lens (`torch.LongTensor` of shape `(batch_size,)`):
         
     | 
| 
      
 226 
     | 
    
         
            +
                        mel length after cnn
         
     | 
| 
      
 227 
     | 
    
         
            +
                    """
         
     | 
| 
      
 228 
     | 
    
         
            +
                    aftercnn_lens = _get_feat_extract_output_lengths(feature_lens)
         
     | 
| 
      
 229 
     | 
    
         
            +
                    chunk_num = torch.ceil(feature_lens / (self.n_window * 2)).long()
         
     | 
| 
      
 230 
     | 
    
         
            +
             
     | 
| 
      
 231 
     | 
    
         
            +
                    chunk_lengths = torch.tensor(
         
     | 
| 
      
 232 
     | 
    
         
            +
                        [self.n_window * 2] * chunk_num.sum(),
         
     | 
| 
      
 233 
     | 
    
         
            +
                        dtype=torch.long,
         
     | 
| 
      
 234 
     | 
    
         
            +
                        device=feature_lens.device,
         
     | 
| 
      
 235 
     | 
    
         
            +
                    )
         
     | 
| 
      
 236 
     | 
    
         
            +
                    tail_chunk_index = F.pad(chunk_num, (1, 0), value=-1).cumsum(0)[1:]
         
     | 
| 
      
 237 
     | 
    
         
            +
                    chunk_lengths[tail_chunk_index] = feature_lens % (self.n_window * 2)
         
     | 
| 
      
 238 
     | 
    
         
            +
                    chunk_lengths[chunk_lengths == 0] = self.n_window * 2
         
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
                    chunk_list = input_features.T.split(chunk_lengths.tolist(), dim=0)
         
     | 
| 
      
 241 
     | 
    
         
            +
                    padded_feature = nn.utils.rnn.pad_sequence(
         
     | 
| 
      
 242 
     | 
    
         
            +
                        chunk_list, batch_first=True
         
     | 
| 
      
 243 
     | 
    
         
            +
                    ).transpose(1, 2)
         
     | 
| 
      
 244 
     | 
    
         
            +
                    feature_lens_after_cnn = _get_feat_extract_output_lengths(chunk_lengths)
         
     | 
| 
      
 245 
     | 
    
         
            +
                    padded_mask_after_cnn = nn.utils.rnn.pad_sequence(
         
     | 
| 
      
 246 
     | 
    
         
            +
                        [
         
     | 
| 
      
 247 
     | 
    
         
            +
                            torch.ones(length, dtype=torch.bool, device=padded_feature.device)
         
     | 
| 
      
 248 
     | 
    
         
            +
                            for length in feature_lens_after_cnn
         
     | 
| 
      
 249 
     | 
    
         
            +
                        ],
         
     | 
| 
      
 250 
     | 
    
         
            +
                        batch_first=True,
         
     | 
| 
      
 251 
     | 
    
         
            +
                    )
         
     | 
| 
      
 252 
     | 
    
         
            +
                    padded_feature = padded_feature.unsqueeze(1)
         
     | 
| 
      
 253 
     | 
    
         
            +
                    # Split to chunk to avoid OOM during convolution
         
     | 
| 
      
 254 
     | 
    
         
            +
                    padded_embeds = []
         
     | 
| 
      
 255 
     | 
    
         
            +
                    for chunk in padded_feature.split(self.conv_chunksize, dim=0):
         
     | 
| 
      
 256 
     | 
    
         
            +
                        padded_embed = F.gelu(self.conv2d1(chunk))
         
     | 
| 
      
 257 
     | 
    
         
            +
                        padded_embed = F.gelu(self.conv2d2(padded_embed))
         
     | 
| 
      
 258 
     | 
    
         
            +
                        padded_embed = F.gelu(self.conv2d3(padded_embed))
         
     | 
| 
      
 259 
     | 
    
         
            +
                        padded_embeds.append(padded_embed)
         
     | 
| 
      
 260 
     | 
    
         
            +
                    padded_embed = torch.cat(padded_embeds, dim=0)
         
     | 
| 
      
 261 
     | 
    
         
            +
                    b, c, f, t = padded_embed.size()
         
     | 
| 
      
 262 
     | 
    
         
            +
                    padded_embed = self.conv_out(
         
     | 
| 
      
 263 
     | 
    
         
            +
                        padded_embed.permute(0, 3, 1, 2).contiguous().view(b, t, c * f)
         
     | 
| 
      
 264 
     | 
    
         
            +
                    )
         
     | 
| 
      
 265 
     | 
    
         
            +
             
     | 
| 
      
 266 
     | 
    
         
            +
                    positional_embedding = (
         
     | 
| 
      
 267 
     | 
    
         
            +
                        self.positional_embedding.positional_embedding[: padded_embed.shape[1], :]
         
     | 
| 
      
 268 
     | 
    
         
            +
                        .unsqueeze(0)
         
     | 
| 
      
 269 
     | 
    
         
            +
                        .to(padded_embed.dtype)
         
     | 
| 
      
 270 
     | 
    
         
            +
                    )
         
     | 
| 
      
 271 
     | 
    
         
            +
                    padded_embed = padded_embed + positional_embedding
         
     | 
| 
      
 272 
     | 
    
         
            +
                    hidden_states = padded_embed[padded_mask_after_cnn]
         
     | 
| 
      
 273 
     | 
    
         
            +
                    cu_chunk_lens = [0]
         
     | 
| 
      
 274 
     | 
    
         
            +
                    window_aftercnn = padded_mask_after_cnn.shape[-1] * (
         
     | 
| 
      
 275 
     | 
    
         
            +
                        self.n_window_infer // (self.n_window * 2)
         
     | 
| 
      
 276 
     | 
    
         
            +
                    )
         
     | 
| 
      
 277 
     | 
    
         
            +
                    for cnn_len in aftercnn_lens:
         
     | 
| 
      
 278 
     | 
    
         
            +
                        cu_chunk_lens += [window_aftercnn] * (cnn_len // window_aftercnn)
         
     | 
| 
      
 279 
     | 
    
         
            +
                        remainder = cnn_len % window_aftercnn
         
     | 
| 
      
 280 
     | 
    
         
            +
                        if remainder != 0:
         
     | 
| 
      
 281 
     | 
    
         
            +
                            cu_chunk_lens += [remainder]
         
     | 
| 
      
 282 
     | 
    
         
            +
                    cu_seqlens = torch.tensor(cu_chunk_lens, device=aftercnn_lens.device).cumsum(
         
     | 
| 
      
 283 
     | 
    
         
            +
                        -1, dtype=torch.int32
         
     | 
| 
      
 284 
     | 
    
         
            +
                    )
         
     | 
| 
      
 285 
     | 
    
         
            +
             
     | 
| 
      
 286 
     | 
    
         
            +
                    for encoder_layer in self.layers:
         
     | 
| 
      
 287 
     | 
    
         
            +
                        layer_outputs = encoder_layer(
         
     | 
| 
      
 288 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 289 
     | 
    
         
            +
                            cu_seqlens,
         
     | 
| 
      
 290 
     | 
    
         
            +
                        )
         
     | 
| 
      
 291 
     | 
    
         
            +
             
     | 
| 
      
 292 
     | 
    
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 
      
 293 
     | 
    
         
            +
             
     | 
| 
      
 294 
     | 
    
         
            +
                    hidden_states = self.ln_post(hidden_states)
         
     | 
| 
      
 295 
     | 
    
         
            +
                    hidden_states = self.proj1(hidden_states)
         
     | 
| 
      
 296 
     | 
    
         
            +
                    hidden_states = self.act(hidden_states)
         
     | 
| 
      
 297 
     | 
    
         
            +
                    hidden_states = self.proj2(hidden_states)
         
     | 
| 
      
 298 
     | 
    
         
            +
                    return BaseModelOutput(last_hidden_state=hidden_states)
         
     | 
| 
      
 299 
     | 
    
         
            +
             
     | 
| 
      
 300 
     | 
    
         
            +
                # Ignore copy
         
     | 
| 
      
 301 
     | 
    
         
            +
                def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
         
     | 
| 
      
 302 
     | 
    
         
            +
                    """
         
     | 
| 
      
 303 
     | 
    
         
            +
                    Computes the output length of the convolutional layers and the output length of the audio encoder
         
     | 
| 
      
 304 
     | 
    
         
            +
                    """
         
     | 
| 
      
 305 
     | 
    
         
            +
                    input_lengths = (input_lengths - 1) // 2 + 1
         
     | 
| 
      
 306 
     | 
    
         
            +
                    output_lengths = (input_lengths - 2) // 2 + 1
         
     | 
| 
      
 307 
     | 
    
         
            +
                    return input_lengths, output_lengths
         
     | 
| 
      
 308 
     | 
    
         
            +
             
     | 
| 
      
 309 
     | 
    
         
            +
             
     | 
| 
      
 310 
     | 
    
         
            +
            class Qwen3OmniMoeVisionPatchMerger(nn.Module):
         
     | 
| 
      
 311 
     | 
    
         
            +
             
     | 
| 
      
 312 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 313 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 314 
     | 
    
         
            +
                    dim: int,
         
     | 
| 
      
 315 
     | 
    
         
            +
                    context_dim: int,
         
     | 
| 
      
 316 
     | 
    
         
            +
                    spatial_merge_size: int = 2,
         
     | 
| 
      
 317 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 318 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 319 
     | 
    
         
            +
                    use_postshuffle_norm=False,
         
     | 
| 
      
 320 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 321 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 322 
     | 
    
         
            +
                    self.hidden_size = context_dim * (spatial_merge_size**2)
         
     | 
| 
      
 323 
     | 
    
         
            +
                    self.use_postshuffle_norm = use_postshuffle_norm
         
     | 
| 
      
 324 
     | 
    
         
            +
                    self.ln_q = RMSNorm(
         
     | 
| 
      
 325 
     | 
    
         
            +
                        self.hidden_size if use_postshuffle_norm else context_dim, eps=1e-6
         
     | 
| 
      
 326 
     | 
    
         
            +
                    )
         
     | 
| 
      
 327 
     | 
    
         
            +
                    self.mlp = nn.ModuleList(
         
     | 
| 
      
 328 
     | 
    
         
            +
                        [
         
     | 
| 
      
 329 
     | 
    
         
            +
                            ColumnParallelLinear(
         
     | 
| 
      
 330 
     | 
    
         
            +
                                self.hidden_size,
         
     | 
| 
      
 331 
     | 
    
         
            +
                                self.hidden_size,
         
     | 
| 
      
 332 
     | 
    
         
            +
                                bias=True,
         
     | 
| 
      
 333 
     | 
    
         
            +
                                quant_config=quant_config,
         
     | 
| 
      
 334 
     | 
    
         
            +
                                prefix=add_prefix("mlp.0", prefix),
         
     | 
| 
      
 335 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 336 
     | 
    
         
            +
                            nn.GELU(),
         
     | 
| 
      
 337 
     | 
    
         
            +
                            RowParallelLinear(
         
     | 
| 
      
 338 
     | 
    
         
            +
                                self.hidden_size,
         
     | 
| 
      
 339 
     | 
    
         
            +
                                dim,
         
     | 
| 
      
 340 
     | 
    
         
            +
                                bias=True,
         
     | 
| 
      
 341 
     | 
    
         
            +
                                quant_config=quant_config,
         
     | 
| 
      
 342 
     | 
    
         
            +
                                prefix=add_prefix("mlp.2", prefix),
         
     | 
| 
      
 343 
     | 
    
         
            +
                            ),
         
     | 
| 
      
 344 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 345 
     | 
    
         
            +
                    )
         
     | 
| 
      
 346 
     | 
    
         
            +
             
     | 
| 
      
 347 
     | 
    
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         
     | 
| 
      
 348 
     | 
    
         
            +
                    x = (
         
     | 
| 
      
 349 
     | 
    
         
            +
                        x.view(-1, self.hidden_size)
         
     | 
| 
      
 350 
     | 
    
         
            +
                        if self.use_postshuffle_norm
         
     | 
| 
      
 351 
     | 
    
         
            +
                        else x.view(-1, x.shape[-1])
         
     | 
| 
      
 352 
     | 
    
         
            +
                    )
         
     | 
| 
      
 353 
     | 
    
         
            +
                    hidden = self.ln_q(x).view(-1, self.hidden_size)
         
     | 
| 
      
 354 
     | 
    
         
            +
                    for layer in self.mlp:
         
     | 
| 
      
 355 
     | 
    
         
            +
                        if isinstance(hidden, tuple):
         
     | 
| 
      
 356 
     | 
    
         
            +
                            hidden = hidden[0]
         
     | 
| 
      
 357 
     | 
    
         
            +
                        hidden = layer(hidden)
         
     | 
| 
      
 358 
     | 
    
         
            +
             
     | 
| 
      
 359 
     | 
    
         
            +
                    if isinstance(hidden, tuple):
         
     | 
| 
      
 360 
     | 
    
         
            +
                        hidden = hidden[0]
         
     | 
| 
      
 361 
     | 
    
         
            +
             
     | 
| 
      
 362 
     | 
    
         
            +
                    return hidden
         
     | 
| 
      
 363 
     | 
    
         
            +
             
     | 
| 
      
 364 
     | 
    
         
            +
             
     | 
| 
      
 365 
     | 
    
         
            +
            class Qwen3OmniMoeVisionEncoder(Qwen3VLMoeVisionModel):
         
     | 
| 
      
 366 
     | 
    
         
            +
                config: Qwen3OmniMoeVisionEncoderConfig
         
     | 
| 
      
 367 
     | 
    
         
            +
             
     | 
| 
      
 368 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 369 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 370 
     | 
    
         
            +
                    config: Qwen3OmniMoeVisionEncoderConfig,
         
     | 
| 
      
 371 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 372 
     | 
    
         
            +
                    prefix: str = None,
         
     | 
| 
      
 373 
     | 
    
         
            +
                    **kwargs,
         
     | 
| 
      
 374 
     | 
    
         
            +
                ):
         
     | 
| 
      
 375 
     | 
    
         
            +
                    super().__init__(
         
     | 
| 
      
 376 
     | 
    
         
            +
                        vision_config=config,
         
     | 
| 
      
 377 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 378 
     | 
    
         
            +
                        norm_eps=getattr(config, "rms_norm_eps", 1e-6),
         
     | 
| 
      
 379 
     | 
    
         
            +
                    )
         
     | 
| 
      
 380 
     | 
    
         
            +
             
     | 
| 
      
 381 
     | 
    
         
            +
                    self.merger = Qwen3OmniMoeVisionPatchMerger(
         
     | 
| 
      
 382 
     | 
    
         
            +
                        dim=config.out_hidden_size,
         
     | 
| 
      
 383 
     | 
    
         
            +
                        context_dim=config.hidden_size,
         
     | 
| 
      
 384 
     | 
    
         
            +
                        spatial_merge_size=config.spatial_merge_size,
         
     | 
| 
      
 385 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 386 
     | 
    
         
            +
                        use_postshuffle_norm=False,
         
     | 
| 
      
 387 
     | 
    
         
            +
                        prefix=add_prefix("merger", prefix),
         
     | 
| 
      
 388 
     | 
    
         
            +
                    )
         
     | 
| 
      
 389 
     | 
    
         
            +
                    self.merger_list = nn.ModuleList(
         
     | 
| 
      
 390 
     | 
    
         
            +
                        [
         
     | 
| 
      
 391 
     | 
    
         
            +
                            Qwen3OmniMoeVisionPatchMerger(
         
     | 
| 
      
 392 
     | 
    
         
            +
                                dim=config.out_hidden_size,
         
     | 
| 
      
 393 
     | 
    
         
            +
                                context_dim=config.hidden_size,
         
     | 
| 
      
 394 
     | 
    
         
            +
                                spatial_merge_size=config.spatial_merge_size,
         
     | 
| 
      
 395 
     | 
    
         
            +
                                use_postshuffle_norm=True,
         
     | 
| 
      
 396 
     | 
    
         
            +
                                quant_config=quant_config,
         
     | 
| 
      
 397 
     | 
    
         
            +
                                prefix=add_prefix("merger_list", prefix),
         
     | 
| 
      
 398 
     | 
    
         
            +
                            )
         
     | 
| 
      
 399 
     | 
    
         
            +
                            for _ in range(len(config.deepstack_visual_indexes))
         
     | 
| 
      
 400 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 401 
     | 
    
         
            +
                    )
         
     | 
| 
      
 402 
     | 
    
         
            +
                    del self.deepstack_merger_list
         
     | 
| 
      
 403 
     | 
    
         
            +
             
     | 
| 
      
 404 
     | 
    
         
            +
                @property
         
     | 
| 
      
 405 
     | 
    
         
            +
                def deepstack_merger_list(self):
         
     | 
| 
      
 406 
     | 
    
         
            +
                    return self.merger_list
         
     | 
| 
      
 407 
     | 
    
         
            +
             
     | 
| 
      
 408 
     | 
    
         
            +
                @property
         
     | 
| 
      
 409 
     | 
    
         
            +
                def dtype(self) -> torch.dtype:
         
     | 
| 
      
 410 
     | 
    
         
            +
                    return self.patch_embed.proj.weight.dtype
         
     | 
| 
      
 411 
     | 
    
         
            +
             
     | 
| 
      
 412 
     | 
    
         
            +
                @property
         
     | 
| 
      
 413 
     | 
    
         
            +
                def device(self) -> torch.device:
         
     | 
| 
      
 414 
     | 
    
         
            +
                    return self.patch_embed.proj.weight.device
         
     | 
| 
      
 415 
     | 
    
         
            +
             
     | 
| 
      
 416 
     | 
    
         
            +
             
     | 
| 
      
 417 
     | 
    
         
            +
            class Qwen3OmniMoeThinkerForConditionalGeneration(Qwen3VLMoeForConditionalGeneration):
         
     | 
| 
      
 418 
     | 
    
         
            +
                config: Qwen3OmniMoeThinkerConfig
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 421 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 422 
     | 
    
         
            +
                    config: Qwen3OmniMoeThinkerConfig,
         
     | 
| 
      
 423 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 424 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 425 
     | 
    
         
            +
                ):
         
     | 
| 
      
 426 
     | 
    
         
            +
                    super().__init__(
         
     | 
| 
      
 427 
     | 
    
         
            +
                        config, quant_config, prefix, language_model_cls=Qwen3MoeLLMModel
         
     | 
| 
      
 428 
     | 
    
         
            +
                    )
         
     | 
| 
      
 429 
     | 
    
         
            +
                    self.audio_tower = Qwen3OmniMoeAudioEncoder(config.audio_config)
         
     | 
| 
      
 430 
     | 
    
         
            +
                    self.visual = Qwen3OmniMoeVisionEncoder(
         
     | 
| 
      
 431 
     | 
    
         
            +
                        config.vision_config,
         
     | 
| 
      
 432 
     | 
    
         
            +
                        quant_config=quant_config,
         
     | 
| 
      
 433 
     | 
    
         
            +
                        norm_eps=getattr(config, "rms_norm_eps", 1e-6),
         
     | 
| 
      
 434 
     | 
    
         
            +
                        prefix=add_prefix("visual", prefix),
         
     | 
| 
      
 435 
     | 
    
         
            +
                    )
         
     | 
| 
      
 436 
     | 
    
         
            +
                    self.pad_token_id = (
         
     | 
| 
      
 437 
     | 
    
         
            +
                        self.config.pad_token_id if self.config.pad_token_id is not None else -1
         
     | 
| 
      
 438 
     | 
    
         
            +
                    )
         
     | 
| 
      
 439 
     | 
    
         
            +
             
     | 
| 
      
 440 
     | 
    
         
            +
                def get_audio_feature(self, items: List[MultimodalDataItem]):
         
     | 
| 
      
 441 
     | 
    
         
            +
                    feature_attention_mask = torch.cat(
         
     | 
| 
      
 442 
     | 
    
         
            +
                        [item.feature_attention_mask for item in items], dim=0
         
     | 
| 
      
 443 
     | 
    
         
            +
                    ).type(torch.long)
         
     | 
| 
      
 444 
     | 
    
         
            +
                    input_features = (
         
     | 
| 
      
 445 
     | 
    
         
            +
                        torch.cat([item.feature for item in items])
         
     | 
| 
      
 446 
     | 
    
         
            +
                        .type(self.audio_tower.dtype)
         
     | 
| 
      
 447 
     | 
    
         
            +
                        .to(next(self.audio_tower.parameters()).device)
         
     | 
| 
      
 448 
     | 
    
         
            +
                    )
         
     | 
| 
      
 449 
     | 
    
         
            +
                    if feature_attention_mask is not None:
         
     | 
| 
      
 450 
     | 
    
         
            +
                        audio_feature_lengths = torch.sum(feature_attention_mask, dim=1)
         
     | 
| 
      
 451 
     | 
    
         
            +
                        input_features = input_features.permute(0, 2, 1)[
         
     | 
| 
      
 452 
     | 
    
         
            +
                            feature_attention_mask.bool()
         
     | 
| 
      
 453 
     | 
    
         
            +
                        ].permute(1, 0)
         
     | 
| 
      
 454 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 455 
     | 
    
         
            +
                        audio_feature_lengths = None
         
     | 
| 
      
 456 
     | 
    
         
            +
             
     | 
| 
      
 457 
     | 
    
         
            +
                    feature_lens = (
         
     | 
| 
      
 458 
     | 
    
         
            +
                        audio_feature_lengths
         
     | 
| 
      
 459 
     | 
    
         
            +
                        if audio_feature_lengths is not None
         
     | 
| 
      
 460 
     | 
    
         
            +
                        else feature_attention_mask.sum(-1)
         
     | 
| 
      
 461 
     | 
    
         
            +
                    )
         
     | 
| 
      
 462 
     | 
    
         
            +
                    audio_outputs = self.audio_tower(
         
     | 
| 
      
 463 
     | 
    
         
            +
                        input_features,
         
     | 
| 
      
 464 
     | 
    
         
            +
                        feature_lens=feature_lens,
         
     | 
| 
      
 465 
     | 
    
         
            +
                    )
         
     | 
| 
      
 466 
     | 
    
         
            +
                    audio_features = audio_outputs.last_hidden_state
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
                    return audio_features
         
     | 
| 
      
 469 
     | 
    
         
            +
             
     | 
| 
      
 470 
     | 
    
         
            +
             
     | 
| 
      
 471 
     | 
    
         
            +
            class Qwen3OmniMoeForConditionalGeneration(PreTrainedModel):
         
     | 
| 
      
 472 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 473 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 474 
     | 
    
         
            +
                    config: Qwen3VLMoeConfig,
         
     | 
| 
      
 475 
     | 
    
         
            +
                    quant_config: Optional[QuantizationConfig] = None,
         
     | 
| 
      
 476 
     | 
    
         
            +
                    prefix: str = "",
         
     | 
| 
      
 477 
     | 
    
         
            +
                ):
         
     | 
| 
      
 478 
     | 
    
         
            +
                    super().__init__(config)
         
     | 
| 
      
 479 
     | 
    
         
            +
                    self.config = config
         
     | 
| 
      
 480 
     | 
    
         
            +
             
     | 
| 
      
 481 
     | 
    
         
            +
                    self.thinker = Qwen3OmniMoeThinkerForConditionalGeneration(
         
     | 
| 
      
 482 
     | 
    
         
            +
                        config.thinker_config, quant_config=quant_config, prefix=prefix
         
     | 
| 
      
 483 
     | 
    
         
            +
                    )
         
     | 
| 
      
 484 
     | 
    
         
            +
                    self.enable_talker = False
         
     | 
| 
      
 485 
     | 
    
         
            +
                    self.pad_input_ids = self.thinker.pad_input_ids
         
     | 
| 
      
 486 
     | 
    
         
            +
                    self.forward = self.thinker.forward
         
     | 
| 
      
 487 
     | 
    
         
            +
             
     | 
| 
      
 488 
     | 
    
         
            +
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         
     | 
| 
      
 489 
     | 
    
         
            +
                    stacked_params_mapping = [
         
     | 
| 
      
 490 
     | 
    
         
            +
                        # (param_name, shard_name, shard_id)
         
     | 
| 
      
 491 
     | 
    
         
            +
                        (".qkv_proj", ".q_proj", "q"),
         
     | 
| 
      
 492 
     | 
    
         
            +
                        (".qkv_proj", ".k_proj", "k"),
         
     | 
| 
      
 493 
     | 
    
         
            +
                        (".qkv_proj", ".v_proj", "v"),
         
     | 
| 
      
 494 
     | 
    
         
            +
                        ("gate_up_proj", "up_proj", 1),
         
     | 
| 
      
 495 
     | 
    
         
            +
                        ("gate_up_proj", "gate_proj", 0),
         
     | 
| 
      
 496 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 497 
     | 
    
         
            +
             
     | 
| 
      
 498 
     | 
    
         
            +
                    expert_params_mapping = FusedMoE.make_expert_params_mapping(
         
     | 
| 
      
 499 
     | 
    
         
            +
                        ckpt_gate_proj_name="gate_proj",
         
     | 
| 
      
 500 
     | 
    
         
            +
                        ckpt_down_proj_name="down_proj",
         
     | 
| 
      
 501 
     | 
    
         
            +
                        ckpt_up_proj_name="up_proj",
         
     | 
| 
      
 502 
     | 
    
         
            +
                        num_experts=self.config.num_experts,
         
     | 
| 
      
 503 
     | 
    
         
            +
                    )
         
     | 
| 
      
 504 
     | 
    
         
            +
             
     | 
| 
      
 505 
     | 
    
         
            +
                    # Skip loading extra parameters for GPTQ/modelopt models.
         
     | 
| 
      
 506 
     | 
    
         
            +
                    ignore_suffixes = (
         
     | 
| 
      
 507 
     | 
    
         
            +
                        ".bias",
         
     | 
| 
      
 508 
     | 
    
         
            +
                        "_bias",
         
     | 
| 
      
 509 
     | 
    
         
            +
                        ".k_scale",
         
     | 
| 
      
 510 
     | 
    
         
            +
                        "_k_scale",
         
     | 
| 
      
 511 
     | 
    
         
            +
                        ".v_scale",
         
     | 
| 
      
 512 
     | 
    
         
            +
                        "_v_scale",
         
     | 
| 
      
 513 
     | 
    
         
            +
                        ".weight_scale",
         
     | 
| 
      
 514 
     | 
    
         
            +
                        "_weight_scale",
         
     | 
| 
      
 515 
     | 
    
         
            +
                        ".input_scale",
         
     | 
| 
      
 516 
     | 
    
         
            +
                        "_input_scale",
         
     | 
| 
      
 517 
     | 
    
         
            +
                    )
         
     | 
| 
      
 518 
     | 
    
         
            +
             
     | 
| 
      
 519 
     | 
    
         
            +
                    is_fused_expert = False
         
     | 
| 
      
 520 
     | 
    
         
            +
                    fused_expert_params_mapping = [
         
     | 
| 
      
 521 
     | 
    
         
            +
                        ("experts.w13_weight", "experts.gate_up_proj", 0, "w1"),
         
     | 
| 
      
 522 
     | 
    
         
            +
                        ("experts.w2_weight", "experts.down_proj", 0, "w2"),
         
     | 
| 
      
 523 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 524 
     | 
    
         
            +
             
     | 
| 
      
 525 
     | 
    
         
            +
                    num_experts = self.config.num_experts
         
     | 
| 
      
 526 
     | 
    
         
            +
             
     | 
| 
      
 527 
     | 
    
         
            +
                    # Cache params_dict to avoid repeated expensive traversal of model parameters
         
     | 
| 
      
 528 
     | 
    
         
            +
                    if not hasattr(self, "_cached_params_dict"):
         
     | 
| 
      
 529 
     | 
    
         
            +
                        self._cached_params_dict = dict(self.named_parameters())
         
     | 
| 
      
 530 
     | 
    
         
            +
                    params_dict = self._cached_params_dict
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
                    for name, loaded_weight in weights:
         
     | 
| 
      
 533 
     | 
    
         
            +
                        name = name.replace(r"model.language_model.", r"model.")
         
     | 
| 
      
 534 
     | 
    
         
            +
             
     | 
| 
      
 535 
     | 
    
         
            +
                        if ("talker" in name or "code2wav" in name) and not self.enable_talker:
         
     | 
| 
      
 536 
     | 
    
         
            +
                            continue
         
     | 
| 
      
 537 
     | 
    
         
            +
             
     | 
| 
      
 538 
     | 
    
         
            +
                        name = name.replace(".self_attn.out_proj", ".self_attn.proj")
         
     | 
| 
      
 539 
     | 
    
         
            +
             
     | 
| 
      
 540 
     | 
    
         
            +
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         
     | 
| 
      
 541 
     | 
    
         
            +
                            if "experts.gate_up_proj" in name or "experts.down_proj" in name:
         
     | 
| 
      
 542 
     | 
    
         
            +
                                is_fused_expert = True
         
     | 
| 
      
 543 
     | 
    
         
            +
                                expert_params_mapping = fused_expert_params_mapping
         
     | 
| 
      
 544 
     | 
    
         
            +
             
     | 
| 
      
 545 
     | 
    
         
            +
                            # Skip non-stacked layers and experts (experts handled below).
         
     | 
| 
      
 546 
     | 
    
         
            +
                            if weight_name not in name:
         
     | 
| 
      
 547 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 548 
     | 
    
         
            +
                            if "visual" in name:
         
     | 
| 
      
 549 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 550 
     | 
    
         
            +
             
     | 
| 
      
 551 
     | 
    
         
            +
                            # We have mlp.experts[0].gate_proj in the checkpoint.
         
     | 
| 
      
 552 
     | 
    
         
            +
                            # Since we handle the experts below in expert_params_mapping,
         
     | 
| 
      
 553 
     | 
    
         
            +
                            # we need to skip here BEFORE we update the name, otherwise
         
     | 
| 
      
 554 
     | 
    
         
            +
                            # name will be updated to mlp.experts[0].gate_up_proj, which
         
     | 
| 
      
 555 
     | 
    
         
            +
                            # will then be updated below in expert_params_mapping
         
     | 
| 
      
 556 
     | 
    
         
            +
                            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
         
     | 
| 
      
 557 
     | 
    
         
            +
                            if "mlp.experts" in name:
         
     | 
| 
      
 558 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 559 
     | 
    
         
            +
                            name = name.replace(weight_name, param_name)
         
     | 
| 
      
 560 
     | 
    
         
            +
                            # Skip loading extra parameters for GPTQ/modelopt models.
         
     | 
| 
      
 561 
     | 
    
         
            +
                            if name.endswith(ignore_suffixes) and name not in params_dict:
         
     | 
| 
      
 562 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 563 
     | 
    
         
            +
                            # [TODO] Skip layers that are on other devices (check if sglang has a similar function)
         
     | 
| 
      
 564 
     | 
    
         
            +
                            # if is_pp_missing_parameter(name, self):
         
     | 
| 
      
 565 
     | 
    
         
            +
                            #     continue
         
     | 
| 
      
 566 
     | 
    
         
            +
             
     | 
| 
      
 567 
     | 
    
         
            +
                            if name not in params_dict:
         
     | 
| 
      
 568 
     | 
    
         
            +
                                continue
         
     | 
| 
      
 569 
     | 
    
         
            +
             
     | 
| 
      
 570 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
      
 571 
     | 
    
         
            +
                            weight_loader = param.weight_loader
         
     | 
| 
      
 572 
     | 
    
         
            +
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
      
 573 
     | 
    
         
            +
                            break
         
     | 
| 
      
 574 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 575 
     | 
    
         
            +
                            # Track if this is an expert weight to enable early skipping
         
     | 
| 
      
 576 
     | 
    
         
            +
                            is_expert_weight = False
         
     | 
| 
      
 577 
     | 
    
         
            +
             
     | 
| 
      
 578 
     | 
    
         
            +
                            for mapping in expert_params_mapping:
         
     | 
| 
      
 579 
     | 
    
         
            +
                                param_name, weight_name, expert_id, shard_id = mapping
         
     | 
| 
      
 580 
     | 
    
         
            +
                                if weight_name not in name:
         
     | 
| 
      
 581 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 582 
     | 
    
         
            +
                                if "visual" in name or "audio_tower" in name:
         
     | 
| 
      
 583 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 584 
     | 
    
         
            +
                                # Anyway, this is an expert weight and should not be
         
     | 
| 
      
 585 
     | 
    
         
            +
                                # attempted to load as other weights later
         
     | 
| 
      
 586 
     | 
    
         
            +
                                is_expert_weight = True
         
     | 
| 
      
 587 
     | 
    
         
            +
                                name_mapped = name.replace(weight_name, param_name)
         
     | 
| 
      
 588 
     | 
    
         
            +
                                if is_fused_expert:
         
     | 
| 
      
 589 
     | 
    
         
            +
                                    loaded_weight = loaded_weight.transpose(-1, -2)  # no bias
         
     | 
| 
      
 590 
     | 
    
         
            +
                                    if "experts.gate_up_proj" in name:
         
     | 
| 
      
 591 
     | 
    
         
            +
                                        loaded_weight = loaded_weight.chunk(2, dim=-2)
         
     | 
| 
      
 592 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
      
 593 
     | 
    
         
            +
                                            name_mapped,
         
     | 
| 
      
 594 
     | 
    
         
            +
                                            params_dict,
         
     | 
| 
      
 595 
     | 
    
         
            +
                                            loaded_weight[0],
         
     | 
| 
      
 596 
     | 
    
         
            +
                                            "w1",
         
     | 
| 
      
 597 
     | 
    
         
            +
                                            num_experts,
         
     | 
| 
      
 598 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 599 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
      
 600 
     | 
    
         
            +
                                            name_mapped,
         
     | 
| 
      
 601 
     | 
    
         
            +
                                            params_dict,
         
     | 
| 
      
 602 
     | 
    
         
            +
                                            loaded_weight[1],
         
     | 
| 
      
 603 
     | 
    
         
            +
                                            "w3",
         
     | 
| 
      
 604 
     | 
    
         
            +
                                            num_experts,
         
     | 
| 
      
 605 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 606 
     | 
    
         
            +
                                    else:
         
     | 
| 
      
 607 
     | 
    
         
            +
                                        load_fused_expert_weights(
         
     | 
| 
      
 608 
     | 
    
         
            +
                                            name_mapped,
         
     | 
| 
      
 609 
     | 
    
         
            +
                                            params_dict,
         
     | 
| 
      
 610 
     | 
    
         
            +
                                            loaded_weight,
         
     | 
| 
      
 611 
     | 
    
         
            +
                                            shard_id,
         
     | 
| 
      
 612 
     | 
    
         
            +
                                            num_experts,
         
     | 
| 
      
 613 
     | 
    
         
            +
                                        )
         
     | 
| 
      
 614 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 615 
     | 
    
         
            +
                                    # Skip loading extra parameters for GPTQ/modelopt models.
         
     | 
| 
      
 616 
     | 
    
         
            +
                                    if (
         
     | 
| 
      
 617 
     | 
    
         
            +
                                        name_mapped.endswith(ignore_suffixes)
         
     | 
| 
      
 618 
     | 
    
         
            +
                                        and name_mapped not in params_dict
         
     | 
| 
      
 619 
     | 
    
         
            +
                                    ):
         
     | 
| 
      
 620 
     | 
    
         
            +
                                        continue
         
     | 
| 
      
 621 
     | 
    
         
            +
                                    param = params_dict[name_mapped]
         
     | 
| 
      
 622 
     | 
    
         
            +
                                    # We should ask the weight loader to return success or
         
     | 
| 
      
 623 
     | 
    
         
            +
                                    # not here since otherwise we may skip experts with
         
     | 
| 
      
 624 
     | 
    
         
            +
                                    # # other available replicas.
         
     | 
| 
      
 625 
     | 
    
         
            +
                                    weight_loader = param.weight_loader
         
     | 
| 
      
 626 
     | 
    
         
            +
                                    weight_loader(
         
     | 
| 
      
 627 
     | 
    
         
            +
                                        param,
         
     | 
| 
      
 628 
     | 
    
         
            +
                                        loaded_weight,
         
     | 
| 
      
 629 
     | 
    
         
            +
                                        name_mapped,
         
     | 
| 
      
 630 
     | 
    
         
            +
                                        shard_id=shard_id,
         
     | 
| 
      
 631 
     | 
    
         
            +
                                        expert_id=expert_id,
         
     | 
| 
      
 632 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 633 
     | 
    
         
            +
                                name = name_mapped
         
     | 
| 
      
 634 
     | 
    
         
            +
                                break
         
     | 
| 
      
 635 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 636 
     | 
    
         
            +
                                if is_expert_weight:
         
     | 
| 
      
 637 
     | 
    
         
            +
                                    # This is an expert weight but not mapped to this rank, skip all remaining processing
         
     | 
| 
      
 638 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 639 
     | 
    
         
            +
                                if "visual" in name or "audio_tower" in name:
         
     | 
| 
      
 640 
     | 
    
         
            +
                                    # adapt to VisionAttention
         
     | 
| 
      
 641 
     | 
    
         
            +
                                    name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
         
     | 
| 
      
 642 
     | 
    
         
            +
                                    name = name.replace(r"model.visual.", r"visual.")
         
     | 
| 
      
 643 
     | 
    
         
            +
                                    name = name.replace(r"attn.out_proj.", r"attn.proj.")
         
     | 
| 
      
 644 
     | 
    
         
            +
             
     | 
| 
      
 645 
     | 
    
         
            +
                                # Skip loading extra parameters for GPTQ/modelopt models.
         
     | 
| 
      
 646 
     | 
    
         
            +
                                if name.endswith(ignore_suffixes) and name not in params_dict:
         
     | 
| 
      
 647 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 648 
     | 
    
         
            +
             
     | 
| 
      
 649 
     | 
    
         
            +
                                if name in params_dict.keys():
         
     | 
| 
      
 650 
     | 
    
         
            +
                                    param = params_dict[name]
         
     | 
| 
      
 651 
     | 
    
         
            +
                                    weight_loader = getattr(
         
     | 
| 
      
 652 
     | 
    
         
            +
                                        param, "weight_loader", default_weight_loader
         
     | 
| 
      
 653 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 654 
     | 
    
         
            +
                                    weight_loader(param, loaded_weight)
         
     | 
| 
      
 655 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 656 
     | 
    
         
            +
                                    logger.warning(
         
     | 
| 
      
 657 
     | 
    
         
            +
                                        f"Loaded weight with {name=} not found in params_dict"
         
     | 
| 
      
 658 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 659 
     | 
    
         
            +
             
     | 
| 
      
 660 
     | 
    
         
            +
             
     | 
| 
      
 661 
     | 
    
         
            +
            EntryClass = Qwen3OmniMoeForConditionalGeneration
         
     |