sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -5,21 +5,21 @@ from typing import TYPE_CHECKING, List, Optional 
     | 
|
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
7 
     | 
    
         
             
            import torch_npu
         
     | 
| 
       8 
     | 
    
         
            -
            from torch.nn.functional import scaled_dot_product_attention
         
     | 
| 
       9 
8 
     | 
    
         | 
| 
       10 
9 
     | 
    
         
             
            from sglang.srt.configs.model_config import AttentionArch
         
     | 
| 
       11 
10 
     | 
    
         
             
            from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
      
 11 
     | 
    
         
            +
            from sglang.srt.layers.attention.npu_ops.mla_preprocess import is_mla_preprocess_enabled
         
     | 
| 
       12 
12 
     | 
    
         
             
            from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
         
     | 
| 
       13 
13 
     | 
    
         
             
            from sglang.srt.layers.dp_attention import get_attention_tp_size
         
     | 
| 
       14 
14 
     | 
    
         
             
            from sglang.srt.layers.radix_attention import AttentionType
         
     | 
| 
       15 
     | 
    
         
            -
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
      
 16 
     | 
    
         
            +
            from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
       16 
17 
     | 
    
         
             
            from sglang.srt.utils import get_bool_env_var
         
     | 
| 
       17 
18 
     | 
    
         | 
| 
       18 
19 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       19 
20 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       20 
21 
     | 
    
         
             
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       21 
22 
     | 
    
         | 
| 
       22 
     | 
    
         
            -
            import os
         
     | 
| 
       23 
23 
     | 
    
         | 
| 
       24 
24 
     | 
    
         
             
            import numpy as np
         
     | 
| 
       25 
25 
     | 
    
         | 
| 
         @@ -35,6 +35,8 @@ class ForwardMetadata: 
     | 
|
| 
       35 
35 
     | 
    
         
             
                seq_lens_cpu_int: Optional[torch.Tensor] = None
         
     | 
| 
       36 
36 
     | 
    
         
             
                seq_lens_cpu_list: Optional[List[int]] = None
         
     | 
| 
       37 
37 
     | 
    
         
             
                seq_lens_list_cumsum: Optional[List[int]] = None
         
     | 
| 
      
 38 
     | 
    
         
            +
                seq_lens: Optional[torch.Tensor] = None
         
     | 
| 
      
 39 
     | 
    
         
            +
                actual_seq_lengths_q: Optional[torch.Tensor] = None
         
     | 
| 
       38 
40 
     | 
    
         | 
| 
       39 
41 
     | 
    
         | 
| 
       40 
42 
     | 
    
         
             
            class AscendAttnBackend(AttentionBackend):
         
     | 
| 
         @@ -66,6 +68,9 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       66 
68 
     | 
    
         
             
                    if self.use_mla:
         
     | 
| 
       67 
69 
     | 
    
         
             
                        self.kv_lora_rank = model_runner.model_config.kv_lora_rank
         
     | 
| 
       68 
70 
     | 
    
         
             
                        self.qk_rope_head_dim = model_runner.model_config.qk_rope_head_dim
         
     | 
| 
      
 71 
     | 
    
         
            +
                        self.q_head_dim = (
         
     | 
| 
      
 72 
     | 
    
         
            +
                            self.qk_rope_head_dim + model_runner.model_config.qk_nope_head_dim
         
     | 
| 
      
 73 
     | 
    
         
            +
                        )
         
     | 
| 
       69 
74 
     | 
    
         
             
                    self.native_attn = TorchNativeAttnBackend(model_runner)
         
     | 
| 
       70 
75 
     | 
    
         
             
                    self.graph_metadata = {}
         
     | 
| 
       71 
76 
     | 
    
         
             
                    self.max_context_len = model_runner.model_config.context_len
         
     | 
| 
         @@ -101,10 +106,6 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       101 
106 
     | 
    
         
             
                    self.forward_metadata.seq_lens_cpu_int = forward_batch.seq_lens_cpu.int()
         
     | 
| 
       102 
107 
     | 
    
         | 
| 
       103 
108 
     | 
    
         
             
                    seq_lens_list_cumsum = np.cumsum(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
       104 
     | 
    
         
            -
                    if forward_batch.is_extend_in_batch:
         
     | 
| 
       105 
     | 
    
         
            -
                        seq_lens_list_cumsum[-1] = (
         
     | 
| 
       106 
     | 
    
         
            -
                            (seq_lens_list_cumsum[-1] - 1) // tp_size + 1
         
     | 
| 
       107 
     | 
    
         
            -
                        ) * tp_size
         
     | 
| 
       108 
109 
     | 
    
         
             
                    self.forward_metadata.seq_lens_list_cumsum = seq_lens_list_cumsum
         
     | 
| 
       109 
110 
     | 
    
         | 
| 
       110 
111 
     | 
    
         
             
                    self.graph_mode = False
         
     | 
| 
         @@ -126,12 +127,16 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       126 
127 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       127 
128 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       128 
129 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       129 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 130 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       130 
131 
     | 
    
         
             
                ):
         
     | 
| 
       131 
132 
     | 
    
         
             
                    metadata = ForwardMetadata()
         
     | 
| 
       132 
133 
     | 
    
         | 
| 
       133 
134 
     | 
    
         
             
                    metadata.block_tables = self.graph_metadata["block_tables"][:bs, :]
         
     | 
| 
       134 
135 
     | 
    
         
             
                    metadata.seq_lens_cpu_list = seq_lens.cpu().int().tolist()
         
     | 
| 
      
 136 
     | 
    
         
            +
                    metadata.seq_lens = seq_lens
         
     | 
| 
      
 137 
     | 
    
         
            +
                    metadata.actual_seq_lengths_q = torch.tensor(
         
     | 
| 
      
 138 
     | 
    
         
            +
                        [1 + i * 1 for i in range(bs)], dtype=torch.int32, device=seq_lens.device
         
     | 
| 
      
 139 
     | 
    
         
            +
                    )
         
     | 
| 
       135 
140 
     | 
    
         | 
| 
       136 
141 
     | 
    
         
             
                    self.graph_metadata[bs] = metadata
         
     | 
| 
       137 
142 
     | 
    
         
             
                    self.forward_metadata = metadata
         
     | 
| 
         @@ -146,7 +151,7 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       146 
151 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       147 
152 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       148 
153 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       149 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 154 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       150 
155 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       151 
156 
     | 
    
         
             
                ):
         
     | 
| 
       152 
157 
     | 
    
         
             
                    metadata = self.graph_metadata[bs]
         
     | 
| 
         @@ -160,6 +165,8 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       160 
165 
     | 
    
         
             
                    metadata.block_tables[:bs, max_seq_pages:].fill_(0)
         
     | 
| 
       161 
166 
     | 
    
         
             
                    metadata.block_tables[bs:, :].fill_(0)
         
     | 
| 
       162 
167 
     | 
    
         | 
| 
      
 168 
     | 
    
         
            +
                    metadata.seq_lens[:bs].copy_(seq_lens[:bs])
         
     | 
| 
      
 169 
     | 
    
         
            +
             
     | 
| 
       163 
170 
     | 
    
         
             
                    self.forward_metadata = metadata
         
     | 
| 
       164 
171 
     | 
    
         | 
| 
       165 
172 
     | 
    
         
             
                    self.graph_mode = True
         
     | 
| 
         @@ -167,6 +174,64 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       167 
174 
     | 
    
         
             
                def get_cuda_graph_seq_len_fill_value(self):
         
     | 
| 
       168 
175 
     | 
    
         
             
                    return 0
         
     | 
| 
       169 
176 
     | 
    
         | 
| 
      
 177 
     | 
    
         
            +
                def forward_sparse(
         
     | 
| 
      
 178 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 179 
     | 
    
         
            +
                    q: torch.Tensor,
         
     | 
| 
      
 180 
     | 
    
         
            +
                    k: torch.Tensor,
         
     | 
| 
      
 181 
     | 
    
         
            +
                    v: torch.Tensor,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    layer: RadixAttention,
         
     | 
| 
      
 183 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 184 
     | 
    
         
            +
                    save_kv_cache: bool = True,
         
     | 
| 
      
 185 
     | 
    
         
            +
                    # For multi_head latent attention
         
     | 
| 
      
 186 
     | 
    
         
            +
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 187 
     | 
    
         
            +
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 188 
     | 
    
         
            +
                    topk_indices: torch.Tensor = None,
         
     | 
| 
      
 189 
     | 
    
         
            +
                ):
         
     | 
| 
      
 190 
     | 
    
         
            +
             
     | 
| 
      
 191 
     | 
    
         
            +
                    is_prefill = forward_batch.forward_mode.is_extend()
         
     | 
| 
      
 192 
     | 
    
         
            +
             
     | 
| 
      
 193 
     | 
    
         
            +
                    if save_kv_cache:
         
     | 
| 
      
 194 
     | 
    
         
            +
                        k = k.view(-1, layer.tp_k_head_num, self.kv_lora_rank)
         
     | 
| 
      
 195 
     | 
    
         
            +
                        k_rope = k_rope.view(-1, layer.tp_k_head_num, self.qk_rope_head_dim)
         
     | 
| 
      
 196 
     | 
    
         
            +
                        forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
      
 197 
     | 
    
         
            +
                            layer, forward_batch.out_cache_loc, k, k_rope
         
     | 
| 
      
 198 
     | 
    
         
            +
                        )
         
     | 
| 
      
 199 
     | 
    
         
            +
                    q_nope, q_pe = q, q_rope
         
     | 
| 
      
 200 
     | 
    
         
            +
                    k_nope, k_pe = forward_batch.token_to_kv_pool.get_kv_buffer(layer.layer_id)
         
     | 
| 
      
 201 
     | 
    
         
            +
                    block_table = self.forward_metadata.block_tables
         
     | 
| 
      
 202 
     | 
    
         
            +
                    if is_prefill:
         
     | 
| 
      
 203 
     | 
    
         
            +
                        actual_seq_qlen = torch.cumsum(forward_batch.seq_lens, dim=0)
         
     | 
| 
      
 204 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 205 
     | 
    
         
            +
                        if self.forward_metadata.actual_seq_lengths_q is None:
         
     | 
| 
      
 206 
     | 
    
         
            +
                            actual_seq_qlen = (
         
     | 
| 
      
 207 
     | 
    
         
            +
                                torch.arange(1, q.shape[0] + 1).to(q.device).to(torch.int32)
         
     | 
| 
      
 208 
     | 
    
         
            +
                            )
         
     | 
| 
      
 209 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 210 
     | 
    
         
            +
                            actual_seq_qlen = self.forward_metadata.actual_seq_lengths_q
         
     | 
| 
      
 211 
     | 
    
         
            +
                    if self.forward_metadata.seq_lens_cpu_int is None:
         
     | 
| 
      
 212 
     | 
    
         
            +
                        actual_seq_lengths_kv = self.forward_metadata.seq_lens
         
     | 
| 
      
 213 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 214 
     | 
    
         
            +
                        actual_seq_lengths_kv = self.forward_metadata.seq_lens_cpu_int
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                    attn_out = torch.ops.custom.npu_sparse_flash_attention(
         
     | 
| 
      
 217 
     | 
    
         
            +
                        query=q_nope,
         
     | 
| 
      
 218 
     | 
    
         
            +
                        key=k_nope,
         
     | 
| 
      
 219 
     | 
    
         
            +
                        value=k_nope,
         
     | 
| 
      
 220 
     | 
    
         
            +
                        query_rope=q_pe,
         
     | 
| 
      
 221 
     | 
    
         
            +
                        key_rope=k_pe,
         
     | 
| 
      
 222 
     | 
    
         
            +
                        sparse_indices=topk_indices,
         
     | 
| 
      
 223 
     | 
    
         
            +
                        scale_value=layer.scaling,
         
     | 
| 
      
 224 
     | 
    
         
            +
                        actual_seq_lengths_query=actual_seq_qlen.to(torch.int32),
         
     | 
| 
      
 225 
     | 
    
         
            +
                        actual_seq_lengths_kv=actual_seq_lengths_kv.to(q.device),
         
     | 
| 
      
 226 
     | 
    
         
            +
                        block_table=block_table,
         
     | 
| 
      
 227 
     | 
    
         
            +
                        sparse_block_size=1,
         
     | 
| 
      
 228 
     | 
    
         
            +
                        layout_query="TND",
         
     | 
| 
      
 229 
     | 
    
         
            +
                        layout_kv="PA_BSND",
         
     | 
| 
      
 230 
     | 
    
         
            +
                        sparse_mode=3,
         
     | 
| 
      
 231 
     | 
    
         
            +
                    )
         
     | 
| 
      
 232 
     | 
    
         
            +
             
     | 
| 
      
 233 
     | 
    
         
            +
                    return attn_out
         
     | 
| 
      
 234 
     | 
    
         
            +
             
     | 
| 
       170 
235 
     | 
    
         
             
                def forward_extend(
         
     | 
| 
       171 
236 
     | 
    
         
             
                    self,
         
     | 
| 
       172 
237 
     | 
    
         
             
                    q,
         
     | 
| 
         @@ -175,7 +240,23 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       175 
240 
     | 
    
         
             
                    layer: RadixAttention,
         
     | 
| 
       176 
241 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       177 
242 
     | 
    
         
             
                    save_kv_cache: bool = True,
         
     | 
| 
      
 243 
     | 
    
         
            +
                    # For multi_head latent attention
         
     | 
| 
      
 244 
     | 
    
         
            +
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 245 
     | 
    
         
            +
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 246 
     | 
    
         
            +
                    topk_indices: Optional[torch.Tensor] = None,
         
     | 
| 
       178 
247 
     | 
    
         
             
                ):
         
     | 
| 
      
 248 
     | 
    
         
            +
                    if topk_indices is not None:
         
     | 
| 
      
 249 
     | 
    
         
            +
                        return self.forward_sparse(
         
     | 
| 
      
 250 
     | 
    
         
            +
                            q,
         
     | 
| 
      
 251 
     | 
    
         
            +
                            k,
         
     | 
| 
      
 252 
     | 
    
         
            +
                            v,
         
     | 
| 
      
 253 
     | 
    
         
            +
                            layer,
         
     | 
| 
      
 254 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 255 
     | 
    
         
            +
                            save_kv_cache,
         
     | 
| 
      
 256 
     | 
    
         
            +
                            q_rope,
         
     | 
| 
      
 257 
     | 
    
         
            +
                            k_rope,
         
     | 
| 
      
 258 
     | 
    
         
            +
                            topk_indices,
         
     | 
| 
      
 259 
     | 
    
         
            +
                        )
         
     | 
| 
       179 
260 
     | 
    
         
             
                    if not self.use_mla:
         
     | 
| 
       180 
261 
     | 
    
         
             
                        if save_kv_cache:
         
     | 
| 
       181 
262 
     | 
    
         
             
                            forward_batch.token_to_kv_pool.set_kv_buffer(
         
     | 
| 
         @@ -274,6 +355,11 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       274 
355 
     | 
    
         
             
                        assert (
         
     | 
| 
       275 
356 
     | 
    
         
             
                            layer.qk_head_dim != layer.v_head_dim
         
     | 
| 
       276 
357 
     | 
    
         
             
                        ), "FIA only supports qk_head_dim != v_head_dim"
         
     | 
| 
      
 358 
     | 
    
         
            +
                        num_token_padding = q.shape[0]
         
     | 
| 
      
 359 
     | 
    
         
            +
                        q, k, v = [
         
     | 
| 
      
 360 
     | 
    
         
            +
                            data[: forward_batch.num_token_non_padded_cpu] for data in [q, k, v]
         
     | 
| 
      
 361 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
       277 
363 
     | 
    
         
             
                        q_nope, q_rope = q.split([layer.v_head_dim, self.qk_rope_head_dim], dim=-1)
         
     | 
| 
       278 
364 
     | 
    
         
             
                        k_nope, k_rope = k.split([layer.v_head_dim, self.qk_rope_head_dim], dim=-1)
         
     | 
| 
       279 
365 
     | 
    
         | 
| 
         @@ -293,6 +379,18 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       293 
379 
     | 
    
         
             
                            next_tokens=0,
         
     | 
| 
       294 
380 
     | 
    
         
             
                        )
         
     | 
| 
       295 
381 
     | 
    
         | 
| 
      
 382 
     | 
    
         
            +
                        attn_output = attn_output.reshape(-1, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 383 
     | 
    
         
            +
                        if num_token_padding != forward_batch.num_token_non_padded_cpu:
         
     | 
| 
      
 384 
     | 
    
         
            +
                            attn_output = torch.cat(
         
     | 
| 
      
 385 
     | 
    
         
            +
                                [
         
     | 
| 
      
 386 
     | 
    
         
            +
                                    attn_output,
         
     | 
| 
      
 387 
     | 
    
         
            +
                                    attn_output.new_zeros(
         
     | 
| 
      
 388 
     | 
    
         
            +
                                        num_token_padding - attn_output.shape[0],
         
     | 
| 
      
 389 
     | 
    
         
            +
                                        *attn_output.shape[1:],
         
     | 
| 
      
 390 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 391 
     | 
    
         
            +
                                ],
         
     | 
| 
      
 392 
     | 
    
         
            +
                                dim=0,
         
     | 
| 
      
 393 
     | 
    
         
            +
                            )
         
     | 
| 
       296 
394 
     | 
    
         
             
                    return attn_output
         
     | 
| 
       297 
395 
     | 
    
         | 
| 
       298 
396 
     | 
    
         
             
                def forward_decode_graph(
         
     | 
| 
         @@ -401,7 +499,7 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       401 
499 
     | 
    
         
             
                            antiquant_scale=None,
         
     | 
| 
       402 
500 
     | 
    
         
             
                            sparse_mode=0,
         
     | 
| 
       403 
501 
     | 
    
         
             
                        )
         
     | 
| 
       404 
     | 
    
         
            -
                        output = torch. 
     | 
| 
      
 502 
     | 
    
         
            +
                        output = torch.empty_like(q_nope, dtype=q.dtype, device=q.device)
         
     | 
| 
       405 
503 
     | 
    
         
             
                        softmax_lse = torch.empty(1, dtype=q.dtype, device=q.device)
         
     | 
| 
       406 
504 
     | 
    
         | 
| 
       407 
505 
     | 
    
         
             
                        torch_npu.npu_fused_infer_attention_score.out(
         
     | 
| 
         @@ -436,7 +534,24 @@ class AscendAttnBackend(AttentionBackend): 
     | 
|
| 
       436 
534 
     | 
    
         
             
                    # For multi-head latent attention
         
     | 
| 
       437 
535 
     | 
    
         
             
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
       438 
536 
     | 
    
         
             
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 537 
     | 
    
         
            +
                    topk_indices: Optional[torch.Tensor] = None,
         
     | 
| 
       439 
538 
     | 
    
         
             
                ):
         
     | 
| 
      
 539 
     | 
    
         
            +
                    if is_mla_preprocess_enabled():
         
     | 
| 
      
 540 
     | 
    
         
            +
                        # MLAPO does saving kv_cache
         
     | 
| 
      
 541 
     | 
    
         
            +
                        save_kv_cache = False
         
     | 
| 
      
 542 
     | 
    
         
            +
                    if topk_indices is not None:
         
     | 
| 
      
 543 
     | 
    
         
            +
                        return self.forward_sparse(
         
     | 
| 
      
 544 
     | 
    
         
            +
                            q,
         
     | 
| 
      
 545 
     | 
    
         
            +
                            k,
         
     | 
| 
      
 546 
     | 
    
         
            +
                            v,
         
     | 
| 
      
 547 
     | 
    
         
            +
                            layer,
         
     | 
| 
      
 548 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 549 
     | 
    
         
            +
                            save_kv_cache,
         
     | 
| 
      
 550 
     | 
    
         
            +
                            q_rope,
         
     | 
| 
      
 551 
     | 
    
         
            +
                            k_rope,
         
     | 
| 
      
 552 
     | 
    
         
            +
                            topk_indices,
         
     | 
| 
      
 553 
     | 
    
         
            +
                        )
         
     | 
| 
      
 554 
     | 
    
         
            +
             
     | 
| 
       440 
555 
     | 
    
         
             
                    if self.graph_mode:
         
     | 
| 
       441 
556 
     | 
    
         
             
                        return self.forward_decode_graph(
         
     | 
| 
       442 
557 
     | 
    
         
             
                            q,
         
     | 
| 
         @@ -0,0 +1,226 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 2 
     | 
    
         
            +
            from typing import TYPE_CHECKING
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 8 
     | 
    
         
            +
                # evade circular imports
         
     | 
| 
      
 9 
     | 
    
         
            +
                from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
      
 10 
     | 
    
         
            +
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            ATTENTION_BACKENDS = {}
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            def register_attention_backend(name):
         
     | 
| 
      
 16 
     | 
    
         
            +
                def decorator(fn):
         
     | 
| 
      
 17 
     | 
    
         
            +
                    ATTENTION_BACKENDS[name] = fn
         
     | 
| 
      
 18 
     | 
    
         
            +
                    return fn
         
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
                return decorator
         
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
            @register_attention_backend("flashinfer")
         
     | 
| 
      
 24 
     | 
    
         
            +
            def create_flashinfer_backend(runner):
         
     | 
| 
      
 25 
     | 
    
         
            +
                import torch
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
                if not runner.use_mla_backend:
         
     | 
| 
      
 28 
     | 
    
         
            +
                    from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
                    # Init streams
         
     | 
| 
      
 31 
     | 
    
         
            +
                    if runner.server_args.speculative_algorithm == "EAGLE":
         
     | 
| 
      
 32 
     | 
    
         
            +
                        if (
         
     | 
| 
      
 33 
     | 
    
         
            +
                            not hasattr(runner, "plan_stream_for_flashinfer")
         
     | 
| 
      
 34 
     | 
    
         
            +
                            or not runner.plan_stream_for_flashinfer
         
     | 
| 
      
 35 
     | 
    
         
            +
                        ):
         
     | 
| 
      
 36 
     | 
    
         
            +
                            runner.plan_stream_for_flashinfer = torch.cuda.Stream()
         
     | 
| 
      
 37 
     | 
    
         
            +
                    return FlashInferAttnBackend(
         
     | 
| 
      
 38 
     | 
    
         
            +
                        runner, init_new_workspace=runner.init_new_workspace
         
     | 
| 
      
 39 
     | 
    
         
            +
                    )
         
     | 
| 
      
 40 
     | 
    
         
            +
                else:
         
     | 
| 
      
 41 
     | 
    
         
            +
                    from sglang.srt.layers.attention.flashinfer_mla_backend import (
         
     | 
| 
      
 42 
     | 
    
         
            +
                        FlashInferMLAAttnBackend,
         
     | 
| 
      
 43 
     | 
    
         
            +
                    )
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
                    return FlashInferMLAAttnBackend(runner)
         
     | 
| 
      
 46 
     | 
    
         
            +
             
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
            @register_attention_backend("trtllm_mla")
         
     | 
| 
      
 49 
     | 
    
         
            +
            def create_trtllm_mla_backend(runner):
         
     | 
| 
      
 50 
     | 
    
         
            +
                if not runner.use_mla_backend:
         
     | 
| 
      
 51 
     | 
    
         
            +
                    raise ValueError("trtllm_mla backend can only be used with MLA models.")
         
     | 
| 
      
 52 
     | 
    
         
            +
                from sglang.srt.layers.attention.trtllm_mla_backend import TRTLLMMLABackend
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                return TRTLLMMLABackend(runner)
         
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
            @register_attention_backend("aiter")
         
     | 
| 
      
 58 
     | 
    
         
            +
            def create_aiter_backend(runner):
         
     | 
| 
      
 59 
     | 
    
         
            +
                from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend
         
     | 
| 
      
 60 
     | 
    
         
            +
             
     | 
| 
      
 61 
     | 
    
         
            +
                return AiterAttnBackend(runner)
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
            @register_attention_backend("wave")
         
     | 
| 
      
 65 
     | 
    
         
            +
            def create_wave_backend(runner):
         
     | 
| 
      
 66 
     | 
    
         
            +
                from sglang.srt.layers.attention.wave_backend import WaveAttnBackend
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                return WaveAttnBackend(runner)
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
            @register_attention_backend("ascend")
         
     | 
| 
      
 72 
     | 
    
         
            +
            def create_ascend_backend(runner):
         
     | 
| 
      
 73 
     | 
    
         
            +
                from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
                return AscendAttnBackend(runner)
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
            @register_attention_backend("nsa")
         
     | 
| 
      
 79 
     | 
    
         
            +
            def create_nsa_backend(runner):
         
     | 
| 
      
 80 
     | 
    
         
            +
                from sglang.srt.layers.attention.nsa_backend import NativeSparseAttnBackend
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                return NativeSparseAttnBackend(runner)
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
            @register_attention_backend("triton")
         
     | 
| 
      
 86 
     | 
    
         
            +
            def create_triton_backend(runner):
         
     | 
| 
      
 87 
     | 
    
         
            +
                assert not runner.model_config.is_encoder_decoder, (
         
     | 
| 
      
 88 
     | 
    
         
            +
                    "Cross attention is not supported in the triton attention backend. "
         
     | 
| 
      
 89 
     | 
    
         
            +
                    "Please use `--attention-backend flashinfer`."
         
     | 
| 
      
 90 
     | 
    
         
            +
                )
         
     | 
| 
      
 91 
     | 
    
         
            +
                if runner.server_args.enable_double_sparsity:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    from sglang.srt.layers.attention.double_sparsity_backend import (
         
     | 
| 
      
 93 
     | 
    
         
            +
                        DoubleSparseAttnBackend,
         
     | 
| 
      
 94 
     | 
    
         
            +
                    )
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                    return DoubleSparseAttnBackend(runner)
         
     | 
| 
      
 97 
     | 
    
         
            +
                else:
         
     | 
| 
      
 98 
     | 
    
         
            +
                    from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
         
     | 
| 
      
 99 
     | 
    
         
            +
             
     | 
| 
      
 100 
     | 
    
         
            +
                    return TritonAttnBackend(runner)
         
     | 
| 
      
 101 
     | 
    
         
            +
             
     | 
| 
      
 102 
     | 
    
         
            +
             
     | 
| 
      
 103 
     | 
    
         
            +
            @register_attention_backend("torch_native")
         
     | 
| 
      
 104 
     | 
    
         
            +
            def create_torch_native_backend(runner):
         
     | 
| 
      
 105 
     | 
    
         
            +
                from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
                return TorchNativeAttnBackend(runner)
         
     | 
| 
      
 108 
     | 
    
         
            +
             
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
            @register_attention_backend("flex_attention")
         
     | 
| 
      
 111 
     | 
    
         
            +
            def create_flex_attention_backend(runner):
         
     | 
| 
      
 112 
     | 
    
         
            +
                from sglang.srt.layers.attention.torch_flex_backend import TorchFlexAttnBackend
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                return TorchFlexAttnBackend(runner)
         
     | 
| 
      
 115 
     | 
    
         
            +
             
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
            @register_attention_backend("flashmla")
         
     | 
| 
      
 118 
     | 
    
         
            +
            def create_flashmla_backend(runner):
         
     | 
| 
      
 119 
     | 
    
         
            +
                from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                return FlashMLABackend(runner)
         
     | 
| 
      
 122 
     | 
    
         
            +
             
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
            @register_attention_backend("fa3")
         
     | 
| 
      
 125 
     | 
    
         
            +
            def create_flashattention_v3_backend(runner):
         
     | 
| 
      
 126 
     | 
    
         
            +
                import torch
         
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 129 
     | 
    
         
            +
                    torch.cuda.get_device_capability()[0] == 8 and not runner.use_mla_backend
         
     | 
| 
      
 130 
     | 
    
         
            +
                ) or torch.cuda.get_device_capability()[0] == 9, (
         
     | 
| 
      
 131 
     | 
    
         
            +
                    "FlashAttention v3 Backend requires SM>=80 and SM<=90. "
         
     | 
| 
      
 132 
     | 
    
         
            +
                    "Please use `--attention-backend flashinfer`."
         
     | 
| 
      
 133 
     | 
    
         
            +
                )
         
     | 
| 
      
 134 
     | 
    
         
            +
                from sglang.srt.layers.attention.flashattention_backend import FlashAttentionBackend
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                return FlashAttentionBackend(runner)
         
     | 
| 
      
 137 
     | 
    
         
            +
             
     | 
| 
      
 138 
     | 
    
         
            +
             
     | 
| 
      
 139 
     | 
    
         
            +
            @register_attention_backend("fa4")
         
     | 
| 
      
 140 
     | 
    
         
            +
            def create_flashattention_v4_backend(runner):
         
     | 
| 
      
 141 
     | 
    
         
            +
                from sglang.srt.layers.attention.flashattention_backend import FlashAttentionBackend
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                return FlashAttentionBackend(runner, fa_impl_ver=4)
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
            @register_attention_backend("cutlass_mla")
         
     | 
| 
      
 147 
     | 
    
         
            +
            def create_cutlass_mla_backend(runner):
         
     | 
| 
      
 148 
     | 
    
         
            +
                from sglang.srt.layers.attention.cutlass_mla_backend import CutlassMLABackend
         
     | 
| 
      
 149 
     | 
    
         
            +
             
     | 
| 
      
 150 
     | 
    
         
            +
                return CutlassMLABackend(runner)
         
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
            @register_attention_backend("trtllm_mha")
         
     | 
| 
      
 154 
     | 
    
         
            +
            def create_trtllm_mha_backend(runner):
         
     | 
| 
      
 155 
     | 
    
         
            +
                if runner.use_mla_backend:
         
     | 
| 
      
 156 
     | 
    
         
            +
                    raise ValueError("trtllm_mha backend can only be used with non-MLA models.")
         
     | 
| 
      
 157 
     | 
    
         
            +
                from sglang.srt.layers.attention.trtllm_mha_backend import TRTLLMHAAttnBackend
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                return TRTLLMHAAttnBackend(runner)
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
            @register_attention_backend("intel_amx")
         
     | 
| 
      
 163 
     | 
    
         
            +
            def create_intel_amx_backend(runner):
         
     | 
| 
      
 164 
     | 
    
         
            +
                from sglang.srt.layers.attention.intel_amx_backend import IntelAMXAttnBackend
         
     | 
| 
      
 165 
     | 
    
         
            +
             
     | 
| 
      
 166 
     | 
    
         
            +
                return IntelAMXAttnBackend(runner)
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
            @register_attention_backend("dual_chunk_flash_attn")
         
     | 
| 
      
 170 
     | 
    
         
            +
            def create_dual_chunk_flash_attn_backend(runner):
         
     | 
| 
      
 171 
     | 
    
         
            +
                from sglang.srt.layers.attention.dual_chunk_flashattention_backend import (
         
     | 
| 
      
 172 
     | 
    
         
            +
                    DualChunkFlashAttentionBackend,
         
     | 
| 
      
 173 
     | 
    
         
            +
                )
         
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
                return DualChunkFlashAttentionBackend(runner)
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
             
     | 
| 
      
 178 
     | 
    
         
            +
            def attn_backend_wrapper(runner: "ModelRunner", full_attn_backend: "AttentionBackend"):
         
     | 
| 
      
 179 
     | 
    
         
            +
                """
         
     | 
| 
      
 180 
     | 
    
         
            +
                Wrapper for special models like hybrid GDN, so we don't
         
     | 
| 
      
 181 
     | 
    
         
            +
                need to change the code of the original attention backend.
         
     | 
| 
      
 182 
     | 
    
         
            +
                """
         
     | 
| 
      
 183 
     | 
    
         
            +
                assert not (
         
     | 
| 
      
 184 
     | 
    
         
            +
                    runner.hybrid_gdn_config is not None and runner.use_mla_backend
         
     | 
| 
      
 185 
     | 
    
         
            +
                ), "hybrid_gdn can only be used with non-MLA models."
         
     | 
| 
      
 186 
     | 
    
         
            +
             
     | 
| 
      
 187 
     | 
    
         
            +
                if cfg := runner.mambaish_config:
         
     | 
| 
      
 188 
     | 
    
         
            +
                    from sglang.srt.layers.attention.fla.utils import check_environments
         
     | 
| 
      
 189 
     | 
    
         
            +
                    from sglang.srt.layers.attention.hybrid_linear_attn_backend import (
         
     | 
| 
      
 190 
     | 
    
         
            +
                        GDNAttnBackend,
         
     | 
| 
      
 191 
     | 
    
         
            +
                        HybridLinearAttnBackend,
         
     | 
| 
      
 192 
     | 
    
         
            +
                        Mamba2AttnBackend,
         
     | 
| 
      
 193 
     | 
    
         
            +
                    )
         
     | 
| 
      
 194 
     | 
    
         
            +
                    from sglang.srt.utils import is_blackwell, is_npu
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                    check_environments()
         
     | 
| 
      
 197 
     | 
    
         
            +
                    if runner.hybrid_gdn_config is not None:
         
     | 
| 
      
 198 
     | 
    
         
            +
                        if is_blackwell():
         
     | 
| 
      
 199 
     | 
    
         
            +
                            assert (
         
     | 
| 
      
 200 
     | 
    
         
            +
                                runner.server_args.attention_backend == "triton"
         
     | 
| 
      
 201 
     | 
    
         
            +
                            ), "triton backend is the only supported backend on Blackwell GPUs for hybrid GDN models, use --attention-backend triton to specify the backend."
         
     | 
| 
      
 202 
     | 
    
         
            +
                        if is_npu():
         
     | 
| 
      
 203 
     | 
    
         
            +
                            assert (
         
     | 
| 
      
 204 
     | 
    
         
            +
                                runner.server_args.attention_backend == "ascend"
         
     | 
| 
      
 205 
     | 
    
         
            +
                            ), "ascend backend is the only supported backend on NPU for hybrid GDN models, use --attention-backend ascend to specify the backend."
         
     | 
| 
      
 206 
     | 
    
         
            +
                        logger.info(f"Using hybrid linear attention backend for hybrid GDN models.")
         
     | 
| 
      
 207 
     | 
    
         
            +
                        linear_attn_backend = GDNAttnBackend(runner)
         
     | 
| 
      
 208 
     | 
    
         
            +
                    elif runner.mamba2_config is not None:
         
     | 
| 
      
 209 
     | 
    
         
            +
                        linear_attn_backend = Mamba2AttnBackend(runner)
         
     | 
| 
      
 210 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 211 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 212 
     | 
    
         
            +
                            "Expected hybrid GDN or NemotronH models, but got unknown model."
         
     | 
| 
      
 213 
     | 
    
         
            +
                        )
         
     | 
| 
      
 214 
     | 
    
         
            +
                    full_attn_layers = cfg.full_attention_layer_ids
         
     | 
| 
      
 215 
     | 
    
         
            +
                    return HybridLinearAttnBackend(
         
     | 
| 
      
 216 
     | 
    
         
            +
                        full_attn_backend, linear_attn_backend, full_attn_layers
         
     | 
| 
      
 217 
     | 
    
         
            +
                    )
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
      
 219 
     | 
    
         
            +
                return full_attn_backend
         
     | 
| 
      
 220 
     | 
    
         
            +
             
     | 
| 
      
 221 
     | 
    
         
            +
             
     | 
| 
      
 222 
     | 
    
         
            +
            @register_attention_backend("intel_xpu")
         
     | 
| 
      
 223 
     | 
    
         
            +
            def create_intel_xpu_backend(runner):
         
     | 
| 
      
 224 
     | 
    
         
            +
                from sglang.srt.layers.attention.xpu_backend import XPUAttentionBackend
         
     | 
| 
      
 225 
     | 
    
         
            +
             
     | 
| 
      
 226 
     | 
    
         
            +
                return XPUAttentionBackend(runner)
         
     | 
| 
         @@ -1,14 +1,15 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            from abc import ABC, abstractmethod
         
     | 
| 
       4 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Optional 
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Optional
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
7 
     | 
    
         | 
| 
       8 
8 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
      
 9 
     | 
    
         
            +
                from sglang.srt.layers.attention.nsa.nsa_indexer import BaseIndexerMetadata
         
     | 
| 
       9 
10 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       10 
11 
     | 
    
         
             
                from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
       11 
     | 
    
         
            -
                from sglang.srt.speculative. 
     | 
| 
      
 12 
     | 
    
         
            +
                from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
       12 
13 
     | 
    
         | 
| 
       13 
14 
     | 
    
         | 
| 
       14 
15 
     | 
    
         
             
            class AttentionBackend(ABC):
         
     | 
| 
         @@ -31,7 +32,7 @@ class AttentionBackend(ABC): 
     | 
|
| 
       31 
32 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       32 
33 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       33 
34 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       34 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 35 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       35 
36 
     | 
    
         
             
                ):
         
     | 
| 
       36 
37 
     | 
    
         
             
                    """Init the metadata for a forward pass for capturing a cuda graph."""
         
     | 
| 
       37 
38 
     | 
    
         
             
                    raise NotImplementedError()
         
     | 
| 
         @@ -44,7 +45,7 @@ class AttentionBackend(ABC): 
     | 
|
| 
       44 
45 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       45 
46 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       46 
47 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       47 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 48 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       48 
49 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       49 
50 
     | 
    
         
             
                ):
         
     | 
| 
       50 
51 
     | 
    
         
             
                    """Init the metadata for a forward pass for replaying a cuda graph."""
         
     | 
| 
         @@ -54,6 +55,25 @@ class AttentionBackend(ABC): 
     | 
|
| 
       54 
55 
     | 
    
         
             
                    """Get the fill value for padded seq lens. Typically, it is 0 or 1."""
         
     | 
| 
       55 
56 
     | 
    
         
             
                    raise NotImplementedError()
         
     | 
| 
       56 
57 
     | 
    
         | 
| 
      
 58 
     | 
    
         
            +
                def get_verify_buffers_to_fill_after_draft(self):
         
     | 
| 
      
 59 
     | 
    
         
            +
                    """
         
     | 
| 
      
 60 
     | 
    
         
            +
                    Return buffers of verify attention kernels that needs to be filled after draft.
         
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
                    Typically, these are tree mask and position buffers.
         
     | 
| 
      
 63 
     | 
    
         
            +
                    """
         
     | 
| 
      
 64 
     | 
    
         
            +
                    return [None, None]
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                def update_verify_buffers_to_fill_after_draft(
         
     | 
| 
      
 67 
     | 
    
         
            +
                    self, spec_info: SpecInput, cuda_graph_bs: Optional[int]
         
     | 
| 
      
 68 
     | 
    
         
            +
                ):
         
     | 
| 
      
 69 
     | 
    
         
            +
                    """
         
     | 
| 
      
 70 
     | 
    
         
            +
                    Update the buffers returned by get_verify_fill_after_draft_buffers if needed.
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
                    Here, we need to redo the computation of all metadata of the attention backend
         
     | 
| 
      
 73 
     | 
    
         
            +
                    that depends on tree mask and position buffers.
         
     | 
| 
      
 74 
     | 
    
         
            +
                    """
         
     | 
| 
      
 75 
     | 
    
         
            +
                    raise NotImplementedError()
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
       57 
77 
     | 
    
         
             
                def forward(
         
     | 
| 
       58 
78 
     | 
    
         
             
                    self,
         
     | 
| 
       59 
79 
     | 
    
         
             
                    q: torch.Tensor,
         
     | 
| 
         @@ -115,3 +135,11 @@ class AttentionBackend(ABC): 
     | 
|
| 
       115 
135 
     | 
    
         
             
                def support_triton(self):
         
     | 
| 
       116 
136 
     | 
    
         
             
                    """Check if the current backend supports triton."""
         
     | 
| 
       117 
137 
     | 
    
         
             
                    return True
         
     | 
| 
      
 138 
     | 
    
         
            +
             
     | 
| 
      
 139 
     | 
    
         
            +
                def get_indexer_metadata(
         
     | 
| 
      
 140 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 141 
     | 
    
         
            +
                    layer_id: int,
         
     | 
| 
      
 142 
     | 
    
         
            +
                    forward_batch: ForwardBatch,
         
     | 
| 
      
 143 
     | 
    
         
            +
                ) -> Optional[BaseIndexerMetadata]:
         
     | 
| 
      
 144 
     | 
    
         
            +
                    """Get the indexer metadata. None means don't support indexer."""
         
     | 
| 
      
 145 
     | 
    
         
            +
                    return None
         
     | 
| 
         @@ -20,7 +20,7 @@ from sglang.srt.utils import is_cuda 
     | 
|
| 
       20 
20 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       21 
21 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       22 
22 
     | 
    
         
             
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       23 
     | 
    
         
            -
                from sglang.srt.speculative.spec_info import  
     | 
| 
      
 23 
     | 
    
         
            +
                from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
       24 
24 
     | 
    
         | 
| 
       25 
25 
     | 
    
         
             
            _is_cuda = is_cuda()
         
     | 
| 
       26 
26 
     | 
    
         
             
            if _is_cuda:
         
     | 
| 
         @@ -151,7 +151,7 @@ class CutlassMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       151 
151 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       152 
152 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       153 
153 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       154 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 154 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       155 
155 
     | 
    
         
             
                ):
         
     | 
| 
       156 
156 
     | 
    
         
             
                    if forward_mode.is_decode_or_idle():
         
     | 
| 
       157 
157 
     | 
    
         
             
                        if spec_info is None:
         
     | 
| 
         @@ -190,7 +190,7 @@ class CutlassMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       190 
190 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       191 
191 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       192 
192 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       193 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 193 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       194 
194 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       195 
195 
     | 
    
         
             
                ):
         
     | 
| 
       196 
196 
     | 
    
         | 
| 
         @@ -5,8 +5,8 @@ from typing import TYPE_CHECKING 
     | 
|
| 
       5 
5 
     | 
    
         
             
            import torch
         
     | 
| 
       6 
6 
     | 
    
         | 
| 
       7 
7 
     | 
    
         
             
            from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
         
     | 
| 
       8 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       9 
8 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       10 
10 
     | 
    
         | 
| 
       11 
11 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       12 
12 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
         @@ -42,7 +42,7 @@ class DoubleSparseAttnBackend(AttentionBackend): 
     | 
|
| 
       42 
42 
     | 
    
         
             
                    # TODO: Change the hard-coded block_seq_num
         
     | 
| 
       43 
43 
     | 
    
         
             
                    self.BLOCK_SEQ = 128
         
     | 
| 
       44 
44 
     | 
    
         | 
| 
       45 
     | 
    
         
            -
                    if  
     | 
| 
      
 45 
     | 
    
         
            +
                    if get_global_server_args().triton_attention_reduce_in_fp32:
         
     | 
| 
       46 
46 
     | 
    
         
             
                        self.reduce_dtype = torch.float32
         
     | 
| 
       47 
47 
     | 
    
         
             
                    else:
         
     | 
| 
       48 
48 
     | 
    
         
             
                        self.reduce_dtype = torch.float16
         
     | 
| 
         @@ -1537,7 +1537,7 @@ class DualChunkFlashAttentionBackend(AttentionBackend): 
     | 
|
| 
       1537 
1537 
     | 
    
         
             
                                query_inter,
         
     | 
| 
       1538 
1538 
     | 
    
         
             
                                key_cache,
         
     | 
| 
       1539 
1539 
     | 
    
         
             
                                value_cache,
         
     | 
| 
       1540 
     | 
    
         
            -
                                block_table 
     | 
| 
      
 1540 
     | 
    
         
            +
                                block_table,
         
     | 
| 
       1541 
1541 
     | 
    
         
             
                                decode_meta.seq_lens_inter,
         
     | 
| 
       1542 
1542 
     | 
    
         
             
                                softmax_scale,
         
     | 
| 
       1543 
1543 
     | 
    
         
             
                                causal=False,
         
     | 
| 
         @@ -74,8 +74,7 @@ def chunk_scaled_dot_kkt_fwd_kernel( 
     | 
|
| 
       74 
74 
     | 
    
         
             
                        (1, 0),
         
     | 
| 
       75 
75 
     | 
    
         
             
                    )
         
     | 
| 
       76 
76 
     | 
    
         
             
                    b_k = tl.load(p_k, boundary_check=(0, 1))
         
     | 
| 
       77 
     | 
    
         
            -
                     
     | 
| 
       78 
     | 
    
         
            -
                    b_A += tl.dot(b_kb.to(b_k.dtype), tl.trans(b_k))
         
     | 
| 
      
 77 
     | 
    
         
            +
                    b_A += tl.dot(b_k, tl.trans(b_k))
         
     | 
| 
       79 
78 
     | 
    
         | 
| 
       80 
79 
     | 
    
         
             
                if USE_G:
         
     | 
| 
       81 
80 
     | 
    
         
             
                    p_g = tl.make_block_ptr(
         
     | 
| 
         @@ -85,6 +84,7 @@ def chunk_scaled_dot_kkt_fwd_kernel( 
     | 
|
| 
       85 
84 
     | 
    
         
             
                    b_g_diff = b_g[:, None] - b_g[None, :]
         
     | 
| 
       86 
85 
     | 
    
         
             
                    b_A = b_A * safe_exp(b_g_diff)
         
     | 
| 
       87 
86 
     | 
    
         | 
| 
      
 87 
     | 
    
         
            +
                b_A *= b_beta[:, None]
         
     | 
| 
       88 
88 
     | 
    
         
             
                b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0)
         
     | 
| 
       89 
89 
     | 
    
         
             
                p_A = tl.make_block_ptr(
         
     | 
| 
       90 
90 
     | 
    
         
             
                    A + (bos * H + i_h) * BT, (T, BT), (BT * H, 1), (i_t * BT, 0), (BT, BT), (1, 0)
         
     | 
| 
         @@ -86,8 +86,8 @@ def fused_recurrent_gated_delta_rule_fwd_kernel( 
     | 
|
| 
       86 
86 
     | 
    
         
             
                    b_g = tl.load(p_g).to(tl.float32)
         
     | 
| 
       87 
87 
     | 
    
         | 
| 
       88 
88 
     | 
    
         
             
                    if USE_QK_L2NORM_IN_KERNEL:
         
     | 
| 
       89 
     | 
    
         
            -
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) 
     | 
| 
       90 
     | 
    
         
            -
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) 
     | 
| 
      
 89 
     | 
    
         
            +
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
         
     | 
| 
      
 90 
     | 
    
         
            +
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
         
     | 
| 
       91 
91 
     | 
    
         
             
                    b_q = b_q * scale
         
     | 
| 
       92 
92 
     | 
    
         
             
                    # [BK, BV]
         
     | 
| 
       93 
93 
     | 
    
         
             
                    b_h *= exp(b_g)
         
     | 
| 
         @@ -411,8 +411,8 @@ def fused_recurrent_gated_delta_rule_update_fwd_kernel( 
     | 
|
| 
       411 
411 
     | 
    
         
             
                    b_g = tl.load(p_g).to(tl.float32)
         
     | 
| 
       412 
412 
     | 
    
         | 
| 
       413 
413 
     | 
    
         
             
                    if USE_QK_L2NORM_IN_KERNEL:
         
     | 
| 
       414 
     | 
    
         
            -
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) 
     | 
| 
       415 
     | 
    
         
            -
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) 
     | 
| 
      
 414 
     | 
    
         
            +
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
         
     | 
| 
      
 415 
     | 
    
         
            +
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
         
     | 
| 
       416 
416 
     | 
    
         
             
                    b_q = b_q * scale
         
     | 
| 
       417 
417 
     | 
    
         
             
                    # [BK, BV]
         
     | 
| 
       418 
418 
     | 
    
         
             
                    b_h *= exp(b_g)
         
     | 
| 
         @@ -119,8 +119,8 @@ def fused_sigmoid_gating_delta_rule_update_kernel( 
     | 
|
| 
       119 
119 
     | 
    
         | 
| 
       120 
120 
     | 
    
         
             
                    # Apply L2 normalization if enabled
         
     | 
| 
       121 
121 
     | 
    
         
             
                    if USE_QK_L2NORM_IN_KERNEL:
         
     | 
| 
       122 
     | 
    
         
            -
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) 
     | 
| 
       123 
     | 
    
         
            -
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) 
     | 
| 
      
 122 
     | 
    
         
            +
                        b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
         
     | 
| 
      
 123 
     | 
    
         
            +
                        b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
         
     | 
| 
       124 
124 
     | 
    
         | 
| 
       125 
125 
     | 
    
         
             
                    b_q = b_q * scale
         
     | 
| 
       126 
126 
     | 
    
         |