sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
- sglang/bench_one_batch_server.py +340 -34
- sglang/bench_serving.py +340 -159
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +9 -2
- sglang/profiler.py +20 -3
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +309 -0
- sglang/srt/configs/load_config.py +33 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +284 -118
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +576 -0
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +6 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +26 -15
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +268 -98
- sglang/srt/disaggregation/decode.py +172 -39
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +203 -555
- sglang/srt/disaggregation/nixl/conn.py +217 -63
- sglang/srt/disaggregation/prefill.py +113 -270
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +203 -97
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +85 -65
- sglang/srt/entrypoints/grpc_server.py +632 -305
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +169 -17
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +327 -34
- sglang/srt/entrypoints/openai/serving_base.py +74 -8
- sglang/srt/entrypoints/openai/serving_chat.py +202 -118
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +20 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +47 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +323 -0
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +21 -16
- sglang/srt/function_call/glm4_moe_detector.py +4 -8
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +61 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +98 -7
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/grpc_request_manager.py +915 -0
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
- sglang/srt/layers/activation.py +11 -7
- sglang/srt/layers/attention/aiter_backend.py +17 -18
- sglang/srt/layers/attention/ascend_backend.py +125 -10
- sglang/srt/layers/attention/attention_registry.py +226 -0
- sglang/srt/layers/attention/base_attn_backend.py +32 -4
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +52 -15
- sglang/srt/layers/attention/flashinfer_backend.py +357 -212
- sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
- sglang/srt/layers/attention/flashmla_backend.py +9 -7
- sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
- sglang/srt/layers/attention/mamba/mamba.py +514 -1
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +23 -0
- sglang/srt/layers/attention/nsa_backend.py +1201 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +249 -42
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
- sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +61 -3
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +19 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +28 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +47 -15
- sglang/srt/layers/linear.py +30 -5
- sglang/srt/layers/logits_processor.py +161 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
- sglang/srt/layers/moe/ep_moe/layer.py +243 -448
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +27 -1
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +86 -20
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +43 -15
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +141 -81
- sglang/srt/layers/quantization/mxfp4.py +17 -34
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -24
- sglang/srt/layers/quantization/w8a8_int8.py +45 -27
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +750 -46
- sglang/srt/layers/sampler.py +84 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +23 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +9 -4
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +33 -7
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +41 -17
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +83 -152
- sglang/srt/managers/data_parallel_controller.py +156 -87
- sglang/srt/managers/detokenizer_manager.py +51 -24
- sglang/srt/managers/io_struct.py +223 -129
- sglang/srt/managers/mm_utils.py +49 -10
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +130 -0
- sglang/srt/managers/schedule_batch.py +340 -529
- sglang/srt/managers/schedule_policy.py +158 -18
- sglang/srt/managers/scheduler.py +665 -620
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
- sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
- sglang/srt/managers/tokenizer_manager.py +462 -226
- sglang/srt/managers/tp_worker.py +217 -156
- sglang/srt/managers/utils.py +79 -47
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +42 -28
- sglang/srt/mem_cache/base_prefix_cache.py +3 -3
- sglang/srt/mem_cache/chunk_cache.py +20 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +38 -0
- sglang/srt/mem_cache/hicache_storage.py +44 -2
- sglang/srt/mem_cache/hiradix_cache.py +134 -34
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +602 -208
- sglang/srt/mem_cache/memory_pool_host.py +134 -183
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +263 -78
- sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +115 -58
- sglang/srt/metrics/collector.py +113 -120
- sglang/srt/metrics/func_timer.py +3 -8
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +81 -36
- sglang/srt/model_executor/forward_batch_info.py +40 -50
- sglang/srt/model_executor/model_runner.py +507 -319
- sglang/srt/model_executor/npu_graph_runner.py +11 -5
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +438 -37
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +200 -27
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +40 -56
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +25 -4
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +793 -235
- sglang/srt/models/dots_ocr.py +171 -0
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +570 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -3
- sglang/srt/models/glm4_moe.py +17 -40
- sglang/srt/models/glm4_moe_nextn.py +4 -4
- sglang/srt/models/glm4v.py +3 -2
- sglang/srt/models/glm4v_moe.py +6 -6
- sglang/srt/models/gpt_oss.py +12 -35
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +4 -2
- sglang/srt/models/llama.py +6 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +6 -23
- sglang/srt/models/longcat_flash_nextn.py +4 -15
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +27 -6
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +5 -5
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +70 -4
- sglang/srt/models/qwen2_vl.py +6 -3
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +50 -38
- sglang/srt/models/qwen3_next.py +43 -21
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +791 -0
- sglang/srt/models/qwen3_vl_moe.py +343 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +268 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +61 -0
- sglang/srt/multimodal/processors/base_processor.py +21 -9
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +2 -4
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +20 -10
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +83 -17
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +36 -23
- sglang/srt/sampling/sampling_params.py +75 -0
- sglang/srt/server_args.py +1300 -338
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +161 -0
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
- sglang/srt/speculative/eagle_info.py +786 -0
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +113 -1270
- sglang/srt/speculative/eagle_worker.py +120 -285
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/ngram_info.py +433 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +49 -0
- sglang/srt/speculative/spec_utils.py +641 -0
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +35 -18
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/{utils.py → utils/common.py} +583 -113
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +120 -11
- sglang/test/runners.py +3 -1
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +8 -2
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +3 -4
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +430 -0
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +93 -1
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +432 -16
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
- sglang/srt/entrypoints/grpc_request_manager.py +0 -580
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
# Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/quantization/compressed_tensors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
|
|
4
|
+
from typing import Callable, Optional
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from compressed_tensors.quantization import QuantizationStrategy
|
|
8
|
+
from torch.nn import Parameter
|
|
9
|
+
|
|
10
|
+
from sglang.srt.layers.parameter import (
|
|
11
|
+
ChannelQuantScaleParameter,
|
|
12
|
+
ModelWeightParameter,
|
|
13
|
+
PerTensorScaleParameter,
|
|
14
|
+
)
|
|
15
|
+
from sglang.srt.layers.quantization.compressed_tensors.schemes import (
|
|
16
|
+
CompressedTensorsScheme,
|
|
17
|
+
)
|
|
18
|
+
from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8
|
|
19
|
+
from sglang.srt.layers.quantization.utils import requantize_with_max_scale
|
|
20
|
+
from sglang.srt.utils import is_cuda
|
|
21
|
+
|
|
22
|
+
_is_cuda = is_cuda()
|
|
23
|
+
if _is_cuda:
|
|
24
|
+
from sgl_kernel import int8_scaled_mm
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class CompressedTensorsW8A8Int8(CompressedTensorsScheme):
|
|
28
|
+
|
|
29
|
+
def __init__(
|
|
30
|
+
self, strategy: str, is_static_input_scheme: bool, input_symmetric: bool
|
|
31
|
+
):
|
|
32
|
+
self.strategy = strategy
|
|
33
|
+
self.is_static_input_scheme = is_static_input_scheme
|
|
34
|
+
self.input_symmetric = input_symmetric
|
|
35
|
+
|
|
36
|
+
@classmethod
|
|
37
|
+
def get_min_capability(cls) -> int:
|
|
38
|
+
# lovelace and up
|
|
39
|
+
return 89
|
|
40
|
+
|
|
41
|
+
def process_weights_after_loading(self, layer) -> None:
|
|
42
|
+
# If per tensor, when we have a fused module (e.g. QKV) with per
|
|
43
|
+
# tensor scales (thus N scales being passed to the kernel),
|
|
44
|
+
# requantize so we can always run per channel
|
|
45
|
+
if self.strategy == QuantizationStrategy.TENSOR:
|
|
46
|
+
max_w_scale, weight = requantize_with_max_scale(
|
|
47
|
+
weight=layer.weight,
|
|
48
|
+
weight_scale=layer.weight_scale,
|
|
49
|
+
logical_widths=layer.logical_widths,
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
53
|
+
layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
|
|
54
|
+
|
|
55
|
+
# If channelwise, scales are already lined up, so just transpose.
|
|
56
|
+
elif self.strategy == QuantizationStrategy.CHANNEL:
|
|
57
|
+
weight = layer.weight
|
|
58
|
+
weight_scale = layer.weight_scale.data
|
|
59
|
+
|
|
60
|
+
layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
61
|
+
# required by torch.compile to be torch.nn.Parameter
|
|
62
|
+
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
|
|
63
|
+
|
|
64
|
+
else:
|
|
65
|
+
raise ValueError(f"Unknown quantization strategy {self.strategy}")
|
|
66
|
+
|
|
67
|
+
# INPUT SCALE
|
|
68
|
+
if self.is_static_input_scheme and hasattr(layer, "input_scale"):
|
|
69
|
+
if self.input_symmetric:
|
|
70
|
+
layer.input_scale = Parameter(
|
|
71
|
+
layer.input_scale.max(), requires_grad=False
|
|
72
|
+
)
|
|
73
|
+
else:
|
|
74
|
+
input_scale = layer.input_scale
|
|
75
|
+
input_zero_point = layer.input_zero_point
|
|
76
|
+
|
|
77
|
+
# reconstruct the ranges
|
|
78
|
+
int8_traits = torch.iinfo(torch.int8)
|
|
79
|
+
azps = input_zero_point.to(dtype=torch.int32)
|
|
80
|
+
range_max = (input_scale * (int8_traits.max - azps)).max()
|
|
81
|
+
range_min = (input_scale * (int8_traits.min - azps)).min()
|
|
82
|
+
|
|
83
|
+
scale = (range_max - range_min) / (int8_traits.max - int8_traits.min)
|
|
84
|
+
|
|
85
|
+
# AZP loaded as int8 but used as int32
|
|
86
|
+
azp = (int8_traits.min - range_min / scale).to(dtype=torch.int32)
|
|
87
|
+
|
|
88
|
+
layer.input_scale = Parameter(scale, requires_grad=False)
|
|
89
|
+
layer.input_zero_point = Parameter(azp, requires_grad=False)
|
|
90
|
+
else:
|
|
91
|
+
layer.input_scale = None
|
|
92
|
+
layer.input_zero_point = None
|
|
93
|
+
|
|
94
|
+
# azp_adj is the AZP adjustment term, used to account for weights.
|
|
95
|
+
# It does not depend on scales or azp, so it is the same for
|
|
96
|
+
# static and dynamic quantization.
|
|
97
|
+
# For more details, see csrc/quantization/cutlass_w8a8/Epilogues.md
|
|
98
|
+
# https://github.com/vllm-project/vllm/blob/8d59dbb00044a588cab96bcdc028006ed922eb06/csrc/quantization/cutlass_w8a8/Epilogues.md
|
|
99
|
+
if not self.input_symmetric:
|
|
100
|
+
weight = layer.weight
|
|
101
|
+
azp_adj = weight.sum(dim=0, keepdim=True, dtype=torch.int32)
|
|
102
|
+
if self.is_static_input_scheme:
|
|
103
|
+
# cutlass_w8a8 requires azp to be folded into azp_adj
|
|
104
|
+
# in the per-tensor case
|
|
105
|
+
azp_adj = layer.input_zero_point * azp_adj
|
|
106
|
+
layer.azp_adj = Parameter(azp_adj, requires_grad=False)
|
|
107
|
+
else:
|
|
108
|
+
layer.azp_adj = None
|
|
109
|
+
|
|
110
|
+
def create_weights(
|
|
111
|
+
self,
|
|
112
|
+
layer: torch.nn.Module,
|
|
113
|
+
output_partition_sizes: list[int],
|
|
114
|
+
input_size_per_partition: int,
|
|
115
|
+
params_dtype: torch.dtype,
|
|
116
|
+
weight_loader: Callable,
|
|
117
|
+
**kwargs,
|
|
118
|
+
):
|
|
119
|
+
output_size_per_partition = sum(output_partition_sizes)
|
|
120
|
+
layer.logical_widths = output_partition_sizes
|
|
121
|
+
|
|
122
|
+
# WEIGHT
|
|
123
|
+
weight = ModelWeightParameter(
|
|
124
|
+
data=torch.empty(
|
|
125
|
+
output_size_per_partition, input_size_per_partition, dtype=torch.int8
|
|
126
|
+
),
|
|
127
|
+
input_dim=1,
|
|
128
|
+
output_dim=0,
|
|
129
|
+
weight_loader=weight_loader,
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
layer.register_parameter("weight", weight)
|
|
133
|
+
|
|
134
|
+
# WEIGHT SCALE
|
|
135
|
+
if self.strategy == QuantizationStrategy.CHANNEL:
|
|
136
|
+
weight_scale = ChannelQuantScaleParameter(
|
|
137
|
+
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
|
|
138
|
+
output_dim=0,
|
|
139
|
+
weight_loader=weight_loader,
|
|
140
|
+
)
|
|
141
|
+
else:
|
|
142
|
+
assert self.strategy == QuantizationStrategy.TENSOR
|
|
143
|
+
weight_scale = PerTensorScaleParameter(
|
|
144
|
+
data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
|
|
145
|
+
weight_loader=weight_loader,
|
|
146
|
+
)
|
|
147
|
+
layer.register_parameter("weight_scale", weight_scale)
|
|
148
|
+
|
|
149
|
+
# INPUT SCALE
|
|
150
|
+
if self.is_static_input_scheme:
|
|
151
|
+
input_scale = PerTensorScaleParameter(
|
|
152
|
+
data=torch.empty(1, dtype=torch.float32), weight_loader=weight_loader
|
|
153
|
+
)
|
|
154
|
+
layer.register_parameter("input_scale", input_scale)
|
|
155
|
+
|
|
156
|
+
if not self.input_symmetric:
|
|
157
|
+
# Note: compressed-tensors stores the zp using the same dtype
|
|
158
|
+
# as the weights
|
|
159
|
+
# AZP loaded as int8 but used as int32
|
|
160
|
+
input_zero_point = PerTensorScaleParameter(
|
|
161
|
+
data=torch.empty(1, dtype=torch.int8), weight_loader=weight_loader
|
|
162
|
+
)
|
|
163
|
+
layer.register_parameter("input_zero_point", input_zero_point)
|
|
164
|
+
|
|
165
|
+
def apply_weights(
|
|
166
|
+
self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor]
|
|
167
|
+
) -> torch.Tensor:
|
|
168
|
+
# TODO: add cutlass_scaled_mm_azp support
|
|
169
|
+
x_q, x_scale = per_token_quant_int8(x)
|
|
170
|
+
|
|
171
|
+
return int8_scaled_mm(
|
|
172
|
+
x_q, layer.weight, x_scale, layer.weight_scale, out_dtype=x.dtype, bias=bias
|
|
173
|
+
)
|
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
# Adapted from https://github.com/vllm-project/vllm/tree/main/vllm/model_executor/layers/quantization/compressed_tensors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
|
|
4
|
+
import logging
|
|
5
|
+
from typing import Callable, Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
from compressed_tensors.quantization import ActivationOrdering
|
|
9
|
+
|
|
10
|
+
# yapf conflicts with isort for this block
|
|
11
|
+
# yapf: disable
|
|
12
|
+
from sglang.srt.layers.parameter import (
|
|
13
|
+
BasevLLMParameter,
|
|
14
|
+
ChannelQuantScaleParameter,
|
|
15
|
+
GroupQuantScaleParameter,
|
|
16
|
+
PackedColumnParameter,
|
|
17
|
+
PackedvLLMParameter,
|
|
18
|
+
RowvLLMParameter,
|
|
19
|
+
permute_param_layout_,
|
|
20
|
+
)
|
|
21
|
+
from sglang.srt.layers.quantization.compressed_tensors.schemes import (
|
|
22
|
+
CompressedTensorsScheme,
|
|
23
|
+
)
|
|
24
|
+
from sglang.srt.layers.quantization.marlin_utils import (
|
|
25
|
+
MarlinLinearLayerConfig,
|
|
26
|
+
apply_gptq_marlin_linear,
|
|
27
|
+
check_marlin_supports_shape,
|
|
28
|
+
marlin_is_k_full,
|
|
29
|
+
marlin_make_empty_g_idx,
|
|
30
|
+
marlin_make_workspace,
|
|
31
|
+
marlin_permute_scales,
|
|
32
|
+
marlin_repeat_scales_on_all_ranks,
|
|
33
|
+
marlin_sort_g_idx,
|
|
34
|
+
marlin_zero_points,
|
|
35
|
+
)
|
|
36
|
+
from sglang.srt.layers.quantization.utils import (
|
|
37
|
+
get_scalar_types,
|
|
38
|
+
replace_parameter,
|
|
39
|
+
unpack_cols,
|
|
40
|
+
)
|
|
41
|
+
from sglang.srt.utils import is_cuda
|
|
42
|
+
|
|
43
|
+
_is_cuda = is_cuda()
|
|
44
|
+
|
|
45
|
+
if _is_cuda:
|
|
46
|
+
from sgl_kernel import gptq_marlin_repack
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
ScalarType, scalar_types = get_scalar_types()
|
|
50
|
+
|
|
51
|
+
logger = logging.getLogger(__name__)
|
|
52
|
+
|
|
53
|
+
__all__ = ["CompressedTensorsWNA16"]
|
|
54
|
+
WNA16_SUPPORTED_TYPES_MAP = {
|
|
55
|
+
4: scalar_types.uint4b8,
|
|
56
|
+
8: scalar_types.uint8b128
|
|
57
|
+
}
|
|
58
|
+
WNA16_ZP_SUPPORTED_TYPES_MAP = {4: scalar_types.uint4, 8: scalar_types.uint8}
|
|
59
|
+
WNA16_SUPPORTED_BITS = list(WNA16_SUPPORTED_TYPES_MAP.keys())
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class CompressedTensorsWNA16(CompressedTensorsScheme):
|
|
63
|
+
_kernel_backends_being_used: set[str] = set()
|
|
64
|
+
|
|
65
|
+
def __init__(self,
|
|
66
|
+
strategy: str,
|
|
67
|
+
num_bits: int,
|
|
68
|
+
group_size: Optional[int] = None,
|
|
69
|
+
symmetric: Optional[bool] = True,
|
|
70
|
+
actorder: Optional[ActivationOrdering] = None):
|
|
71
|
+
|
|
72
|
+
self.pack_factor = 32 // num_bits
|
|
73
|
+
self.strategy = strategy
|
|
74
|
+
self.symmetric = symmetric
|
|
75
|
+
self.group_size = -1 if group_size is None else group_size
|
|
76
|
+
self.has_g_idx = actorder == ActivationOrdering.GROUP
|
|
77
|
+
|
|
78
|
+
if self.group_size == -1 and self.strategy != "channel":
|
|
79
|
+
raise ValueError("Marlin kernels require group quantization or "
|
|
80
|
+
"channelwise quantization, but found no group "
|
|
81
|
+
"size and strategy is not channelwise.")
|
|
82
|
+
|
|
83
|
+
if num_bits not in WNA16_SUPPORTED_TYPES_MAP:
|
|
84
|
+
raise ValueError(
|
|
85
|
+
f"Unsupported num_bits = {num_bits}. "
|
|
86
|
+
f"Supported num_bits = {WNA16_SUPPORTED_TYPES_MAP.keys()}")
|
|
87
|
+
|
|
88
|
+
self.quant_type = (WNA16_ZP_SUPPORTED_TYPES_MAP[num_bits]
|
|
89
|
+
if not self.symmetric else
|
|
90
|
+
WNA16_SUPPORTED_TYPES_MAP[num_bits])
|
|
91
|
+
|
|
92
|
+
@classmethod
|
|
93
|
+
def get_min_capability(cls) -> int:
|
|
94
|
+
# ampere and up
|
|
95
|
+
return 80
|
|
96
|
+
|
|
97
|
+
def create_weights(self, layer: torch.nn.Module, output_size: int,
|
|
98
|
+
input_size: int, output_partition_sizes: list[int],
|
|
99
|
+
input_size_per_partition: int,
|
|
100
|
+
params_dtype: torch.dtype, weight_loader: Callable,
|
|
101
|
+
**kwargs):
|
|
102
|
+
|
|
103
|
+
output_size_per_partition = sum(output_partition_sizes)
|
|
104
|
+
|
|
105
|
+
self.kernel_config = MarlinLinearLayerConfig(
|
|
106
|
+
full_weight_shape=(input_size, output_size),
|
|
107
|
+
partition_weight_shape=(
|
|
108
|
+
input_size_per_partition,
|
|
109
|
+
output_size_per_partition,
|
|
110
|
+
),
|
|
111
|
+
weight_type=self.quant_type,
|
|
112
|
+
act_type=params_dtype,
|
|
113
|
+
group_size=self.group_size,
|
|
114
|
+
zero_points=not self.symmetric,
|
|
115
|
+
has_g_idx=self.has_g_idx
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
# If group_size is -1, we are in channelwise case.
|
|
119
|
+
group_size = self.group_size if self.group_size != -1 else input_size
|
|
120
|
+
row_parallel = (input_size != input_size_per_partition)
|
|
121
|
+
partition_scales = not marlin_repeat_scales_on_all_ranks(
|
|
122
|
+
self.has_g_idx, self.group_size, row_parallel)
|
|
123
|
+
|
|
124
|
+
scales_and_zp_size = input_size // group_size
|
|
125
|
+
|
|
126
|
+
if partition_scales:
|
|
127
|
+
assert input_size_per_partition % group_size == 0
|
|
128
|
+
scales_and_zp_size = input_size_per_partition // group_size
|
|
129
|
+
|
|
130
|
+
weight = PackedvLLMParameter(input_dim=1,
|
|
131
|
+
output_dim=0,
|
|
132
|
+
weight_loader=weight_loader,
|
|
133
|
+
packed_factor=self.pack_factor,
|
|
134
|
+
packed_dim=1,
|
|
135
|
+
data=torch.empty(
|
|
136
|
+
output_size_per_partition,
|
|
137
|
+
input_size_per_partition //
|
|
138
|
+
self.pack_factor,
|
|
139
|
+
dtype=torch.int32,
|
|
140
|
+
))
|
|
141
|
+
|
|
142
|
+
weight_scale_args = {
|
|
143
|
+
"weight_loader":
|
|
144
|
+
weight_loader,
|
|
145
|
+
"data":
|
|
146
|
+
torch.empty(
|
|
147
|
+
output_size_per_partition,
|
|
148
|
+
scales_and_zp_size,
|
|
149
|
+
dtype=params_dtype,
|
|
150
|
+
)
|
|
151
|
+
}
|
|
152
|
+
|
|
153
|
+
zeros_args = {
|
|
154
|
+
"weight_loader":
|
|
155
|
+
weight_loader,
|
|
156
|
+
"data":
|
|
157
|
+
torch.zeros(
|
|
158
|
+
output_size_per_partition // self.pack_factor,
|
|
159
|
+
scales_and_zp_size,
|
|
160
|
+
dtype=torch.int32,
|
|
161
|
+
)
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
if not partition_scales:
|
|
165
|
+
weight_scale = ChannelQuantScaleParameter(output_dim=0,
|
|
166
|
+
**weight_scale_args)
|
|
167
|
+
|
|
168
|
+
if not self.symmetric:
|
|
169
|
+
qzeros = PackedColumnParameter(output_dim=0,
|
|
170
|
+
packed_dim=0,
|
|
171
|
+
packed_factor=self.pack_factor,
|
|
172
|
+
**zeros_args)
|
|
173
|
+
else:
|
|
174
|
+
weight_scale = GroupQuantScaleParameter(output_dim=0,
|
|
175
|
+
input_dim=1,
|
|
176
|
+
**weight_scale_args)
|
|
177
|
+
if not self.symmetric:
|
|
178
|
+
qzeros = PackedvLLMParameter(input_dim=1,
|
|
179
|
+
output_dim=0,
|
|
180
|
+
packed_dim=0,
|
|
181
|
+
packed_factor=self.pack_factor,
|
|
182
|
+
**zeros_args)
|
|
183
|
+
|
|
184
|
+
# A 2D array defining the original shape of the weights
|
|
185
|
+
# before packing
|
|
186
|
+
weight_shape = BasevLLMParameter(data=torch.empty(2,
|
|
187
|
+
dtype=torch.int64),
|
|
188
|
+
weight_loader=weight_loader)
|
|
189
|
+
|
|
190
|
+
layer.register_parameter("weight_packed", weight)
|
|
191
|
+
layer.register_parameter("weight_scale", weight_scale)
|
|
192
|
+
layer.register_parameter("weight_shape", weight_shape)
|
|
193
|
+
|
|
194
|
+
if not self.symmetric:
|
|
195
|
+
layer.register_parameter("weight_zero_point", qzeros)
|
|
196
|
+
|
|
197
|
+
# group index (for activation reordering)
|
|
198
|
+
if self.has_g_idx:
|
|
199
|
+
weight_g_idx = RowvLLMParameter(data=torch.empty(
|
|
200
|
+
input_size_per_partition,
|
|
201
|
+
dtype=torch.int32,
|
|
202
|
+
),
|
|
203
|
+
input_dim=0,
|
|
204
|
+
weight_loader=weight_loader)
|
|
205
|
+
layer.register_parameter("weight_g_idx", weight_g_idx)
|
|
206
|
+
|
|
207
|
+
# Checkpoints are serialized in compressed-tensors format, which is
|
|
208
|
+
# different from the format the kernel may want. Handle repacking here.
|
|
209
|
+
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
210
|
+
# Default names since marlin requires empty parameters for these,
|
|
211
|
+
# TODO: remove this requirement from marlin (allow optional tensors)
|
|
212
|
+
self.w_q_name = "weight_packed"
|
|
213
|
+
self.w_s_name = "weight_scale"
|
|
214
|
+
self.w_zp_name = "weight_zero_point"
|
|
215
|
+
self.w_gidx_name = "weight_g_idx"
|
|
216
|
+
|
|
217
|
+
device = getattr(layer, self.w_q_name).device
|
|
218
|
+
c = self.kernel_config
|
|
219
|
+
|
|
220
|
+
check_marlin_supports_shape(
|
|
221
|
+
c.partition_weight_shape[1], # out_features
|
|
222
|
+
c.partition_weight_shape[0], # in_features
|
|
223
|
+
c.full_weight_shape[0], # in_features
|
|
224
|
+
c.group_size,
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
row_parallel = c.partition_weight_shape[0] != c.full_weight_shape[0]
|
|
228
|
+
self.is_k_full = marlin_is_k_full(c.has_g_idx, row_parallel)
|
|
229
|
+
|
|
230
|
+
# Allocate marlin workspace.
|
|
231
|
+
self.workspace = marlin_make_workspace(device)
|
|
232
|
+
|
|
233
|
+
def _transform_param(
|
|
234
|
+
layer: torch.nn.Module, name: Optional[str], fn: Callable
|
|
235
|
+
) -> None:
|
|
236
|
+
if name is not None and getattr(layer, name, None) is not None:
|
|
237
|
+
|
|
238
|
+
old_param = getattr(layer, name)
|
|
239
|
+
new_param = fn(old_param)
|
|
240
|
+
# replace the parameter with torch.nn.Parameter for TorchDynamo
|
|
241
|
+
# compatibility
|
|
242
|
+
replace_parameter(
|
|
243
|
+
layer, name, torch.nn.Parameter(new_param.data, requires_grad=False)
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
def transform_w_q(x):
|
|
247
|
+
assert isinstance(x, BasevLLMParameter)
|
|
248
|
+
permute_param_layout_(x, input_dim=0, output_dim=1, packed_dim=0)
|
|
249
|
+
x.data = gptq_marlin_repack(
|
|
250
|
+
x.data.contiguous(),
|
|
251
|
+
perm=layer.g_idx_sort_indices,
|
|
252
|
+
size_k=c.partition_weight_shape[0],
|
|
253
|
+
size_n=c.partition_weight_shape[1],
|
|
254
|
+
num_bits=c.weight_type.size_bits,
|
|
255
|
+
)
|
|
256
|
+
return x
|
|
257
|
+
|
|
258
|
+
def transform_w_s(x):
|
|
259
|
+
assert isinstance(x, BasevLLMParameter)
|
|
260
|
+
permute_param_layout_(x, input_dim=0, output_dim=1)
|
|
261
|
+
x.data = marlin_permute_scales(
|
|
262
|
+
x.data.contiguous(),
|
|
263
|
+
size_k=c.partition_weight_shape[0],
|
|
264
|
+
size_n=c.partition_weight_shape[1],
|
|
265
|
+
group_size=c.group_size,
|
|
266
|
+
)
|
|
267
|
+
return x
|
|
268
|
+
|
|
269
|
+
if c.has_g_idx:
|
|
270
|
+
g_idx, g_idx_sort_indices = marlin_sort_g_idx(
|
|
271
|
+
getattr(layer, self.w_gidx_name)
|
|
272
|
+
)
|
|
273
|
+
_transform_param(layer, self.w_gidx_name, lambda _: g_idx)
|
|
274
|
+
layer.g_idx_sort_indices = g_idx_sort_indices
|
|
275
|
+
else:
|
|
276
|
+
setattr(layer, self.w_gidx_name, marlin_make_empty_g_idx(device))
|
|
277
|
+
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
|
|
278
|
+
|
|
279
|
+
if c.zero_points:
|
|
280
|
+
grouped_k = (
|
|
281
|
+
c.partition_weight_shape[0] // c.group_size if c.group_size != -1 else 1
|
|
282
|
+
)
|
|
283
|
+
_transform_param(
|
|
284
|
+
layer,
|
|
285
|
+
self.w_zp_name,
|
|
286
|
+
lambda x: marlin_zero_points(
|
|
287
|
+
unpack_cols(
|
|
288
|
+
x.t(),
|
|
289
|
+
c.weight_type.size_bits,
|
|
290
|
+
grouped_k,
|
|
291
|
+
c.partition_weight_shape[1],
|
|
292
|
+
),
|
|
293
|
+
size_k=grouped_k,
|
|
294
|
+
size_n=c.partition_weight_shape[1],
|
|
295
|
+
num_bits=c.weight_type.size_bits,
|
|
296
|
+
),
|
|
297
|
+
)
|
|
298
|
+
else:
|
|
299
|
+
setattr(layer, self.w_zp_name, marlin_make_empty_g_idx(device))
|
|
300
|
+
_transform_param(layer, self.w_q_name, transform_w_q)
|
|
301
|
+
_transform_param(layer, self.w_s_name, transform_w_s)
|
|
302
|
+
|
|
303
|
+
def apply_weights(self, layer: torch.nn.Module, x: torch.Tensor,
|
|
304
|
+
bias: Optional[torch.Tensor]) -> torch.Tensor:
|
|
305
|
+
c = self.kernel_config
|
|
306
|
+
|
|
307
|
+
def _get_weight_params(
|
|
308
|
+
layer: torch.nn.Module,
|
|
309
|
+
) -> tuple[
|
|
310
|
+
torch.Tensor, # w_q
|
|
311
|
+
torch.Tensor, # w_s
|
|
312
|
+
Optional[torch.Tensor], # w_zp,
|
|
313
|
+
Optional[torch.Tensor], # w_gidx
|
|
314
|
+
]:
|
|
315
|
+
return (
|
|
316
|
+
getattr(layer, self.w_q_name),
|
|
317
|
+
getattr(layer, self.w_s_name),
|
|
318
|
+
getattr(layer, self.w_zp_name or "", None),
|
|
319
|
+
getattr(layer, self.w_gidx_name or "", None),
|
|
320
|
+
)
|
|
321
|
+
|
|
322
|
+
w_q, w_s, w_zp, w_gidx = _get_weight_params(layer)
|
|
323
|
+
|
|
324
|
+
# `process_weights_after_loading` will ensure w_zp and w_gidx are not
|
|
325
|
+
# None for marlin
|
|
326
|
+
return apply_gptq_marlin_linear(
|
|
327
|
+
input=x,
|
|
328
|
+
weight=w_q,
|
|
329
|
+
weight_scale=w_s,
|
|
330
|
+
weight_zp=w_zp, # type: ignore
|
|
331
|
+
g_idx=w_gidx, # type: ignore
|
|
332
|
+
g_idx_sort_indices=layer.g_idx_sort_indices,
|
|
333
|
+
workspace=self.workspace,
|
|
334
|
+
wtype=c.weight_type,
|
|
335
|
+
input_size_per_partition=c.partition_weight_shape[0],
|
|
336
|
+
output_size_per_partition=c.partition_weight_shape[1],
|
|
337
|
+
is_k_full=self.is_k_full,
|
|
338
|
+
bias=bias,
|
|
339
|
+
)
|
|
@@ -31,8 +31,8 @@ except ImportError:
|
|
|
31
31
|
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
|
32
32
|
from sglang.srt.layers.amx_utils import _amx_process_weight_after_loading
|
|
33
33
|
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
|
|
34
|
+
from sglang.srt.layers.moe.moe_runner.deep_gemm import DeepGemmMoeQuantInfo
|
|
34
35
|
from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
|
|
35
|
-
from sglang.srt.layers.moe.token_dispatcher.base import DispatchOutputChecker
|
|
36
36
|
from sglang.srt.layers.parameter import (
|
|
37
37
|
BlockQuantScaleParameter,
|
|
38
38
|
ModelWeightParameter,
|
|
@@ -358,8 +358,8 @@ class Fp8LinearMethod(LinearMethodBase):
|
|
|
358
358
|
return
|
|
359
359
|
else:
|
|
360
360
|
weight, weight_scale = layer.weight.data, layer.weight_scale_inv.data
|
|
361
|
-
layer.weight =
|
|
362
|
-
layer.weight_scale_inv =
|
|
361
|
+
layer.weight.data = weight.data
|
|
362
|
+
layer.weight_scale_inv.data = weight_scale.data
|
|
363
363
|
else:
|
|
364
364
|
layer.weight = Parameter(layer.weight.data, requires_grad=False)
|
|
365
365
|
|
|
@@ -1006,8 +1006,29 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
|
|
1006
1006
|
def create_moe_runner(
|
|
1007
1007
|
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
|
|
1008
1008
|
):
|
|
1009
|
+
|
|
1010
|
+
from sglang.srt.layers import deep_gemm_wrapper
|
|
1011
|
+
from sglang.srt.layers.moe.utils import (
|
|
1012
|
+
get_moe_a2a_backend,
|
|
1013
|
+
get_moe_runner_backend,
|
|
1014
|
+
)
|
|
1015
|
+
|
|
1009
1016
|
self.moe_runner_config = moe_runner_config
|
|
1010
|
-
|
|
1017
|
+
moe_runner_backend = get_moe_runner_backend()
|
|
1018
|
+
|
|
1019
|
+
if moe_runner_backend.is_auto():
|
|
1020
|
+
if (
|
|
1021
|
+
deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
|
|
1022
|
+
and get_moe_a2a_backend().is_deepep()
|
|
1023
|
+
):
|
|
1024
|
+
moe_runner_backend = MoeRunnerBackend.DEEP_GEMM
|
|
1025
|
+
else:
|
|
1026
|
+
moe_runner_backend = MoeRunnerBackend.TRITON
|
|
1027
|
+
if moe_runner_backend.is_deep_gemm() or moe_runner_backend.is_triton():
|
|
1028
|
+
self.runner = MoeRunner(moe_runner_backend, moe_runner_config)
|
|
1029
|
+
else:
|
|
1030
|
+
# TODO(cwan): refactor other backends
|
|
1031
|
+
pass
|
|
1011
1032
|
|
|
1012
1033
|
def apply(
|
|
1013
1034
|
self,
|
|
@@ -1087,22 +1108,67 @@ class Fp8MoEMethod(FusedMoEMethodBase):
|
|
|
1087
1108
|
)
|
|
1088
1109
|
return StandardCombineInput(hidden_states=output)
|
|
1089
1110
|
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
1111
|
+
if self.runner.runner_backend.is_deep_gemm():
|
|
1112
|
+
|
|
1113
|
+
w13_weight = layer.w13_weight
|
|
1114
|
+
w2_weight = layer.w2_weight
|
|
1115
|
+
|
|
1116
|
+
if self.block_quant:
|
|
1117
|
+
block_shape = self.quant_config.weight_block_size
|
|
1118
|
+
w13_scale = layer.w13_weight_scale_inv
|
|
1119
|
+
w2_scale = layer.w2_weight_scale_inv
|
|
1120
|
+
else:
|
|
1121
|
+
# Convert per-tensor quant to per-block quant by repeating scales for forward_deepgemm
|
|
1122
|
+
scale_block_size = 128
|
|
1123
|
+
block_shape = [scale_block_size, scale_block_size]
|
|
1124
|
+
w13_scale_n = (w13_weight.shape[1] - 1) // scale_block_size + 1
|
|
1125
|
+
w13_scale_k = (w13_weight.shape[2] - 1) // scale_block_size + 1
|
|
1126
|
+
w13_scale = (
|
|
1127
|
+
layer.w13_weight_scale.unsqueeze(1)
|
|
1128
|
+
.repeat_interleave(w13_scale_n, dim=1)
|
|
1129
|
+
.unsqueeze(2)
|
|
1130
|
+
.repeat_interleave(w13_scale_k, dim=2)
|
|
1131
|
+
)
|
|
1132
|
+
w2_scale_n = (w2_weight.shape[1] - 1) // scale_block_size + 1
|
|
1133
|
+
w2_scale_k = (w2_weight.shape[2] - 1) // scale_block_size + 1
|
|
1134
|
+
w2_scale = (
|
|
1135
|
+
layer.w2_weight_scale.unsqueeze(1)
|
|
1136
|
+
.repeat_interleave(w2_scale_n, dim=1)
|
|
1137
|
+
.unsqueeze(2)
|
|
1138
|
+
.repeat_interleave(w2_scale_k, dim=2)
|
|
1139
|
+
)
|
|
1140
|
+
quant_info = DeepGemmMoeQuantInfo(
|
|
1141
|
+
w13_weight=w13_weight,
|
|
1142
|
+
w2_weight=w2_weight,
|
|
1143
|
+
use_fp8=True,
|
|
1144
|
+
w13_scale=w13_scale,
|
|
1145
|
+
w2_scale=w2_scale,
|
|
1146
|
+
block_shape=block_shape,
|
|
1147
|
+
)
|
|
1148
|
+
elif self.runner.runner_backend.is_triton():
|
|
1149
|
+
quant_info = TritonMoeQuantInfo(
|
|
1150
|
+
w13_weight=layer.w13_weight,
|
|
1151
|
+
w2_weight=layer.w2_weight,
|
|
1152
|
+
use_fp8_w8a8=True,
|
|
1153
|
+
w13_scale=(
|
|
1154
|
+
layer.w13_weight_scale_inv
|
|
1155
|
+
if self.block_quant
|
|
1156
|
+
else layer.w13_weight_scale
|
|
1157
|
+
),
|
|
1158
|
+
w2_scale=(
|
|
1159
|
+
layer.w2_weight_scale_inv
|
|
1160
|
+
if self.block_quant
|
|
1161
|
+
else layer.w2_weight_scale
|
|
1162
|
+
),
|
|
1163
|
+
a13_scale=layer.w13_input_scale,
|
|
1164
|
+
a2_scale=layer.w2_input_scale,
|
|
1165
|
+
block_shape=self.quant_config.weight_block_size,
|
|
1166
|
+
)
|
|
1167
|
+
else:
|
|
1168
|
+
raise NotImplementedError(
|
|
1169
|
+
"Unsupported runner backend: %s" % self.runner.runner_backend
|
|
1170
|
+
)
|
|
1171
|
+
|
|
1106
1172
|
return self.runner.run(dispatch_output, quant_info)
|
|
1107
1173
|
|
|
1108
1174
|
def apply_with_router_logits(
|