sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,144 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import List, Optional
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 4 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 5 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            def transform_index_page_table_prefill(**kwargs):
         
     | 
| 
      
 9 
     | 
    
         
            +
                return transform_index_page_table_prefill_ref(**kwargs)
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            def transform_index_page_table_decode(**kwargs):
         
     | 
| 
      
 13 
     | 
    
         
            +
                return transform_index_page_table_decode_ref(**kwargs)
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 17 
     | 
    
         
            +
            def transform_index_page_table_decode_kernel(
         
     | 
| 
      
 18 
     | 
    
         
            +
                page_table_ptr: torch.Tensor,
         
     | 
| 
      
 19 
     | 
    
         
            +
                topk_indices_ptr: torch.Tensor,
         
     | 
| 
      
 20 
     | 
    
         
            +
                result_ptr: torch.Tensor,
         
     | 
| 
      
 21 
     | 
    
         
            +
                page_size: tl.constexpr,
         
     | 
| 
      
 22 
     | 
    
         
            +
                max_seqlen_k: tl.constexpr,
         
     | 
| 
      
 23 
     | 
    
         
            +
            ):
         
     | 
| 
      
 24 
     | 
    
         
            +
                TOPK: tl.constexpr = 2048
         
     | 
| 
      
 25 
     | 
    
         
            +
                req_id = tl.program_id(0)
         
     | 
| 
      
 26 
     | 
    
         
            +
                page_table_ptr = page_table_ptr + req_id * max_seqlen_k
         
     | 
| 
      
 27 
     | 
    
         
            +
                topk_indices_ptr = topk_indices_ptr + req_id * TOPK
         
     | 
| 
      
 28 
     | 
    
         
            +
                result_ptr = result_ptr + req_id * TOPK
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
                offset = tl.arange(0, TOPK)  # topk should be 2048
         
     | 
| 
      
 31 
     | 
    
         
            +
                loaded_topk_indices = tl.load(topk_indices_ptr + offset)
         
     | 
| 
      
 32 
     | 
    
         
            +
                mask = loaded_topk_indices >= 0
         
     | 
| 
      
 33 
     | 
    
         
            +
                loaded_kv_indices = tl.load(page_table_ptr + loaded_topk_indices, mask=mask)
         
     | 
| 
      
 34 
     | 
    
         
            +
                tl.store(result_ptr + offset, loaded_kv_indices, mask=mask)
         
     | 
| 
      
 35 
     | 
    
         
            +
                tl.store(result_ptr + offset, -1, mask=~mask)
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
            def transform_index_page_table_decode_fast(
         
     | 
| 
      
 39 
     | 
    
         
            +
                page_table: torch.Tensor,
         
     | 
| 
      
 40 
     | 
    
         
            +
                topk_indices: torch.Tensor,
         
     | 
| 
      
 41 
     | 
    
         
            +
                result: Optional[torch.Tensor] = None,
         
     | 
| 
      
 42 
     | 
    
         
            +
                page_size: int = 1,
         
     | 
| 
      
 43 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 44 
     | 
    
         
            +
                """
         
     | 
| 
      
 45 
     | 
    
         
            +
                Transform the page table according to topk indices for sparse topk attention.
         
     | 
| 
      
 46 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 47 
     | 
    
         
            +
                    page_table: [qo_len, max_seqlen_k], the original page table
         
     | 
| 
      
 48 
     | 
    
         
            +
                    topk_indices: [qo_len, topk], the topk indices for each query position
         
     | 
| 
      
 49 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 50 
     | 
    
         
            +
                    transformed_page_table: [qo_len, topk], the transformed page table
         
     | 
| 
      
 51 
     | 
    
         
            +
                    For out-of-bound indices in topk_indices, this should be filled with -1.
         
     | 
| 
      
 52 
     | 
    
         
            +
                """
         
     | 
| 
      
 53 
     | 
    
         
            +
                assert page_size == 1
         
     | 
| 
      
 54 
     | 
    
         
            +
                assert page_table.shape[0] == topk_indices.shape[0]
         
     | 
| 
      
 55 
     | 
    
         
            +
                assert topk_indices.shape[1] == 2048
         
     | 
| 
      
 56 
     | 
    
         
            +
                qo_len = topk_indices.shape[0]
         
     | 
| 
      
 57 
     | 
    
         
            +
                max_seqlen_k = page_table.shape[1]
         
     | 
| 
      
 58 
     | 
    
         
            +
                if result is None:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    result = torch.empty_like(topk_indices, dtype=torch.int32)
         
     | 
| 
      
 60 
     | 
    
         
            +
                # Launch triton kernel
         
     | 
| 
      
 61 
     | 
    
         
            +
                grid = (qo_len,)
         
     | 
| 
      
 62 
     | 
    
         
            +
                transform_index_page_table_decode_kernel[grid](
         
     | 
| 
      
 63 
     | 
    
         
            +
                    page_table,
         
     | 
| 
      
 64 
     | 
    
         
            +
                    topk_indices,
         
     | 
| 
      
 65 
     | 
    
         
            +
                    result,
         
     | 
| 
      
 66 
     | 
    
         
            +
                    page_size,
         
     | 
| 
      
 67 
     | 
    
         
            +
                    max_seqlen_k=max_seqlen_k,
         
     | 
| 
      
 68 
     | 
    
         
            +
                )
         
     | 
| 
      
 69 
     | 
    
         
            +
                return result
         
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
            def transform_index_page_table_prefill_fast(
         
     | 
| 
      
 73 
     | 
    
         
            +
                page_table: torch.Tensor,
         
     | 
| 
      
 74 
     | 
    
         
            +
                topk_indices: torch.Tensor,
         
     | 
| 
      
 75 
     | 
    
         
            +
                extend_lens_cpu: List[int],
         
     | 
| 
      
 76 
     | 
    
         
            +
                page_size: int = 1,
         
     | 
| 
      
 77 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 78 
     | 
    
         
            +
                # TODO(baizhou): can be implemented with another triton kernel
         
     | 
| 
      
 79 
     | 
    
         
            +
                assert page_size == 1
         
     | 
| 
      
 80 
     | 
    
         
            +
                result = torch.empty_like(topk_indices, dtype=torch.int32)
         
     | 
| 
      
 81 
     | 
    
         
            +
                assert len(extend_lens_cpu) == page_table.shape[0]
         
     | 
| 
      
 82 
     | 
    
         
            +
                offset = 0
         
     | 
| 
      
 83 
     | 
    
         
            +
                for i, l in enumerate(extend_lens_cpu):
         
     | 
| 
      
 84 
     | 
    
         
            +
                    transform_index_page_table_decode_fast(
         
     | 
| 
      
 85 
     | 
    
         
            +
                        page_table[i].unsqueeze(0).expand(l, -1),
         
     | 
| 
      
 86 
     | 
    
         
            +
                        topk_indices[offset : offset + l],
         
     | 
| 
      
 87 
     | 
    
         
            +
                        result=result[offset : offset + l],
         
     | 
| 
      
 88 
     | 
    
         
            +
                    )
         
     | 
| 
      
 89 
     | 
    
         
            +
                    offset += l
         
     | 
| 
      
 90 
     | 
    
         
            +
                assert offset == topk_indices.shape[0]
         
     | 
| 
      
 91 
     | 
    
         
            +
                return result
         
     | 
| 
      
 92 
     | 
    
         
            +
             
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
            def transform_index_page_table_decode_ref(
         
     | 
| 
      
 95 
     | 
    
         
            +
                page_table: torch.Tensor,
         
     | 
| 
      
 96 
     | 
    
         
            +
                topk_indices: torch.Tensor,
         
     | 
| 
      
 97 
     | 
    
         
            +
                result: Optional[torch.Tensor] = None,
         
     | 
| 
      
 98 
     | 
    
         
            +
                page_size: int = 1,
         
     | 
| 
      
 99 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 100 
     | 
    
         
            +
                assert page_size == 1
         
     | 
| 
      
 101 
     | 
    
         
            +
                assert page_table.shape[0] == topk_indices.shape[0]
         
     | 
| 
      
 102 
     | 
    
         
            +
                if result is None:
         
     | 
| 
      
 103 
     | 
    
         
            +
                    result = torch.empty_like(topk_indices, dtype=torch.int32)
         
     | 
| 
      
 104 
     | 
    
         
            +
                assert result.shape == topk_indices.shape
         
     | 
| 
      
 105 
     | 
    
         
            +
                torch.gather(
         
     | 
| 
      
 106 
     | 
    
         
            +
                    page_table,
         
     | 
| 
      
 107 
     | 
    
         
            +
                    dim=1,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    index=topk_indices.clamp(min=0),
         
     | 
| 
      
 109 
     | 
    
         
            +
                    out=result,
         
     | 
| 
      
 110 
     | 
    
         
            +
                )
         
     | 
| 
      
 111 
     | 
    
         
            +
                result[topk_indices < 0] = -1
         
     | 
| 
      
 112 
     | 
    
         
            +
                return result
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
             
     | 
| 
      
 115 
     | 
    
         
            +
            def transform_index_page_table_prefill_ref(
         
     | 
| 
      
 116 
     | 
    
         
            +
                page_table: torch.Tensor,
         
     | 
| 
      
 117 
     | 
    
         
            +
                topk_indices: torch.Tensor,
         
     | 
| 
      
 118 
     | 
    
         
            +
                extend_lens_cpu: List[int],
         
     | 
| 
      
 119 
     | 
    
         
            +
                page_size: int = 1,
         
     | 
| 
      
 120 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 121 
     | 
    
         
            +
                assert page_size == 1
         
     | 
| 
      
 122 
     | 
    
         
            +
                result = torch.empty_like(topk_indices, dtype=torch.int32)
         
     | 
| 
      
 123 
     | 
    
         
            +
                assert len(extend_lens_cpu) == page_table.shape[0]
         
     | 
| 
      
 124 
     | 
    
         
            +
                offset = 0
         
     | 
| 
      
 125 
     | 
    
         
            +
                for i, l in enumerate(extend_lens_cpu):
         
     | 
| 
      
 126 
     | 
    
         
            +
                    transform_index_page_table_decode_ref(
         
     | 
| 
      
 127 
     | 
    
         
            +
                        page_table[i].unsqueeze(0).expand(l, -1),
         
     | 
| 
      
 128 
     | 
    
         
            +
                        topk_indices[offset : offset + l],
         
     | 
| 
      
 129 
     | 
    
         
            +
                        result=result[offset : offset + l],
         
     | 
| 
      
 130 
     | 
    
         
            +
                    )
         
     | 
| 
      
 131 
     | 
    
         
            +
                    offset += l
         
     | 
| 
      
 132 
     | 
    
         
            +
                assert offset == topk_indices.shape[0]
         
     | 
| 
      
 133 
     | 
    
         
            +
                return result
         
     | 
| 
      
 134 
     | 
    
         
            +
             
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
            if __name__ == "__main__":
         
     | 
| 
      
 137 
     | 
    
         
            +
                bs, topk, max_seqlen = 10, 2048, 3000
         
     | 
| 
      
 138 
     | 
    
         
            +
                page_table = torch.randint(0, 100, (bs, max_seqlen), device="cuda")
         
     | 
| 
      
 139 
     | 
    
         
            +
                topk_indices = torch.full((bs, topk), -1, device="cuda")
         
     | 
| 
      
 140 
     | 
    
         
            +
                topk_indices[:, :1600] = torch.arange(1600).unsqueeze(0).repeat(bs, 1)
         
     | 
| 
      
 141 
     | 
    
         
            +
                ref_result = transform_index_page_table_decode_ref(page_table, topk_indices)
         
     | 
| 
      
 142 
     | 
    
         
            +
                result = transform_index_page_table_decode_fast(page_table, topk_indices)
         
     | 
| 
      
 143 
     | 
    
         
            +
                assert torch.all(result == ref_result)
         
     | 
| 
      
 144 
     | 
    
         
            +
                print("Passed")
         
     | 
| 
         @@ -0,0 +1,136 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Optional, Tuple
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 4 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 5 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            # Triton implementation
         
     | 
| 
      
 9 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 10 
     | 
    
         
            +
            def _act_quant_kernel(
         
     | 
| 
      
 11 
     | 
    
         
            +
                X_ptr,
         
     | 
| 
      
 12 
     | 
    
         
            +
                Y_ptr,
         
     | 
| 
      
 13 
     | 
    
         
            +
                S_ptr,
         
     | 
| 
      
 14 
     | 
    
         
            +
                M,
         
     | 
| 
      
 15 
     | 
    
         
            +
                N,
         
     | 
| 
      
 16 
     | 
    
         
            +
                group_size: tl.constexpr,
         
     | 
| 
      
 17 
     | 
    
         
            +
                round_scale: tl.constexpr,
         
     | 
| 
      
 18 
     | 
    
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 
      
 19 
     | 
    
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 
      
 20 
     | 
    
         
            +
            ):
         
     | 
| 
      
 21 
     | 
    
         
            +
                """
         
     | 
| 
      
 22 
     | 
    
         
            +
                Triton kernel for activation quantization.
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
                Each block processes BLOCK_M rows and group_size columns.
         
     | 
| 
      
 25 
     | 
    
         
            +
                """
         
     | 
| 
      
 26 
     | 
    
         
            +
                # Get block IDs
         
     | 
| 
      
 27 
     | 
    
         
            +
                pid_m = tl.program_id(0)
         
     | 
| 
      
 28 
     | 
    
         
            +
                pid_n = tl.program_id(1)
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
                # FP8 constants
         
     | 
| 
      
 31 
     | 
    
         
            +
                fp8_min = -448.0
         
     | 
| 
      
 32 
     | 
    
         
            +
                fp8_max = 448.0
         
     | 
| 
      
 33 
     | 
    
         
            +
                fp8_max_inv = 1.0 / fp8_max
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
                # Calculate row and column offsets
         
     | 
| 
      
 36 
     | 
    
         
            +
                row_start = pid_m * BLOCK_M
         
     | 
| 
      
 37 
     | 
    
         
            +
                col_start = pid_n * group_size
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                # Create offset arrays
         
     | 
| 
      
 40 
     | 
    
         
            +
                rows = row_start + tl.arange(0, BLOCK_M)
         
     | 
| 
      
 41 
     | 
    
         
            +
                cols = col_start + tl.arange(0, BLOCK_N)
         
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
                # Mask for valid rows and columns
         
     | 
| 
      
 44 
     | 
    
         
            +
                row_mask = rows < M
         
     | 
| 
      
 45 
     | 
    
         
            +
                col_mask = cols < N
         
     | 
| 
      
 46 
     | 
    
         
            +
                mask = row_mask[:, None] & col_mask[None, :]
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
                # Load input data
         
     | 
| 
      
 49 
     | 
    
         
            +
                x_ptrs = X_ptr + rows[:, None] * N + cols[None, :]
         
     | 
| 
      
 50 
     | 
    
         
            +
                x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
                # Compute absolute max along columns (group_size dimension) for each row
         
     | 
| 
      
 53 
     | 
    
         
            +
                x_abs = tl.abs(x)
         
     | 
| 
      
 54 
     | 
    
         
            +
                amax = tl.max(x_abs, axis=1)  # Shape: (BLOCK_M,)
         
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
                # Clamp amax to avoid division by zero
         
     | 
| 
      
 57 
     | 
    
         
            +
                amax = tl.maximum(amax, 1e-4)
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                # Compute scale
         
     | 
| 
      
 60 
     | 
    
         
            +
                if round_scale:
         
     | 
| 
      
 61 
     | 
    
         
            +
                    # Fast round scale using bit manipulation approximation
         
     | 
| 
      
 62 
     | 
    
         
            +
                    # This is a simplified version - the exact bit manipulation is harder in Triton
         
     | 
| 
      
 63 
     | 
    
         
            +
                    # Using log2 + ceil + pow2 as approximation
         
     | 
| 
      
 64 
     | 
    
         
            +
                    log_val = tl.log2(amax * fp8_max_inv)
         
     | 
| 
      
 65 
     | 
    
         
            +
                    log_ceil = tl.ceil(log_val)
         
     | 
| 
      
 66 
     | 
    
         
            +
                    scale = tl.exp2(log_ceil)
         
     | 
| 
      
 67 
     | 
    
         
            +
                else:
         
     | 
| 
      
 68 
     | 
    
         
            +
                    scale = amax * fp8_max_inv
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
                # Quantize: y = clamp(x / scale, fp8_min, fp8_max)
         
     | 
| 
      
 71 
     | 
    
         
            +
                scale_broadcast = scale[:, None]
         
     | 
| 
      
 72 
     | 
    
         
            +
                y = x / scale_broadcast
         
     | 
| 
      
 73 
     | 
    
         
            +
                y = tl.minimum(tl.maximum(y, fp8_min), fp8_max)
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
                # Store quantized output
         
     | 
| 
      
 76 
     | 
    
         
            +
                y_ptrs = Y_ptr + rows[:, None] * N + cols[None, :]
         
     | 
| 
      
 77 
     | 
    
         
            +
                tl.store(y_ptrs, y, mask=mask)
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                # Store scales
         
     | 
| 
      
 80 
     | 
    
         
            +
                s_cols = pid_n
         
     | 
| 
      
 81 
     | 
    
         
            +
                s_ptrs = S_ptr + rows * (N // group_size) + s_cols
         
     | 
| 
      
 82 
     | 
    
         
            +
                s_mask = row_mask
         
     | 
| 
      
 83 
     | 
    
         
            +
                tl.store(s_ptrs, scale, mask=s_mask)
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
            def act_quant(
         
     | 
| 
      
 87 
     | 
    
         
            +
                x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
         
     | 
| 
      
 88 
     | 
    
         
            +
            ) -> Tuple[torch.Tensor, torch.Tensor]:
         
     | 
| 
      
 89 
     | 
    
         
            +
                """
         
     | 
| 
      
 90 
     | 
    
         
            +
                Quantizes the input tensor `x` using block-wise quantization with Triton.
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 93 
     | 
    
         
            +
                    x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
         
     | 
| 
      
 94 
     | 
    
         
            +
                    block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
         
     | 
| 
      
 95 
     | 
    
         
            +
                    scale_fmt (Optional[str], optional): The format of the scale. Default is None.
         
     | 
| 
      
 96 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 97 
     | 
    
         
            +
                    Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
         
     | 
| 
      
 98 
     | 
    
         
            +
                        - The quantized tensor with dtype `torch.float8_e4m3fn`.
         
     | 
| 
      
 99 
     | 
    
         
            +
                        - A tensor of scaling factors with dtype `torch.float32`.
         
     | 
| 
      
 100 
     | 
    
         
            +
                """
         
     | 
| 
      
 101 
     | 
    
         
            +
                assert x.is_contiguous(), "Input tensor must be contiguous"
         
     | 
| 
      
 102 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 103 
     | 
    
         
            +
                    x.size(-1) % block_size == 0
         
     | 
| 
      
 104 
     | 
    
         
            +
                ), f"Last dimension size must be divisible by block_size (block_size={block_size})"
         
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
                # Flatten all dims except last
         
     | 
| 
      
 107 
     | 
    
         
            +
                N = x.size(-1)
         
     | 
| 
      
 108 
     | 
    
         
            +
                x_flat = x.view(-1, N)
         
     | 
| 
      
 109 
     | 
    
         
            +
                M = x_flat.size(0)
         
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
      
 111 
     | 
    
         
            +
                # Allocate output tensors
         
     | 
| 
      
 112 
     | 
    
         
            +
                y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
         
     | 
| 
      
 113 
     | 
    
         
            +
                y_flat = y.view(-1, N)
         
     | 
| 
      
 114 
     | 
    
         
            +
                s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
         
     | 
| 
      
 115 
     | 
    
         
            +
                s_flat = s.view(-1, N // block_size)
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                # Launch kernel
         
     | 
| 
      
 118 
     | 
    
         
            +
                BLOCK_M = 32
         
     | 
| 
      
 119 
     | 
    
         
            +
                BLOCK_N = block_size
         
     | 
| 
      
 120 
     | 
    
         
            +
                grid = (triton.cdiv(M, BLOCK_M), triton.cdiv(N, block_size))
         
     | 
| 
      
 121 
     | 
    
         
            +
                round_scale = scale_fmt is not None
         
     | 
| 
      
 122 
     | 
    
         
            +
             
     | 
| 
      
 123 
     | 
    
         
            +
                _act_quant_kernel[grid](
         
     | 
| 
      
 124 
     | 
    
         
            +
                    x_flat,
         
     | 
| 
      
 125 
     | 
    
         
            +
                    y_flat,
         
     | 
| 
      
 126 
     | 
    
         
            +
                    s_flat,
         
     | 
| 
      
 127 
     | 
    
         
            +
                    M,
         
     | 
| 
      
 128 
     | 
    
         
            +
                    N,
         
     | 
| 
      
 129 
     | 
    
         
            +
                    group_size=block_size,
         
     | 
| 
      
 130 
     | 
    
         
            +
                    round_scale=round_scale,
         
     | 
| 
      
 131 
     | 
    
         
            +
                    BLOCK_M=BLOCK_M,
         
     | 
| 
      
 132 
     | 
    
         
            +
                    BLOCK_N=BLOCK_N,
         
     | 
| 
      
 133 
     | 
    
         
            +
                    num_stages=0 if round_scale else 2,
         
     | 
| 
      
 134 
     | 
    
         
            +
                )
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                return y, s
         
     | 
| 
         @@ -0,0 +1,23 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # temp NSA debugging environ
         
     | 
| 
      
 2 
     | 
    
         
            +
            from sglang.srt.utils import get_bool_env_var
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            NSA_DUAL_STREAM = get_bool_env_var("SGLANG_NSA_DUAL_STREAM", "true")
         
     | 
| 
      
 5 
     | 
    
         
            +
            NSA_FUSE_TOPK = get_bool_env_var("SGLANG_NSA_FUSE_TOPK", "true")
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8 = get_bool_env_var(
         
     | 
| 
      
 8 
     | 
    
         
            +
                "SGLANG_NSA_FLASHMLA_BACKEND_DECODE_COMPUTE_FP8", "true"
         
     | 
| 
      
 9 
     | 
    
         
            +
            )
         
     | 
| 
      
 10 
     | 
    
         
            +
            NSA_QUANT_K_CACHE_FAST = get_bool_env_var("SGLANG_NSA_QUANT_K_CACHE_FAST", "true")
         
     | 
| 
      
 11 
     | 
    
         
            +
            NSA_DEQUANT_K_CACHE_FAST = get_bool_env_var("SGLANG_NSA_DEQUANT_K_CACHE_FAST", "true")
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            def print_nsa_bool_env_vars():
         
     | 
| 
      
 15 
     | 
    
         
            +
                msg = ""
         
     | 
| 
      
 16 
     | 
    
         
            +
                for k, v in globals().items():
         
     | 
| 
      
 17 
     | 
    
         
            +
                    if k.startswith("NSA_") and isinstance(v, bool):
         
     | 
| 
      
 18 
     | 
    
         
            +
                        msg += f"{k}={v} "
         
     | 
| 
      
 19 
     | 
    
         
            +
                print(msg, flush=True)
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
             
     | 
| 
      
 22 
     | 
    
         
            +
            def compute_nsa_seqlens(original_seq_lens, nsa_index_topk: int):
         
     | 
| 
      
 23 
     | 
    
         
            +
                return original_seq_lens.clamp(max=nsa_index_topk)
         
     |