sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
- sglang/bench_one_batch_server.py +340 -34
- sglang/bench_serving.py +340 -159
- sglang/check_env.py +1 -1
- sglang/compile_deep_gemm.py +6 -2
- sglang/global_config.py +1 -25
- sglang/lang/api.py +6 -0
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/lang/interpreter.py +1 -0
- sglang/lang/ir.py +13 -0
- sglang/launch_server.py +9 -2
- sglang/profiler.py +20 -3
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
- sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
- sglang/srt/compilation/backend.py +437 -0
- sglang/srt/compilation/compilation_config.py +20 -0
- sglang/srt/compilation/compilation_counter.py +47 -0
- sglang/srt/compilation/compile.py +210 -0
- sglang/srt/compilation/compiler_interface.py +503 -0
- sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
- sglang/srt/compilation/fix_functionalization.py +134 -0
- sglang/srt/compilation/fx_utils.py +83 -0
- sglang/srt/compilation/inductor_pass.py +140 -0
- sglang/srt/compilation/pass_manager.py +66 -0
- sglang/srt/compilation/piecewise_context_manager.py +40 -0
- sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/deepseek_ocr.py +262 -0
- sglang/srt/configs/deepseekvl2.py +194 -96
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +2 -7
- sglang/srt/configs/falcon_h1.py +309 -0
- sglang/srt/configs/load_config.py +33 -2
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +284 -118
- sglang/srt/configs/modelopt_config.py +30 -0
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/olmo3.py +105 -0
- sglang/srt/configs/points_v15_chat.py +29 -0
- sglang/srt/configs/qwen3_next.py +11 -47
- sglang/srt/configs/qwen3_omni.py +613 -0
- sglang/srt/configs/qwen3_vl.py +576 -0
- sglang/srt/connector/remote_instance.py +1 -1
- sglang/srt/constrained/base_grammar_backend.py +6 -1
- sglang/srt/constrained/llguidance_backend.py +5 -0
- sglang/srt/constrained/outlines_backend.py +1 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
- sglang/srt/constrained/utils.py +12 -0
- sglang/srt/constrained/xgrammar_backend.py +26 -15
- sglang/srt/debug_utils/dumper.py +10 -3
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
- sglang/srt/disaggregation/base/conn.py +17 -4
- sglang/srt/disaggregation/common/conn.py +268 -98
- sglang/srt/disaggregation/decode.py +172 -39
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
- sglang/srt/disaggregation/fake/conn.py +11 -3
- sglang/srt/disaggregation/mooncake/conn.py +203 -555
- sglang/srt/disaggregation/nixl/conn.py +217 -63
- sglang/srt/disaggregation/prefill.py +113 -270
- sglang/srt/disaggregation/utils.py +36 -5
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
- sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
- sglang/srt/distributed/device_communicators/pynccl.py +24 -12
- sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/naive_distributed.py +5 -4
- sglang/srt/distributed/parallel_state.py +203 -97
- sglang/srt/elastic_ep/elastic_ep.py +74 -0
- sglang/srt/entrypoints/context.py +3 -2
- sglang/srt/entrypoints/engine.py +85 -65
- sglang/srt/entrypoints/grpc_server.py +632 -305
- sglang/srt/entrypoints/harmony_utils.py +2 -2
- sglang/srt/entrypoints/http_server.py +169 -17
- sglang/srt/entrypoints/http_server_engine.py +1 -7
- sglang/srt/entrypoints/openai/protocol.py +327 -34
- sglang/srt/entrypoints/openai/serving_base.py +74 -8
- sglang/srt/entrypoints/openai/serving_chat.py +202 -118
- sglang/srt/entrypoints/openai/serving_classify.py +204 -0
- sglang/srt/entrypoints/openai/serving_completions.py +20 -4
- sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
- sglang/srt/entrypoints/openai/serving_responses.py +47 -2
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +323 -0
- sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
- sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
- sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
- sglang/srt/eplb/expert_distribution.py +3 -4
- sglang/srt/eplb/expert_location.py +30 -5
- sglang/srt/eplb/expert_location_dispatch.py +2 -2
- sglang/srt/eplb/expert_location_updater.py +2 -2
- sglang/srt/function_call/base_format_detector.py +17 -18
- sglang/srt/function_call/function_call_parser.py +21 -16
- sglang/srt/function_call/glm4_moe_detector.py +4 -8
- sglang/srt/function_call/gpt_oss_detector.py +24 -1
- sglang/srt/function_call/json_array_parser.py +61 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/utils.py +98 -7
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/grpc_request_manager.py +915 -0
- sglang/srt/grpc/health_servicer.py +189 -0
- sglang/srt/grpc/scheduler_launcher.py +181 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
- sglang/srt/layers/activation.py +11 -7
- sglang/srt/layers/attention/aiter_backend.py +17 -18
- sglang/srt/layers/attention/ascend_backend.py +125 -10
- sglang/srt/layers/attention/attention_registry.py +226 -0
- sglang/srt/layers/attention/base_attn_backend.py +32 -4
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +0 -1
- sglang/srt/layers/attention/fla/chunk_o.py +1 -1
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
- sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
- sglang/srt/layers/attention/fla/index.py +0 -2
- sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
- sglang/srt/layers/attention/fla/utils.py +0 -3
- sglang/srt/layers/attention/fla/wy_fast.py +0 -2
- sglang/srt/layers/attention/flashattention_backend.py +52 -15
- sglang/srt/layers/attention/flashinfer_backend.py +357 -212
- sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
- sglang/srt/layers/attention/flashmla_backend.py +9 -7
- sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
- sglang/srt/layers/attention/intel_amx_backend.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
- sglang/srt/layers/attention/mamba/mamba.py +514 -1
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
- sglang/srt/layers/attention/nsa/utils.py +23 -0
- sglang/srt/layers/attention/nsa_backend.py +1201 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/triton_backend.py +249 -42
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
- sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
- sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
- sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
- sglang/srt/layers/attention/utils.py +11 -7
- sglang/srt/layers/attention/vision.py +61 -3
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/xpu_backend.py +1028 -0
- sglang/srt/layers/communicator.py +19 -7
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
- sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
- sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
- sglang/srt/layers/dp_attention.py +28 -1
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +47 -15
- sglang/srt/layers/linear.py +30 -5
- sglang/srt/layers/logits_processor.py +161 -18
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_moe.py +0 -2
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
- sglang/srt/layers/moe/ep_moe/layer.py +243 -448
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
- sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/moe_runner/triton.py +3 -1
- sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
- sglang/srt/layers/moe/router.py +51 -15
- sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
- sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
- sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
- sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
- sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
- sglang/srt/layers/moe/topk.py +3 -2
- sglang/srt/layers/moe/utils.py +27 -1
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/__init__.py +2 -53
- sglang/srt/layers/quantization/awq.py +183 -6
- sglang/srt/layers/quantization/awq_triton.py +29 -0
- sglang/srt/layers/quantization/base_config.py +20 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
- sglang/srt/layers/quantization/fp8.py +86 -20
- sglang/srt/layers/quantization/fp8_kernel.py +55 -10
- sglang/srt/layers/quantization/fp8_utils.py +43 -15
- sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
- sglang/srt/layers/quantization/gptq.py +0 -1
- sglang/srt/layers/quantization/int8_kernel.py +18 -2
- sglang/srt/layers/quantization/marlin_utils.py +12 -0
- sglang/srt/layers/quantization/modelopt_quant.py +141 -81
- sglang/srt/layers/quantization/mxfp4.py +17 -34
- sglang/srt/layers/quantization/petit.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
- sglang/srt/layers/quantization/unquant.py +1 -4
- sglang/srt/layers/quantization/utils.py +0 -1
- sglang/srt/layers/quantization/w4afp8.py +51 -24
- sglang/srt/layers/quantization/w8a8_int8.py +45 -27
- sglang/srt/layers/radix_attention.py +59 -9
- sglang/srt/layers/rotary_embedding.py +750 -46
- sglang/srt/layers/sampler.py +84 -16
- sglang/srt/layers/sparse_pooler.py +98 -0
- sglang/srt/layers/utils.py +23 -1
- sglang/srt/layers/vocab_parallel_embedding.py +4 -1
- sglang/srt/lora/backend/base_backend.py +3 -3
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +9 -4
- sglang/srt/lora/eviction_policy.py +139 -0
- sglang/srt/lora/lora.py +7 -5
- sglang/srt/lora/lora_manager.py +33 -7
- sglang/srt/lora/lora_registry.py +1 -1
- sglang/srt/lora/mem_pool.py +41 -17
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
- sglang/srt/lora/utils.py +7 -5
- sglang/srt/managers/cache_controller.py +83 -152
- sglang/srt/managers/data_parallel_controller.py +156 -87
- sglang/srt/managers/detokenizer_manager.py +51 -24
- sglang/srt/managers/io_struct.py +223 -129
- sglang/srt/managers/mm_utils.py +49 -10
- sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +130 -0
- sglang/srt/managers/schedule_batch.py +340 -529
- sglang/srt/managers/schedule_policy.py +158 -18
- sglang/srt/managers/scheduler.py +665 -620
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
- sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
- sglang/srt/managers/scheduler_pp_mixin.py +341 -0
- sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
- sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
- sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
- sglang/srt/managers/tokenizer_manager.py +462 -226
- sglang/srt/managers/tp_worker.py +217 -156
- sglang/srt/managers/utils.py +79 -47
- sglang/srt/mem_cache/allocator.py +21 -22
- sglang/srt/mem_cache/allocator_ascend.py +42 -28
- sglang/srt/mem_cache/base_prefix_cache.py +3 -3
- sglang/srt/mem_cache/chunk_cache.py +20 -2
- sglang/srt/mem_cache/common.py +480 -0
- sglang/srt/mem_cache/evict_policy.py +38 -0
- sglang/srt/mem_cache/hicache_storage.py +44 -2
- sglang/srt/mem_cache/hiradix_cache.py +134 -34
- sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
- sglang/srt/mem_cache/memory_pool.py +602 -208
- sglang/srt/mem_cache/memory_pool_host.py +134 -183
- sglang/srt/mem_cache/multimodal_cache.py +0 -1
- sglang/srt/mem_cache/radix_cache.py +263 -78
- sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
- sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
- sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
- sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
- sglang/srt/mem_cache/swa_radix_cache.py +115 -58
- sglang/srt/metrics/collector.py +113 -120
- sglang/srt/metrics/func_timer.py +3 -8
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +81 -36
- sglang/srt/model_executor/forward_batch_info.py +40 -50
- sglang/srt/model_executor/model_runner.py +507 -319
- sglang/srt/model_executor/npu_graph_runner.py +11 -5
- sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +438 -37
- sglang/srt/model_loader/utils.py +0 -1
- sglang/srt/model_loader/weight_utils.py +200 -27
- sglang/srt/models/apertus.py +2 -3
- sglang/srt/models/arcee.py +2 -2
- sglang/srt/models/bailing_moe.py +40 -56
- sglang/srt/models/bailing_moe_nextn.py +3 -4
- sglang/srt/models/bert.py +1 -1
- sglang/srt/models/deepseek_nextn.py +25 -4
- sglang/srt/models/deepseek_ocr.py +1516 -0
- sglang/srt/models/deepseek_v2.py +793 -235
- sglang/srt/models/dots_ocr.py +171 -0
- sglang/srt/models/dots_vlm.py +0 -1
- sglang/srt/models/dots_vlm_vit.py +1 -1
- sglang/srt/models/falcon_h1.py +570 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +17 -1
- sglang/srt/models/gemma3n_mm.py +2 -3
- sglang/srt/models/glm4_moe.py +17 -40
- sglang/srt/models/glm4_moe_nextn.py +4 -4
- sglang/srt/models/glm4v.py +3 -2
- sglang/srt/models/glm4v_moe.py +6 -6
- sglang/srt/models/gpt_oss.py +12 -35
- sglang/srt/models/grok.py +10 -23
- sglang/srt/models/hunyuan.py +2 -7
- sglang/srt/models/interns1.py +0 -1
- sglang/srt/models/kimi_vl.py +1 -7
- sglang/srt/models/kimi_vl_moonvit.py +4 -2
- sglang/srt/models/llama.py +6 -2
- sglang/srt/models/llama_eagle3.py +1 -1
- sglang/srt/models/longcat_flash.py +6 -23
- sglang/srt/models/longcat_flash_nextn.py +4 -15
- sglang/srt/models/mimo.py +2 -13
- sglang/srt/models/mimo_mtp.py +1 -2
- sglang/srt/models/minicpmo.py +7 -5
- sglang/srt/models/mixtral.py +1 -4
- sglang/srt/models/mllama.py +1 -1
- sglang/srt/models/mllama4.py +27 -6
- sglang/srt/models/nemotron_h.py +511 -0
- sglang/srt/models/olmo2.py +31 -4
- sglang/srt/models/opt.py +5 -5
- sglang/srt/models/phi.py +1 -1
- sglang/srt/models/phi4mm.py +1 -1
- sglang/srt/models/phimoe.py +0 -1
- sglang/srt/models/pixtral.py +0 -3
- sglang/srt/models/points_v15_chat.py +186 -0
- sglang/srt/models/qwen.py +0 -1
- sglang/srt/models/qwen2.py +0 -7
- sglang/srt/models/qwen2_5_vl.py +5 -5
- sglang/srt/models/qwen2_audio.py +2 -15
- sglang/srt/models/qwen2_moe.py +70 -4
- sglang/srt/models/qwen2_vl.py +6 -3
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +50 -38
- sglang/srt/models/qwen3_next.py +43 -21
- sglang/srt/models/qwen3_next_mtp.py +3 -4
- sglang/srt/models/qwen3_omni_moe.py +661 -0
- sglang/srt/models/qwen3_vl.py +791 -0
- sglang/srt/models/qwen3_vl_moe.py +343 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/roberta.py +55 -3
- sglang/srt/models/sarashina2_vision.py +268 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +3 -5
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +61 -0
- sglang/srt/multimodal/processors/base_processor.py +21 -9
- sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
- sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
- sglang/srt/multimodal/processors/dots_vlm.py +2 -4
- sglang/srt/multimodal/processors/glm4v.py +1 -5
- sglang/srt/multimodal/processors/internvl.py +20 -10
- sglang/srt/multimodal/processors/janus_pro.py +0 -1
- sglang/srt/multimodal/processors/mllama4.py +0 -8
- sglang/srt/multimodal/processors/phi4mm.py +0 -1
- sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
- sglang/srt/multimodal/processors/qwen_vl.py +83 -17
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/multimodal/processors/step3_vl.py +1 -1
- sglang/srt/parser/conversation.py +41 -0
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/parser/reasoning_parser.py +0 -1
- sglang/srt/sampling/custom_logit_processor.py +77 -2
- sglang/srt/sampling/sampling_batch_info.py +36 -23
- sglang/srt/sampling/sampling_params.py +75 -0
- sglang/srt/server_args.py +1300 -338
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +161 -0
- sglang/srt/speculative/base_spec_worker.py +34 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/draft_utils.py +226 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
- sglang/srt/speculative/eagle_info.py +786 -0
- sglang/srt/speculative/eagle_info_v2.py +458 -0
- sglang/srt/speculative/eagle_utils.py +113 -1270
- sglang/srt/speculative/eagle_worker.py +120 -285
- sglang/srt/speculative/eagle_worker_v2.py +702 -0
- sglang/srt/speculative/ngram_info.py +433 -0
- sglang/srt/speculative/ngram_worker.py +246 -0
- sglang/srt/speculative/spec_info.py +49 -0
- sglang/srt/speculative/spec_utils.py +641 -0
- sglang/srt/speculative/standalone_worker.py +4 -14
- sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
- sglang/srt/tracing/trace.py +32 -6
- sglang/srt/two_batch_overlap.py +35 -18
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
- sglang/srt/{utils.py → utils/common.py} +583 -113
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
- sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
- sglang/srt/{offloader.py → utils/offloader.py} +4 -4
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/profile_merger.py +199 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_flashattn_backend.py +1 -1
- sglang/test/attention/test_flashattn_mla_backend.py +0 -1
- sglang/test/attention/test_prefix_chunk_info.py +0 -2
- sglang/test/attention/test_trtllm_mla_backend.py +221 -53
- sglang/test/few_shot_gsm8k_engine.py +2 -4
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/kit_matched_stop.py +157 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +120 -11
- sglang/test/runners.py +3 -1
- sglang/test/send_one.py +42 -7
- sglang/test/simple_eval_common.py +8 -2
- sglang/test/simple_eval_gpqa.py +0 -1
- sglang/test/simple_eval_humaneval.py +0 -3
- sglang/test/simple_eval_longbench_v2.py +344 -0
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +3 -4
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
- sglang/test/test_cutlass_moe.py +1 -2
- sglang/test/test_cutlass_w4a8_moe.py +10 -20
- sglang/test/test_deterministic.py +430 -0
- sglang/test/test_deterministic_utils.py +73 -0
- sglang/test/test_disaggregation_utils.py +93 -1
- sglang/test/test_marlin_moe.py +0 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +432 -16
- sglang/utils.py +10 -1
- sglang/version.py +1 -1
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
- sglang/srt/entrypoints/grpc_request_manager.py +0 -580
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- sglang/srt/speculative/build_eagle_tree.py +0 -427
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
- /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
- /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
|
@@ -32,12 +32,182 @@ if _is_cuda:
|
|
|
32
32
|
_is_hip = is_hip()
|
|
33
33
|
|
|
34
34
|
|
|
35
|
+
def _get_block_sizes_for_extend_attention(Lq: int, Lv: int):
|
|
36
|
+
"""
|
|
37
|
+
Get block sizes and configuration for extend attention kernels.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
Lq: Query head dimension
|
|
41
|
+
Lv: Value head dimension
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
tuple: (BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps)
|
|
45
|
+
"""
|
|
46
|
+
# Determine BLOCK_DMODEL and BLOCK_DPE based on head dimension
|
|
47
|
+
if Lq == 576:
|
|
48
|
+
BLOCK_DMODEL = 512
|
|
49
|
+
BLOCK_DPE = 64
|
|
50
|
+
elif Lq == 288:
|
|
51
|
+
BLOCK_DMODEL = 256
|
|
52
|
+
BLOCK_DPE = 32
|
|
53
|
+
elif Lq == 192:
|
|
54
|
+
BLOCK_DMODEL = 128
|
|
55
|
+
BLOCK_DPE = 64
|
|
56
|
+
else:
|
|
57
|
+
BLOCK_DMODEL = triton.next_power_of_2(Lq)
|
|
58
|
+
BLOCK_DPE = 0
|
|
59
|
+
|
|
60
|
+
BLOCK_DV = triton.next_power_of_2(Lv)
|
|
61
|
+
|
|
62
|
+
# Determine BLOCK_M, BLOCK_N, and num_warps based on hardware
|
|
63
|
+
if _is_hip:
|
|
64
|
+
BLOCK_M, BLOCK_N = (64, 64)
|
|
65
|
+
num_warps = 4
|
|
66
|
+
else:
|
|
67
|
+
if _is_cuda and CUDA_CAPABILITY[0] >= 9:
|
|
68
|
+
# Hopper architecture (H100, etc.)
|
|
69
|
+
if Lq <= 256:
|
|
70
|
+
BLOCK_M, BLOCK_N = (128, 64)
|
|
71
|
+
else:
|
|
72
|
+
BLOCK_M, BLOCK_N = (32, 64)
|
|
73
|
+
elif _is_cuda and CUDA_CAPABILITY[0] >= 8:
|
|
74
|
+
# Ampere architecture (A100, etc.)
|
|
75
|
+
# sm86/sm89 has a much smaller shared memory size (100K) than sm80 (160K)
|
|
76
|
+
if CUDA_CAPABILITY[1] == 9 or CUDA_CAPABILITY[1] == 6:
|
|
77
|
+
if Lq <= 128:
|
|
78
|
+
BLOCK_M, BLOCK_N = (64, 128)
|
|
79
|
+
elif Lq <= 256:
|
|
80
|
+
BLOCK_M, BLOCK_N = (64, 64)
|
|
81
|
+
else:
|
|
82
|
+
BLOCK_M, BLOCK_N = (32, 32)
|
|
83
|
+
else:
|
|
84
|
+
if Lq <= 128:
|
|
85
|
+
BLOCK_M, BLOCK_N = (128, 128)
|
|
86
|
+
elif Lq <= 256:
|
|
87
|
+
BLOCK_M, BLOCK_N = (64, 64)
|
|
88
|
+
else:
|
|
89
|
+
BLOCK_M, BLOCK_N = (32, 64)
|
|
90
|
+
else:
|
|
91
|
+
# Older architectures
|
|
92
|
+
BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32)
|
|
93
|
+
|
|
94
|
+
num_warps = 4 if Lq <= 64 else 8
|
|
95
|
+
|
|
96
|
+
return BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps
|
|
97
|
+
|
|
98
|
+
|
|
35
99
|
@triton.jit
|
|
36
100
|
def tanh(x):
|
|
37
101
|
# Tanh is just a scaled sigmoid
|
|
38
102
|
return 2 * tl.sigmoid(2 * x) - 1
|
|
39
103
|
|
|
40
104
|
|
|
105
|
+
@triton.jit
|
|
106
|
+
def _copy_unified_indices_kernel(
|
|
107
|
+
# Input buffers
|
|
108
|
+
prefix_kv_indptr,
|
|
109
|
+
prefix_kv_indices,
|
|
110
|
+
extend_start_loc,
|
|
111
|
+
extend_seq_lens,
|
|
112
|
+
extend_kv_indices,
|
|
113
|
+
unified_kv_indptr,
|
|
114
|
+
# Output buffer
|
|
115
|
+
unified_kv_indices,
|
|
116
|
+
# Size
|
|
117
|
+
bs,
|
|
118
|
+
):
|
|
119
|
+
"""
|
|
120
|
+
Triton kernel to copy indices to unified buffer (parallel per sequence).
|
|
121
|
+
Each thread block processes one sequence with vectorized loads/stores.
|
|
122
|
+
"""
|
|
123
|
+
pid = tl.program_id(0)
|
|
124
|
+
|
|
125
|
+
if pid >= bs:
|
|
126
|
+
return
|
|
127
|
+
|
|
128
|
+
# Load sequence info
|
|
129
|
+
prefix_start = tl.load(prefix_kv_indptr + pid)
|
|
130
|
+
prefix_end = tl.load(prefix_kv_indptr + pid + 1)
|
|
131
|
+
extend_start = tl.load(extend_start_loc + pid)
|
|
132
|
+
extend_len = tl.load(extend_seq_lens + pid)
|
|
133
|
+
|
|
134
|
+
prefix_len = prefix_end - prefix_start
|
|
135
|
+
unified_start = tl.load(unified_kv_indptr + pid)
|
|
136
|
+
|
|
137
|
+
# Copy indices in vectorized chunks
|
|
138
|
+
BLOCK_SIZE: tl.constexpr = 128
|
|
139
|
+
|
|
140
|
+
# Process prefix indices
|
|
141
|
+
for block_start in range(0, prefix_len, BLOCK_SIZE):
|
|
142
|
+
offs = block_start + tl.arange(0, BLOCK_SIZE)
|
|
143
|
+
mask = offs < prefix_len
|
|
144
|
+
|
|
145
|
+
src_idx = prefix_start + offs
|
|
146
|
+
dst_idx = unified_start + offs
|
|
147
|
+
|
|
148
|
+
vals = tl.load(prefix_kv_indices + src_idx, mask=mask, other=0)
|
|
149
|
+
tl.store(unified_kv_indices + dst_idx, vals, mask=mask)
|
|
150
|
+
|
|
151
|
+
# Process extend indices
|
|
152
|
+
for block_start in range(0, extend_len, BLOCK_SIZE):
|
|
153
|
+
offs = block_start + tl.arange(0, BLOCK_SIZE)
|
|
154
|
+
mask = offs < extend_len
|
|
155
|
+
|
|
156
|
+
src_idx = extend_start + offs
|
|
157
|
+
dst_idx = unified_start + prefix_len + offs
|
|
158
|
+
|
|
159
|
+
vals = tl.load(extend_kv_indices + src_idx, mask=mask, other=0)
|
|
160
|
+
tl.store(unified_kv_indices + dst_idx, vals, mask=mask)
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def build_unified_kv_indices(
|
|
164
|
+
prefix_kv_indptr: torch.Tensor,
|
|
165
|
+
prefix_kv_indices: torch.Tensor,
|
|
166
|
+
extend_start_loc: torch.Tensor,
|
|
167
|
+
extend_seq_lens: torch.Tensor,
|
|
168
|
+
extend_kv_indices: torch.Tensor,
|
|
169
|
+
bs: int,
|
|
170
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
171
|
+
"""
|
|
172
|
+
Build unified KV indices efficiently:
|
|
173
|
+
- Use PyTorch's optimized cumsum (NVIDIA CUB) for indptr
|
|
174
|
+
- Use Triton kernel for parallel index copying
|
|
175
|
+
|
|
176
|
+
Returns:
|
|
177
|
+
(unified_kv_indptr, unified_kv_indices, prefix_lens)
|
|
178
|
+
"""
|
|
179
|
+
device = prefix_kv_indptr.device
|
|
180
|
+
|
|
181
|
+
prefix_lens = prefix_kv_indptr[1 : bs + 1] - prefix_kv_indptr[:bs]
|
|
182
|
+
|
|
183
|
+
# Create unified_kv_indptr avoiding direct assignment (for CUDA graph compatibility)
|
|
184
|
+
unified_lens = prefix_lens + extend_seq_lens[:bs]
|
|
185
|
+
unified_kv_indptr = torch.cat(
|
|
186
|
+
[
|
|
187
|
+
torch.zeros(1, dtype=torch.int32, device=device),
|
|
188
|
+
torch.cumsum(unified_lens, dim=0),
|
|
189
|
+
]
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
max_unified_len = len(prefix_kv_indices) + len(extend_kv_indices)
|
|
193
|
+
|
|
194
|
+
unified_kv_indices = torch.empty(max_unified_len, dtype=torch.int64, device=device)
|
|
195
|
+
|
|
196
|
+
# Launch Triton kernel for parallel index copying
|
|
197
|
+
_copy_unified_indices_kernel[(bs,)](
|
|
198
|
+
prefix_kv_indptr,
|
|
199
|
+
prefix_kv_indices,
|
|
200
|
+
extend_start_loc,
|
|
201
|
+
extend_seq_lens,
|
|
202
|
+
extend_kv_indices,
|
|
203
|
+
unified_kv_indptr,
|
|
204
|
+
unified_kv_indices,
|
|
205
|
+
bs,
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
return unified_kv_indptr, unified_kv_indices, prefix_lens
|
|
209
|
+
|
|
210
|
+
|
|
41
211
|
@triton.jit
|
|
42
212
|
def _fwd_kernel(
|
|
43
213
|
Q_Extend,
|
|
@@ -402,50 +572,10 @@ def extend_attention_fwd(
|
|
|
402
572
|
v_extend.shape[-1],
|
|
403
573
|
)
|
|
404
574
|
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
BLOCK_DMODEL = 256
|
|
410
|
-
BLOCK_DPE = 32
|
|
411
|
-
elif Lq == 192:
|
|
412
|
-
BLOCK_DMODEL = 128
|
|
413
|
-
BLOCK_DPE = 64
|
|
414
|
-
else:
|
|
415
|
-
BLOCK_DMODEL = triton.next_power_of_2(Lq)
|
|
416
|
-
BLOCK_DPE = 0
|
|
417
|
-
BLOCK_DV = triton.next_power_of_2(Lv)
|
|
418
|
-
|
|
419
|
-
if _is_hip:
|
|
420
|
-
BLOCK_M, BLOCK_N = (64, 64)
|
|
421
|
-
num_warps = 4
|
|
422
|
-
|
|
423
|
-
else:
|
|
424
|
-
if _is_cuda and CUDA_CAPABILITY[0] >= 9:
|
|
425
|
-
if Lq <= 256:
|
|
426
|
-
BLOCK_M, BLOCK_N = (128, 64)
|
|
427
|
-
else:
|
|
428
|
-
BLOCK_M, BLOCK_N = (32, 64)
|
|
429
|
-
elif _is_cuda and CUDA_CAPABILITY[0] >= 8:
|
|
430
|
-
# sm86/sm89 has a much smaller shared memory size (100K) than sm80 (160K)
|
|
431
|
-
if CUDA_CAPABILITY[1] == 9 or CUDA_CAPABILITY[1] == 6:
|
|
432
|
-
if Lq <= 128:
|
|
433
|
-
BLOCK_M, BLOCK_N = (64, 128)
|
|
434
|
-
elif Lq <= 256:
|
|
435
|
-
BLOCK_M, BLOCK_N = (64, 64)
|
|
436
|
-
else:
|
|
437
|
-
BLOCK_M, BLOCK_N = (32, 32)
|
|
438
|
-
else:
|
|
439
|
-
if Lq <= 128:
|
|
440
|
-
BLOCK_M, BLOCK_N = (128, 128)
|
|
441
|
-
elif Lq <= 256:
|
|
442
|
-
BLOCK_M, BLOCK_N = (64, 64)
|
|
443
|
-
else:
|
|
444
|
-
BLOCK_M, BLOCK_N = (32, 64)
|
|
445
|
-
else:
|
|
446
|
-
BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32)
|
|
447
|
-
|
|
448
|
-
num_warps = 4 if Lk <= 64 else 8
|
|
575
|
+
# Get block sizes and configuration
|
|
576
|
+
BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps = (
|
|
577
|
+
_get_block_sizes_for_extend_attention(Lq, Lv)
|
|
578
|
+
)
|
|
449
579
|
|
|
450
580
|
sm_scale = sm_scale or 1.0 / (Lq**0.5)
|
|
451
581
|
batch_size, head_num = qo_indptr.shape[0] - 1, q_extend.shape[1]
|
|
@@ -548,3 +678,368 @@ def redundant_attention(
|
|
|
548
678
|
pl, pr = b_start_loc[i] + b_seq_len_prefix[i], b_start_loc[i] + b_seq_len[i]
|
|
549
679
|
o_extend[pt : pt + cur_seq_len_extend] = o_buffer[pl:pr]
|
|
550
680
|
pt += cur_seq_len_extend
|
|
681
|
+
|
|
682
|
+
|
|
683
|
+
@triton.jit
|
|
684
|
+
def _fwd_kernel_unified(
|
|
685
|
+
Q,
|
|
686
|
+
O,
|
|
687
|
+
K_Buffer,
|
|
688
|
+
V_Buffer,
|
|
689
|
+
qo_indptr,
|
|
690
|
+
kv_indptr,
|
|
691
|
+
kv_indices,
|
|
692
|
+
prefix_lens,
|
|
693
|
+
mask_ptr,
|
|
694
|
+
mask_indptr,
|
|
695
|
+
sink_ptr,
|
|
696
|
+
window_start_pos,
|
|
697
|
+
sm_scale,
|
|
698
|
+
kv_group_num,
|
|
699
|
+
stride_qbs,
|
|
700
|
+
stride_qh,
|
|
701
|
+
stride_obs,
|
|
702
|
+
stride_oh,
|
|
703
|
+
stride_buf_kbs,
|
|
704
|
+
stride_buf_kh,
|
|
705
|
+
stride_buf_vbs,
|
|
706
|
+
stride_buf_vh,
|
|
707
|
+
SLIDING_WINDOW_SIZE: tl.constexpr,
|
|
708
|
+
logit_cap: tl.constexpr,
|
|
709
|
+
xai_temperature_len: tl.constexpr,
|
|
710
|
+
Lq: tl.constexpr,
|
|
711
|
+
Lv: tl.constexpr,
|
|
712
|
+
BLOCK_DMODEL: tl.constexpr,
|
|
713
|
+
BLOCK_DPE: tl.constexpr,
|
|
714
|
+
BLOCK_DV: tl.constexpr,
|
|
715
|
+
BLOCK_M: tl.constexpr,
|
|
716
|
+
BLOCK_N: tl.constexpr,
|
|
717
|
+
IS_CAUSAL: tl.constexpr,
|
|
718
|
+
USE_CUSTOM_MASK: tl.constexpr,
|
|
719
|
+
HAS_SINK: tl.constexpr,
|
|
720
|
+
):
|
|
721
|
+
"""
|
|
722
|
+
Unified 1-stage kernel for deterministic extend attention.
|
|
723
|
+
Both prefix and extend KV are accessed through the unified kv_indices.
|
|
724
|
+
"""
|
|
725
|
+
cur_seq = tl.program_id(0)
|
|
726
|
+
cur_head = tl.program_id(1)
|
|
727
|
+
cur_block_m = tl.program_id(2)
|
|
728
|
+
cur_kv_head = cur_head // kv_group_num
|
|
729
|
+
|
|
730
|
+
# Load sequence information
|
|
731
|
+
cur_seq_q_start_idx = tl.load(qo_indptr + cur_seq)
|
|
732
|
+
cur_seq_q_len = tl.load(qo_indptr + cur_seq + 1) - cur_seq_q_start_idx
|
|
733
|
+
cur_seq_kv_start_idx = tl.load(kv_indptr + cur_seq)
|
|
734
|
+
cur_seq_kv_len = tl.load(kv_indptr + cur_seq + 1) - cur_seq_kv_start_idx
|
|
735
|
+
cur_seq_prefix_len = tl.load(prefix_lens + cur_seq)
|
|
736
|
+
|
|
737
|
+
# Load window start position for sliding window attention
|
|
738
|
+
# This is the absolute position of the first key in the window (0 if no sliding window)
|
|
739
|
+
cur_window_start = 0
|
|
740
|
+
if SLIDING_WINDOW_SIZE > 0:
|
|
741
|
+
cur_window_start = tl.load(window_start_pos + cur_seq)
|
|
742
|
+
|
|
743
|
+
# Load custom mask start index if using custom mask (for speculative decoding)
|
|
744
|
+
if USE_CUSTOM_MASK:
|
|
745
|
+
cur_seq_mask_start_idx = tl.load(mask_indptr + cur_seq)
|
|
746
|
+
|
|
747
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
748
|
+
offs_dv = tl.arange(0, BLOCK_DV)
|
|
749
|
+
offs_m = tl.arange(0, BLOCK_M)
|
|
750
|
+
mask_m = (cur_block_m * BLOCK_M + offs_m) < cur_seq_q_len
|
|
751
|
+
mask_d = offs_d < Lq
|
|
752
|
+
mask_dv = offs_dv < Lv
|
|
753
|
+
|
|
754
|
+
# XAI temperature handling
|
|
755
|
+
if xai_temperature_len > 0:
|
|
756
|
+
offs_qidx = cur_seq_prefix_len + cur_block_m * BLOCK_M + offs_m
|
|
757
|
+
xai_temperature_reg = tl.where(
|
|
758
|
+
offs_qidx < xai_temperature_len,
|
|
759
|
+
1.0,
|
|
760
|
+
xai_temperature_len / (offs_qidx + 1.0),
|
|
761
|
+
)
|
|
762
|
+
|
|
763
|
+
# Load Q
|
|
764
|
+
offs_q = (
|
|
765
|
+
(cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs
|
|
766
|
+
+ cur_head * stride_qh
|
|
767
|
+
+ offs_d[None, :]
|
|
768
|
+
)
|
|
769
|
+
q = tl.load(Q + offs_q, mask=(mask_m[:, None]) & (mask_d[None, :]), other=0.0)
|
|
770
|
+
|
|
771
|
+
if BLOCK_DPE > 0:
|
|
772
|
+
offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE)
|
|
773
|
+
offs_qpe = (
|
|
774
|
+
(cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_qbs
|
|
775
|
+
+ cur_head * stride_qh
|
|
776
|
+
+ offs_dpe[None, :]
|
|
777
|
+
)
|
|
778
|
+
qpe = tl.load(Q + offs_qpe, mask=mask_m[:, None], other=0.0)
|
|
779
|
+
|
|
780
|
+
# Initialize accumulators
|
|
781
|
+
offs_n = tl.arange(0, BLOCK_N)
|
|
782
|
+
acc = tl.zeros([BLOCK_M, BLOCK_DV], dtype=tl.float32)
|
|
783
|
+
deno = tl.zeros([BLOCK_M], dtype=tl.float32)
|
|
784
|
+
e_max = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
785
|
+
|
|
786
|
+
# Unified loop: process all KV tokens (prefix + extend)
|
|
787
|
+
for start_n in range(0, cur_seq_kv_len, BLOCK_N):
|
|
788
|
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
789
|
+
mask_n = (start_n + offs_n) < cur_seq_kv_len
|
|
790
|
+
|
|
791
|
+
# Compute mask
|
|
792
|
+
final_mask = mask_m[:, None] & mask_n[None, :]
|
|
793
|
+
|
|
794
|
+
# Apply custom mask if provided
|
|
795
|
+
if USE_CUSTOM_MASK:
|
|
796
|
+
custom_mask = tl.load(
|
|
797
|
+
mask_ptr
|
|
798
|
+
+ cur_seq_mask_start_idx
|
|
799
|
+
+ (cur_block_m * BLOCK_M + offs_m[:, None]) * cur_seq_kv_len
|
|
800
|
+
+ start_n
|
|
801
|
+
+ offs_n[None, :],
|
|
802
|
+
mask=(mask_m[:, None] & mask_n[None, :]),
|
|
803
|
+
other=0,
|
|
804
|
+
)
|
|
805
|
+
final_mask &= custom_mask
|
|
806
|
+
|
|
807
|
+
# Apply causal mask for extend part
|
|
808
|
+
if IS_CAUSAL and not USE_CUSTOM_MASK:
|
|
809
|
+
# Determine if current KV block is in extend region
|
|
810
|
+
# Only apply causal mask when both Q and K are in extend region
|
|
811
|
+
q_idx = cur_block_m * BLOCK_M + offs_m[:, None]
|
|
812
|
+
k_idx_in_total = start_n + offs_n[None, :]
|
|
813
|
+
|
|
814
|
+
# Causal mask: q_idx >= (k_idx - prefix_len) when k_idx >= prefix_len
|
|
815
|
+
# For prefix region (k_idx < prefix_len), no causal mask
|
|
816
|
+
k_is_extend = k_idx_in_total >= cur_seq_prefix_len
|
|
817
|
+
k_idx_in_extend = k_idx_in_total - cur_seq_prefix_len
|
|
818
|
+
causal_mask = tl.where(
|
|
819
|
+
k_is_extend,
|
|
820
|
+
q_idx >= k_idx_in_extend,
|
|
821
|
+
True, # No causal mask for prefix
|
|
822
|
+
)
|
|
823
|
+
final_mask &= causal_mask
|
|
824
|
+
|
|
825
|
+
if SLIDING_WINDOW_SIZE > 0:
|
|
826
|
+
# Sliding window mask with correct absolute positions
|
|
827
|
+
# Q absolute position: window_start + prefix_len + q_position_in_extend
|
|
828
|
+
q_abs_pos = (
|
|
829
|
+
cur_window_start
|
|
830
|
+
+ cur_seq_prefix_len
|
|
831
|
+
+ cur_block_m * BLOCK_M
|
|
832
|
+
+ offs_m[:, None]
|
|
833
|
+
)
|
|
834
|
+
|
|
835
|
+
# K absolute position: window_start + k_index_in_unified_array
|
|
836
|
+
k_abs_pos = cur_window_start + start_n + offs_n[None, :]
|
|
837
|
+
|
|
838
|
+
# Sliding window: query can attend to keys within window_size
|
|
839
|
+
window_mask = q_abs_pos <= (k_abs_pos + SLIDING_WINDOW_SIZE)
|
|
840
|
+
final_mask &= window_mask
|
|
841
|
+
|
|
842
|
+
# Check if we can skip this tile
|
|
843
|
+
SKIP_TILE = False
|
|
844
|
+
if USE_CUSTOM_MASK or SLIDING_WINDOW_SIZE > 0:
|
|
845
|
+
SKIP_TILE = tl.max(tl.max(final_mask.to(tl.int32), axis=1), axis=0) == 0
|
|
846
|
+
|
|
847
|
+
if not SKIP_TILE:
|
|
848
|
+
# Load KV indices
|
|
849
|
+
offs_kv_loc = tl.load(
|
|
850
|
+
kv_indices + cur_seq_kv_start_idx + start_n + offs_n,
|
|
851
|
+
mask=mask_n,
|
|
852
|
+
other=0,
|
|
853
|
+
)
|
|
854
|
+
|
|
855
|
+
# Load K
|
|
856
|
+
offs_buf_k = (
|
|
857
|
+
offs_kv_loc[None, :] * stride_buf_kbs
|
|
858
|
+
+ cur_kv_head * stride_buf_kh
|
|
859
|
+
+ offs_d[:, None]
|
|
860
|
+
)
|
|
861
|
+
k = tl.load(
|
|
862
|
+
K_Buffer + offs_buf_k,
|
|
863
|
+
mask=(mask_n[None, :]) & (mask_d[:, None]),
|
|
864
|
+
other=0.0,
|
|
865
|
+
)
|
|
866
|
+
|
|
867
|
+
# Compute QK
|
|
868
|
+
qk = tl.dot(q.to(k.dtype), k)
|
|
869
|
+
if BLOCK_DPE > 0:
|
|
870
|
+
offs_kpe = (
|
|
871
|
+
offs_kv_loc[None, :] * stride_buf_kbs
|
|
872
|
+
+ cur_kv_head * stride_buf_kh
|
|
873
|
+
+ offs_dpe[:, None]
|
|
874
|
+
)
|
|
875
|
+
kpe = tl.load(
|
|
876
|
+
K_Buffer + offs_kpe,
|
|
877
|
+
mask=mask_n[None, :],
|
|
878
|
+
other=0.0,
|
|
879
|
+
)
|
|
880
|
+
qk += tl.dot(qpe.to(kpe.dtype), kpe)
|
|
881
|
+
|
|
882
|
+
qk *= sm_scale
|
|
883
|
+
|
|
884
|
+
if logit_cap > 0:
|
|
885
|
+
qk = logit_cap * tanh(qk / logit_cap)
|
|
886
|
+
|
|
887
|
+
if xai_temperature_len > 0:
|
|
888
|
+
qk *= xai_temperature_reg[:, None]
|
|
889
|
+
|
|
890
|
+
qk = tl.where(final_mask, qk, float("-inf"))
|
|
891
|
+
|
|
892
|
+
# Online softmax
|
|
893
|
+
row_max = tl.max(qk, 1)
|
|
894
|
+
row_max_fixed = tl.where(row_max == float("-inf"), -1e20, row_max)
|
|
895
|
+
n_e_max = tl.maximum(row_max_fixed, e_max)
|
|
896
|
+
|
|
897
|
+
re_scale = tl.exp(e_max - n_e_max)
|
|
898
|
+
p = tl.exp(qk - n_e_max[:, None])
|
|
899
|
+
deno = deno * re_scale + tl.sum(p, 1)
|
|
900
|
+
|
|
901
|
+
# Load V
|
|
902
|
+
offs_buf_v = (
|
|
903
|
+
offs_kv_loc[:, None] * stride_buf_vbs
|
|
904
|
+
+ cur_kv_head * stride_buf_vh
|
|
905
|
+
+ offs_dv[None, :]
|
|
906
|
+
)
|
|
907
|
+
v = tl.load(
|
|
908
|
+
V_Buffer + offs_buf_v,
|
|
909
|
+
mask=mask_n[:, None] & mask_dv[None, :],
|
|
910
|
+
other=0.0,
|
|
911
|
+
)
|
|
912
|
+
p = p.to(v.dtype)
|
|
913
|
+
acc = acc * re_scale[:, None] + tl.dot(p, v)
|
|
914
|
+
|
|
915
|
+
e_max = n_e_max
|
|
916
|
+
|
|
917
|
+
# Handle sink tokens
|
|
918
|
+
if HAS_SINK:
|
|
919
|
+
cur_sink = tl.load(sink_ptr + cur_head)
|
|
920
|
+
deno += tl.exp(cur_sink - e_max)
|
|
921
|
+
|
|
922
|
+
# Store output
|
|
923
|
+
offs_o = (
|
|
924
|
+
(cur_seq_q_start_idx + cur_block_m * BLOCK_M + offs_m[:, None]) * stride_obs
|
|
925
|
+
+ cur_head * stride_oh
|
|
926
|
+
+ offs_dv[None, :]
|
|
927
|
+
)
|
|
928
|
+
tl.store(
|
|
929
|
+
O + offs_o,
|
|
930
|
+
acc / deno[:, None],
|
|
931
|
+
mask=mask_m[:, None] & mask_dv[None, :],
|
|
932
|
+
)
|
|
933
|
+
|
|
934
|
+
|
|
935
|
+
def extend_attention_fwd_unified(
|
|
936
|
+
q,
|
|
937
|
+
o,
|
|
938
|
+
k_buffer,
|
|
939
|
+
v_buffer,
|
|
940
|
+
qo_indptr,
|
|
941
|
+
kv_indptr,
|
|
942
|
+
kv_indices,
|
|
943
|
+
prefix_lens,
|
|
944
|
+
max_len_extend,
|
|
945
|
+
custom_mask=None,
|
|
946
|
+
mask_indptr=None,
|
|
947
|
+
sm_scale=None,
|
|
948
|
+
logit_cap=0.0,
|
|
949
|
+
is_causal=True,
|
|
950
|
+
sliding_window_size=-1,
|
|
951
|
+
sinks=None,
|
|
952
|
+
window_start_pos=None,
|
|
953
|
+
xai_temperature_len=-1,
|
|
954
|
+
):
|
|
955
|
+
"""
|
|
956
|
+
Unified 1-stage extend attention for deterministic inference.
|
|
957
|
+
|
|
958
|
+
Args:
|
|
959
|
+
q: Query tensor [num_tokens, num_heads, head_dim]
|
|
960
|
+
o: Output tensor [num_tokens, num_heads, head_dim]
|
|
961
|
+
k_buffer: Key cache buffer
|
|
962
|
+
v_buffer: Value cache buffer
|
|
963
|
+
qo_indptr: Query offsets [batch_size + 1]
|
|
964
|
+
kv_indptr: KV offsets [batch_size + 1] (includes both prefix and extend)
|
|
965
|
+
kv_indices: Unified KV indices (both prefix and extend)
|
|
966
|
+
prefix_lens: Prefix length for each sequence [batch_size]
|
|
967
|
+
max_len_extend: Maximum extend length
|
|
968
|
+
custom_mask: Custom attention mask (for speculative decoding tree attention)
|
|
969
|
+
mask_indptr: Mask offsets [batch_size + 1]
|
|
970
|
+
sm_scale: Softmax scale
|
|
971
|
+
logit_cap: Logit capping value
|
|
972
|
+
is_causal: Whether to apply causal mask
|
|
973
|
+
sliding_window_size: Sliding window size (-1 for no sliding window)
|
|
974
|
+
sinks: Sink tokens
|
|
975
|
+
window_start_pos: Absolute position of first key in sliding window [batch_size]
|
|
976
|
+
(None if sliding window not used)
|
|
977
|
+
xai_temperature_len: XAI temperature length
|
|
978
|
+
"""
|
|
979
|
+
Lq, Lv = q.shape[-1], v_buffer.shape[-1]
|
|
980
|
+
|
|
981
|
+
# Get block sizes and configuration
|
|
982
|
+
BLOCK_DMODEL, BLOCK_DPE, BLOCK_DV, BLOCK_M, BLOCK_N, num_warps = (
|
|
983
|
+
_get_block_sizes_for_extend_attention(Lq, Lv)
|
|
984
|
+
)
|
|
985
|
+
|
|
986
|
+
sm_scale = sm_scale or 1.0 / (Lq**0.5)
|
|
987
|
+
batch_size, head_num = qo_indptr.shape[0] - 1, q.shape[1]
|
|
988
|
+
kv_group_num = q.shape[1] // k_buffer.shape[1]
|
|
989
|
+
|
|
990
|
+
USE_CUSTOM_MASK = custom_mask is not None
|
|
991
|
+
HAS_SINK = sinks is not None
|
|
992
|
+
|
|
993
|
+
# For sliding window attention, window_start_pos tracks the absolute position
|
|
994
|
+
# of the first key in each sequence's window
|
|
995
|
+
if sliding_window_size > 0 and window_start_pos is None:
|
|
996
|
+
# If not provided, assume window starts at position 0
|
|
997
|
+
window_start_pos = torch.zeros(batch_size, dtype=torch.int32, device=q.device)
|
|
998
|
+
|
|
999
|
+
grid = (batch_size, head_num, triton.cdiv(max_len_extend, BLOCK_M))
|
|
1000
|
+
num_stages = 1
|
|
1001
|
+
|
|
1002
|
+
extra_kargs = {}
|
|
1003
|
+
if _is_hip:
|
|
1004
|
+
extra_kargs = {"waves_per_eu": 1, "matrix_instr_nonkdim": 16, "kpack": 2}
|
|
1005
|
+
|
|
1006
|
+
_fwd_kernel_unified[grid](
|
|
1007
|
+
q,
|
|
1008
|
+
o,
|
|
1009
|
+
k_buffer,
|
|
1010
|
+
v_buffer,
|
|
1011
|
+
qo_indptr,
|
|
1012
|
+
kv_indptr,
|
|
1013
|
+
kv_indices,
|
|
1014
|
+
prefix_lens,
|
|
1015
|
+
custom_mask,
|
|
1016
|
+
mask_indptr,
|
|
1017
|
+
sinks,
|
|
1018
|
+
window_start_pos,
|
|
1019
|
+
sm_scale,
|
|
1020
|
+
kv_group_num,
|
|
1021
|
+
q.stride(0),
|
|
1022
|
+
q.stride(1),
|
|
1023
|
+
o.stride(0),
|
|
1024
|
+
o.stride(1),
|
|
1025
|
+
k_buffer.stride(0),
|
|
1026
|
+
k_buffer.stride(1),
|
|
1027
|
+
v_buffer.stride(0),
|
|
1028
|
+
v_buffer.stride(1),
|
|
1029
|
+
SLIDING_WINDOW_SIZE=sliding_window_size,
|
|
1030
|
+
logit_cap=logit_cap,
|
|
1031
|
+
xai_temperature_len=xai_temperature_len,
|
|
1032
|
+
BLOCK_DMODEL=BLOCK_DMODEL,
|
|
1033
|
+
BLOCK_DPE=BLOCK_DPE,
|
|
1034
|
+
BLOCK_DV=BLOCK_DV,
|
|
1035
|
+
BLOCK_M=BLOCK_M,
|
|
1036
|
+
BLOCK_N=BLOCK_N,
|
|
1037
|
+
Lq=Lq,
|
|
1038
|
+
Lv=Lv,
|
|
1039
|
+
IS_CAUSAL=is_causal,
|
|
1040
|
+
USE_CUSTOM_MASK=USE_CUSTOM_MASK,
|
|
1041
|
+
HAS_SINK=HAS_SINK,
|
|
1042
|
+
num_warps=num_warps,
|
|
1043
|
+
num_stages=num_stages,
|
|
1044
|
+
**extra_kargs,
|
|
1045
|
+
)
|
|
@@ -20,12 +20,10 @@ from sglang.srt.utils import is_flashinfer_available
|
|
|
20
20
|
if is_flashinfer_available():
|
|
21
21
|
import flashinfer
|
|
22
22
|
|
|
23
|
-
from sglang.srt.speculative.eagle_utils import EagleDraftInput
|
|
24
|
-
|
|
25
23
|
if TYPE_CHECKING:
|
|
26
24
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
27
25
|
from sglang.srt.model_executor.model_runner import ModelRunner
|
|
28
|
-
from sglang.srt.speculative.spec_info import
|
|
26
|
+
from sglang.srt.speculative.spec_info import SpecInput
|
|
29
27
|
|
|
30
28
|
# Constants
|
|
31
29
|
DEFAULT_WORKSPACE_SIZE_MB = (
|
|
@@ -201,7 +199,7 @@ class TRTLLMHAAttnBackend(FlashInferAttnBackend):
|
|
|
201
199
|
seq_lens: torch.Tensor,
|
|
202
200
|
encoder_lens: Optional[torch.Tensor],
|
|
203
201
|
forward_mode: ForwardMode,
|
|
204
|
-
spec_info: Optional[
|
|
202
|
+
spec_info: Optional[SpecInput],
|
|
205
203
|
):
|
|
206
204
|
"""Initialize metadata for CUDA graph capture."""
|
|
207
205
|
metadata = TRTLLMMHAMetadata()
|
|
@@ -314,7 +312,7 @@ class TRTLLMHAAttnBackend(FlashInferAttnBackend):
|
|
|
314
312
|
seq_lens_sum: int,
|
|
315
313
|
encoder_lens: Optional[torch.Tensor],
|
|
316
314
|
forward_mode: ForwardMode,
|
|
317
|
-
spec_info: Optional[
|
|
315
|
+
spec_info: Optional[SpecInput],
|
|
318
316
|
seq_lens_cpu: Optional[torch.Tensor],
|
|
319
317
|
):
|
|
320
318
|
"""Replay CUDA graph with new inputs."""
|
|
@@ -639,7 +637,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend):
|
|
|
639
637
|
self, model_runner: ModelRunner, topk: int, speculative_num_steps: int
|
|
640
638
|
):
|
|
641
639
|
super().__init__(model_runner, topk, speculative_num_steps)
|
|
642
|
-
for i in range(speculative_num_steps):
|
|
640
|
+
for i in range(self.speculative_num_steps - 1):
|
|
643
641
|
self.attn_backends[i] = TRTLLMHAAttnBackend(
|
|
644
642
|
model_runner,
|
|
645
643
|
skip_prefill=True,
|
|
@@ -653,7 +651,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend):
|
|
|
653
651
|
self.attn_backends[i].init_forward_metadata(forward_batch)
|
|
654
652
|
|
|
655
653
|
def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
|
|
656
|
-
for i in range(self.speculative_num_steps):
|
|
654
|
+
for i in range(self.speculative_num_steps - 1):
|
|
657
655
|
self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
|
|
658
656
|
|
|
659
657
|
def init_forward_metadata_capture_cuda_graph(
|
|
@@ -661,7 +659,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend):
|
|
|
661
659
|
forward_batch: ForwardBatch,
|
|
662
660
|
):
|
|
663
661
|
assert forward_batch.spec_info is not None
|
|
664
|
-
assert
|
|
662
|
+
assert forward_batch.spec_info.is_draft_input()
|
|
665
663
|
|
|
666
664
|
for i in range(self.speculative_num_steps - 1):
|
|
667
665
|
self.attn_backends[i].init_forward_metadata_capture_cuda_graph(
|
|
@@ -678,7 +676,7 @@ class TRTLLMHAAttnMultiStepDraftBackend(FlashInferMultiStepDraftBackend):
|
|
|
678
676
|
self, forward_batch: ForwardBatch, bs: int
|
|
679
677
|
):
|
|
680
678
|
assert forward_batch.spec_info is not None
|
|
681
|
-
assert
|
|
679
|
+
assert forward_batch.spec_info.is_draft_input()
|
|
682
680
|
|
|
683
681
|
for i in range(self.speculative_num_steps - 1):
|
|
684
682
|
|