sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,12 +1,9 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import logging
         
     | 
| 
       2 
     | 
    
         
            -
            from typing import List, Optional
         
     | 
| 
       3 
2 
     | 
    
         | 
| 
       4 
3 
     | 
    
         
             
            import torch
         
     | 
| 
       5 
4 
     | 
    
         
             
            import triton
         
     | 
| 
       6 
5 
     | 
    
         | 
| 
       7 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
       8 
     | 
    
         
            -
            from sglang.srt.utils import ceil_div, dispose_tensor, is_cuda
         
     | 
| 
       9 
     | 
    
         
            -
            from sglang.utils import is_in_ci
         
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.utils import ceil_div, is_cuda
         
     | 
| 
       10 
7 
     | 
    
         | 
| 
       11 
8 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       12 
9 
     | 
    
         | 
| 
         @@ -130,28 +127,30 @@ def deepep_run_moe_deep_preprocess(topk_ids: torch.Tensor, num_experts: int): 
     | 
|
| 
       130 
127 
     | 
    
         | 
| 
       131 
128 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       132 
129 
     | 
    
         
             
            def compute_seg_indptr_triton_kernel(reorder_topk_ids, seg_indptr, num_toks):
         
     | 
| 
       133 
     | 
    
         
            -
                 
     | 
| 
      
 130 
     | 
    
         
            +
                expert_id_minus_1 = tl.program_id(0) - 1
         
     | 
| 
       134 
131 
     | 
    
         
             
                low = 0
         
     | 
| 
       135 
132 
     | 
    
         
             
                high = num_toks - 1
         
     | 
| 
       136 
133 
     | 
    
         
             
                target_location = -1
         
     | 
| 
       137 
134 
     | 
    
         
             
                while low <= high:
         
     | 
| 
       138 
135 
     | 
    
         
             
                    mid = (low + high) // 2
         
     | 
| 
       139 
136 
     | 
    
         | 
| 
       140 
     | 
    
         
            -
                    if tl.load(reorder_topk_ids + mid) >  
     | 
| 
      
 137 
     | 
    
         
            +
                    if tl.load(reorder_topk_ids + mid) > expert_id_minus_1:
         
     | 
| 
       141 
138 
     | 
    
         
             
                        high = mid - 1
         
     | 
| 
       142 
139 
     | 
    
         
             
                    else:
         
     | 
| 
       143 
140 
     | 
    
         
             
                        low = mid + 1
         
     | 
| 
       144 
141 
     | 
    
         
             
                        target_location = mid
         
     | 
| 
       145 
     | 
    
         
            -
                tl.store(seg_indptr +  
     | 
| 
      
 142 
     | 
    
         
            +
                tl.store(seg_indptr + expert_id_minus_1 + 1, target_location + 1)
         
     | 
| 
       146 
143 
     | 
    
         | 
| 
       147 
144 
     | 
    
         | 
| 
       148 
     | 
    
         
            -
            def run_moe_ep_preproess(topk_ids: torch.Tensor,  
     | 
| 
      
 145 
     | 
    
         
            +
            def run_moe_ep_preproess(topk_ids: torch.Tensor, num_local_experts: int):
         
     | 
| 
       149 
146 
     | 
    
         
             
                reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
         
     | 
| 
       150 
147 
     | 
    
         | 
| 
       151 
     | 
    
         
            -
                seg_indptr = torch.zeros( 
     | 
| 
      
 148 
     | 
    
         
            +
                seg_indptr = torch.zeros(
         
     | 
| 
      
 149 
     | 
    
         
            +
                    num_local_experts + 1, device=topk_ids.device, dtype=torch.int64
         
     | 
| 
      
 150 
     | 
    
         
            +
                )
         
     | 
| 
       152 
151 
     | 
    
         
             
                src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int32)
         
     | 
| 
       153 
152 
     | 
    
         | 
| 
       154 
     | 
    
         
            -
                compute_seg_indptr_triton_kernel[( 
     | 
| 
      
 153 
     | 
    
         
            +
                compute_seg_indptr_triton_kernel[(num_local_experts,)](
         
     | 
| 
       155 
154 
     | 
    
         
             
                    reorder_topk_ids, seg_indptr, topk_ids.numel()
         
     | 
| 
       156 
155 
     | 
    
         
             
                )
         
     | 
| 
       157 
156 
     | 
    
         | 
| 
         @@ -164,25 +163,6 @@ def run_moe_ep_preproess(topk_ids: torch.Tensor, num_experts: int): 
     | 
|
| 
       164 
163 
     | 
    
         
             
                return reorder_topk_ids, src2dst, seg_indptr
         
     | 
| 
       165 
164 
     | 
    
         | 
| 
       166 
165 
     | 
    
         | 
| 
       167 
     | 
    
         
            -
            def run_cutlass_moe_ep_preproess(local_topk_ids: torch.Tensor, local_num_experts: int):
         
     | 
| 
       168 
     | 
    
         
            -
                reorder_topk_ids, reorder_ids = torch.sort(local_topk_ids.view(-1), stable=True)
         
     | 
| 
       169 
     | 
    
         
            -
             
     | 
| 
       170 
     | 
    
         
            -
                seg_indptr = torch.zeros(
         
     | 
| 
       171 
     | 
    
         
            -
                    local_num_experts + 1, device=local_topk_ids.device, dtype=torch.int64
         
     | 
| 
       172 
     | 
    
         
            -
                )
         
     | 
| 
       173 
     | 
    
         
            -
                src2dst = torch.empty(
         
     | 
| 
       174 
     | 
    
         
            -
                    local_topk_ids.numel(), device=local_topk_ids.device, dtype=torch.int32
         
     | 
| 
       175 
     | 
    
         
            -
                )
         
     | 
| 
       176 
     | 
    
         
            -
             
     | 
| 
       177 
     | 
    
         
            -
                BLOCK_SIZE = 512
         
     | 
| 
       178 
     | 
    
         
            -
                grid = (triton.cdiv(local_topk_ids.numel(), BLOCK_SIZE),)
         
     | 
| 
       179 
     | 
    
         
            -
                compute_src2dst_triton_kernel[grid](
         
     | 
| 
       180 
     | 
    
         
            -
                    reorder_ids, src2dst, local_topk_ids.numel(), BLOCK_SIZE
         
     | 
| 
       181 
     | 
    
         
            -
                )
         
     | 
| 
       182 
     | 
    
         
            -
             
     | 
| 
       183 
     | 
    
         
            -
                return reorder_topk_ids, src2dst, seg_indptr
         
     | 
| 
       184 
     | 
    
         
            -
             
     | 
| 
       185 
     | 
    
         
            -
             
     | 
| 
       186 
166 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       187 
167 
     | 
    
         
             
            def pre_reorder_triton_kernel_for_cutlass_moe(
         
     | 
| 
       188 
168 
     | 
    
         
             
                input_ptr,
         
     | 
| 
         @@ -190,52 +170,13 @@ def pre_reorder_triton_kernel_for_cutlass_moe( 
     | 
|
| 
       190 
170 
     | 
    
         
             
                src2dst_ptr,
         
     | 
| 
       191 
171 
     | 
    
         
             
                topk_ids_ptr,
         
     | 
| 
       192 
172 
     | 
    
         
             
                a1_scales_ptr,
         
     | 
| 
       193 
     | 
    
         
            -
                 
     | 
| 
      
 173 
     | 
    
         
            +
                num_local_experts,
         
     | 
| 
       194 
174 
     | 
    
         
             
                topk,
         
     | 
| 
       195 
175 
     | 
    
         
             
                hidden_size,
         
     | 
| 
       196 
176 
     | 
    
         
             
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       197 
177 
     | 
    
         
             
            ):
         
     | 
| 
       198 
178 
     | 
    
         
             
                OutDtype = gateup_input_ptr.dtype.element_ty
         
     | 
| 
       199 
179 
     | 
    
         | 
| 
       200 
     | 
    
         
            -
                src_idx = tl.program_id(0)
         
     | 
| 
       201 
     | 
    
         
            -
                src2dst_ptr = src2dst_ptr + src_idx * topk
         
     | 
| 
       202 
     | 
    
         
            -
                topk_ids_ptr = topk_ids_ptr + src_idx * topk
         
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
       204 
     | 
    
         
            -
                src_ptr = input_ptr + src_idx * hidden_size
         
     | 
| 
       205 
     | 
    
         
            -
                for idx in range(topk):
         
     | 
| 
       206 
     | 
    
         
            -
                    expert_id = tl.load(topk_ids_ptr + idx)
         
     | 
| 
       207 
     | 
    
         
            -
                    if expert_id != num_experts:
         
     | 
| 
       208 
     | 
    
         
            -
                        if a1_scales_ptr is not None:
         
     | 
| 
       209 
     | 
    
         
            -
                            scale = 1.0 / tl.load(a1_scales_ptr)
         
     | 
| 
       210 
     | 
    
         
            -
                        else:
         
     | 
| 
       211 
     | 
    
         
            -
                            scale = 1.0
         
     | 
| 
       212 
     | 
    
         
            -
             
     | 
| 
       213 
     | 
    
         
            -
                        dst_idx = tl.load(src2dst_ptr + idx)
         
     | 
| 
       214 
     | 
    
         
            -
                        dst_ptr = gateup_input_ptr + dst_idx * hidden_size
         
     | 
| 
       215 
     | 
    
         
            -
                        for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
         
     | 
| 
       216 
     | 
    
         
            -
                            offset = start_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
       217 
     | 
    
         
            -
                            mask = offset < hidden_size
         
     | 
| 
       218 
     | 
    
         
            -
                            in_data = tl.load(src_ptr + offset, mask=mask).to(tl.float32)
         
     | 
| 
       219 
     | 
    
         
            -
                            out_data = (in_data * scale).to(OutDtype)
         
     | 
| 
       220 
     | 
    
         
            -
                            tl.store(dst_ptr + offset, out_data, mask=mask)
         
     | 
| 
       221 
     | 
    
         
            -
             
     | 
| 
       222 
     | 
    
         
            -
             
     | 
| 
       223 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       224 
     | 
    
         
            -
            def pre_reorder_triton_kernel(
         
     | 
| 
       225 
     | 
    
         
            -
                input_ptr,
         
     | 
| 
       226 
     | 
    
         
            -
                gateup_input_ptr,
         
     | 
| 
       227 
     | 
    
         
            -
                src2dst_ptr,
         
     | 
| 
       228 
     | 
    
         
            -
                topk_ids_ptr,
         
     | 
| 
       229 
     | 
    
         
            -
                a1_scales_ptr,
         
     | 
| 
       230 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       231 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       232 
     | 
    
         
            -
                topk,
         
     | 
| 
       233 
     | 
    
         
            -
                hidden_size,
         
     | 
| 
       234 
     | 
    
         
            -
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       235 
     | 
    
         
            -
                use_per_token_if_dynamic: tl.constexpr,
         
     | 
| 
       236 
     | 
    
         
            -
            ):
         
     | 
| 
       237 
     | 
    
         
            -
                OutDtype = gateup_input_ptr.dtype.element_ty
         
     | 
| 
       238 
     | 
    
         
            -
             
     | 
| 
       239 
180 
     | 
    
         
             
                src_idx_int32 = tl.program_id(0)
         
     | 
| 
       240 
181 
     | 
    
         
             
                src_idx = src_idx_int32.to(tl.int64)
         
     | 
| 
       241 
182 
     | 
    
         
             
                src2dst_ptr = src2dst_ptr + src_idx * topk
         
     | 
| 
         @@ -244,15 +185,11 @@ def pre_reorder_triton_kernel( 
     | 
|
| 
       244 
185 
     | 
    
         | 
| 
       245 
186 
     | 
    
         
             
                vec = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
       246 
187 
     | 
    
         | 
| 
       247 
     | 
    
         
            -
                if a1_scales_ptr is not None and use_per_token_if_dynamic:
         
     | 
| 
       248 
     | 
    
         
            -
                    scale = 1.0 / tl.load(a1_scales_ptr + src_idx)
         
     | 
| 
       249 
     | 
    
         
            -
             
     | 
| 
       250 
188 
     | 
    
         
             
                for idx in range(topk):
         
     | 
| 
       251 
189 
     | 
    
         
             
                    expert_id = tl.load(topk_ids_ptr + idx)
         
     | 
| 
       252 
     | 
    
         
            -
                    if expert_id  
     | 
| 
      
 190 
     | 
    
         
            +
                    if expert_id != num_local_experts:
         
     | 
| 
       253 
191 
     | 
    
         
             
                        if a1_scales_ptr is not None:
         
     | 
| 
       254 
     | 
    
         
            -
                             
     | 
| 
       255 
     | 
    
         
            -
                                scale = 1.0 / tl.load(a1_scales_ptr + expert_id - start_expert_id)
         
     | 
| 
      
 192 
     | 
    
         
            +
                            scale = 1.0 / tl.load(a1_scales_ptr)
         
     | 
| 
       256 
193 
     | 
    
         
             
                        else:
         
     | 
| 
       257 
194 
     | 
    
         
             
                            scale = 1.0
         
     | 
| 
       258 
195 
     | 
    
         | 
| 
         @@ -267,52 +204,6 @@ def pre_reorder_triton_kernel( 
     | 
|
| 
       267 
204 
     | 
    
         
             
                            tl.store(dst_ptr + offset, out_data, mask=mask)
         
     | 
| 
       268 
205 
     | 
    
         | 
| 
       269 
206 
     | 
    
         | 
| 
       270 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       271 
     | 
    
         
            -
            def silu_and_mul_triton_kernel(
         
     | 
| 
       272 
     | 
    
         
            -
                gateup_output,
         
     | 
| 
       273 
     | 
    
         
            -
                down_input,
         
     | 
| 
       274 
     | 
    
         
            -
                hidden_size,
         
     | 
| 
       275 
     | 
    
         
            -
                reorder_topk_ids,
         
     | 
| 
       276 
     | 
    
         
            -
                scales,
         
     | 
| 
       277 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       278 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       279 
     | 
    
         
            -
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       280 
     | 
    
         
            -
            ):
         
     | 
| 
       281 
     | 
    
         
            -
                InDtype = gateup_output.dtype.element_ty
         
     | 
| 
       282 
     | 
    
         
            -
                OutDtype = down_input.dtype.element_ty
         
     | 
| 
       283 
     | 
    
         
            -
             
     | 
| 
       284 
     | 
    
         
            -
                half_hidden_size = hidden_size // 2
         
     | 
| 
       285 
     | 
    
         
            -
             
     | 
| 
       286 
     | 
    
         
            -
                pid = tl.program_id(0)
         
     | 
| 
       287 
     | 
    
         
            -
                expert_id = tl.load(reorder_topk_ids + pid)
         
     | 
| 
       288 
     | 
    
         
            -
                if expert_id >= start_expert_id and expert_id <= end_expert_id:
         
     | 
| 
       289 
     | 
    
         
            -
                    gateup_output_ptr = gateup_output + pid * hidden_size
         
     | 
| 
       290 
     | 
    
         
            -
                    gate_output_ptr = gateup_output_ptr
         
     | 
| 
       291 
     | 
    
         
            -
                    up_output_ptr = gateup_output_ptr + half_hidden_size
         
     | 
| 
       292 
     | 
    
         
            -
                    down_input_ptr = down_input + pid * half_hidden_size
         
     | 
| 
       293 
     | 
    
         
            -
             
     | 
| 
       294 
     | 
    
         
            -
                    if scales is not None:
         
     | 
| 
       295 
     | 
    
         
            -
                        scale = tl.load(scales + expert_id - start_expert_id)
         
     | 
| 
       296 
     | 
    
         
            -
                        scale = (1 / scale).to(InDtype)
         
     | 
| 
       297 
     | 
    
         
            -
                    else:
         
     | 
| 
       298 
     | 
    
         
            -
                        scale = 1
         
     | 
| 
       299 
     | 
    
         
            -
             
     | 
| 
       300 
     | 
    
         
            -
                    for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
         
     | 
| 
       301 
     | 
    
         
            -
                        offset = start_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
       302 
     | 
    
         
            -
                        mask = offset < half_hidden_size
         
     | 
| 
       303 
     | 
    
         
            -
             
     | 
| 
       304 
     | 
    
         
            -
                        gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
         
     | 
| 
       305 
     | 
    
         
            -
                        up_output = tl.load(up_output_ptr + offset, mask=mask)
         
     | 
| 
       306 
     | 
    
         
            -
             
     | 
| 
       307 
     | 
    
         
            -
                        # silu & mul & quantize
         
     | 
| 
       308 
     | 
    
         
            -
                        gate_output = gate_output * tl.sigmoid(gate_output)
         
     | 
| 
       309 
     | 
    
         
            -
                        gate_output = gate_output.to(InDtype)
         
     | 
| 
       310 
     | 
    
         
            -
             
     | 
| 
       311 
     | 
    
         
            -
                        silu_mul_output = gate_output * up_output * scale
         
     | 
| 
       312 
     | 
    
         
            -
                        silu_mul_output = silu_mul_output.to(OutDtype)
         
     | 
| 
       313 
     | 
    
         
            -
                        tl.store(down_input_ptr + offset, silu_mul_output, mask=mask)
         
     | 
| 
       314 
     | 
    
         
            -
             
     | 
| 
       315 
     | 
    
         
            -
             
     | 
| 
       316 
207 
     | 
    
         
             
            # copy from https://github.com/ModelTC/lightllm/blob/a000ab69098654df4731f5b12587dd4e7f0a4f41/lightllm/common/fused_moe/moe_silu_and_mul_mix_quant_ep.py
         
     | 
| 
       317 
208 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       318 
209 
     | 
    
         
             
            def _silu_and_mul_post_quant_kernel(
         
     | 
| 
         @@ -461,84 +352,15 @@ def silu_and_mul_masked_post_quant_fwd( 
     | 
|
| 
       461 
352 
     | 
    
         | 
| 
       462 
353 
     | 
    
         | 
| 
       463 
354 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       464 
     | 
    
         
            -
            def  
     | 
| 
       465 
     | 
    
         
            -
                return 2 * tl.sigmoid(2 * x) - 1
         
     | 
| 
       466 
     | 
    
         
            -
             
     | 
| 
       467 
     | 
    
         
            -
             
     | 
| 
       468 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       469 
     | 
    
         
            -
            def gelu_and_mul_triton_kernel(
         
     | 
| 
       470 
     | 
    
         
            -
                gateup_output,
         
     | 
| 
       471 
     | 
    
         
            -
                down_input,
         
     | 
| 
       472 
     | 
    
         
            -
                hidden_size,
         
     | 
| 
       473 
     | 
    
         
            -
                reorder_topk_ids,
         
     | 
| 
       474 
     | 
    
         
            -
                scales,
         
     | 
| 
       475 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       476 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       477 
     | 
    
         
            -
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       478 
     | 
    
         
            -
            ):
         
     | 
| 
       479 
     | 
    
         
            -
                InDtype = gateup_output.dtype.element_ty
         
     | 
| 
       480 
     | 
    
         
            -
                OutDtype = down_input.dtype.element_ty
         
     | 
| 
       481 
     | 
    
         
            -
             
     | 
| 
       482 
     | 
    
         
            -
                half_hidden_size = hidden_size // 2
         
     | 
| 
       483 
     | 
    
         
            -
             
     | 
| 
       484 
     | 
    
         
            -
                pid = tl.program_id(0)
         
     | 
| 
       485 
     | 
    
         
            -
                expert_id = tl.load(reorder_topk_ids + pid)
         
     | 
| 
       486 
     | 
    
         
            -
                if expert_id >= start_expert_id and expert_id <= end_expert_id:
         
     | 
| 
       487 
     | 
    
         
            -
                    gateup_output_ptr = gateup_output + pid * hidden_size
         
     | 
| 
       488 
     | 
    
         
            -
                    gate_output_ptr = gateup_output_ptr
         
     | 
| 
       489 
     | 
    
         
            -
                    up_output_ptr = gateup_output_ptr + half_hidden_size
         
     | 
| 
       490 
     | 
    
         
            -
                    down_input_ptr = down_input + pid * half_hidden_size
         
     | 
| 
       491 
     | 
    
         
            -
             
     | 
| 
       492 
     | 
    
         
            -
                    if scales is not None:
         
     | 
| 
       493 
     | 
    
         
            -
                        scale = tl.load(scales + expert_id - start_expert_id)
         
     | 
| 
       494 
     | 
    
         
            -
                        scale = (1 / scale).to(InDtype)
         
     | 
| 
       495 
     | 
    
         
            -
                    else:
         
     | 
| 
       496 
     | 
    
         
            -
                        scale = 1
         
     | 
| 
       497 
     | 
    
         
            -
             
     | 
| 
       498 
     | 
    
         
            -
                    for start_offset in tl.range(0, half_hidden_size, BLOCK_SIZE):
         
     | 
| 
       499 
     | 
    
         
            -
                        offset = start_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
       500 
     | 
    
         
            -
                        mask = offset < half_hidden_size
         
     | 
| 
       501 
     | 
    
         
            -
             
     | 
| 
       502 
     | 
    
         
            -
                        gate_output = tl.load(gate_output_ptr + offset, mask=mask).to(tl.float32)
         
     | 
| 
       503 
     | 
    
         
            -
                        up_output = tl.load(up_output_ptr + offset, mask=mask)
         
     | 
| 
       504 
     | 
    
         
            -
             
     | 
| 
       505 
     | 
    
         
            -
                        # gelu & mul & quantize
         
     | 
| 
       506 
     | 
    
         
            -
                        # https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
         
     | 
| 
       507 
     | 
    
         
            -
                        # sqrt(2/pi)
         
     | 
| 
       508 
     | 
    
         
            -
                        kAlpha = 0.7978845608028654
         
     | 
| 
       509 
     | 
    
         
            -
                        gate_output = (
         
     | 
| 
       510 
     | 
    
         
            -
                            0.5
         
     | 
| 
       511 
     | 
    
         
            -
                            * gate_output
         
     | 
| 
       512 
     | 
    
         
            -
                            * (
         
     | 
| 
       513 
     | 
    
         
            -
                                1
         
     | 
| 
       514 
     | 
    
         
            -
                                + tanh(
         
     | 
| 
       515 
     | 
    
         
            -
                                    kAlpha
         
     | 
| 
       516 
     | 
    
         
            -
                                    * (
         
     | 
| 
       517 
     | 
    
         
            -
                                        gate_output
         
     | 
| 
       518 
     | 
    
         
            -
                                        + 0.044715 * gate_output * gate_output * gate_output
         
     | 
| 
       519 
     | 
    
         
            -
                                    )
         
     | 
| 
       520 
     | 
    
         
            -
                                )
         
     | 
| 
       521 
     | 
    
         
            -
                            )
         
     | 
| 
       522 
     | 
    
         
            -
                        )
         
     | 
| 
       523 
     | 
    
         
            -
                        gate_output = gate_output.to(InDtype)
         
     | 
| 
       524 
     | 
    
         
            -
             
     | 
| 
       525 
     | 
    
         
            -
                        gelu_mul_output = gate_output * up_output * scale
         
     | 
| 
       526 
     | 
    
         
            -
                        gelu_mul_output = gelu_mul_output.to(OutDtype)
         
     | 
| 
       527 
     | 
    
         
            -
                        tl.store(down_input_ptr + offset, gelu_mul_output, mask=mask)
         
     | 
| 
       528 
     | 
    
         
            -
             
     | 
| 
       529 
     | 
    
         
            -
             
     | 
| 
       530 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       531 
     | 
    
         
            -
            def post_reorder_triton_kernel(
         
     | 
| 
      
 355 
     | 
    
         
            +
            def post_reorder_triton_kernel_for_cutlass_moe(
         
     | 
| 
       532 
356 
     | 
    
         
             
                down_output_ptr,
         
     | 
| 
       533 
357 
     | 
    
         
             
                output_ptr,
         
     | 
| 
       534 
358 
     | 
    
         
             
                src2dst_ptr,
         
     | 
| 
       535 
359 
     | 
    
         
             
                topk_ids_ptr,
         
     | 
| 
       536 
360 
     | 
    
         
             
                topk_weights_ptr,
         
     | 
| 
       537 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       538 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       539 
361 
     | 
    
         
             
                topk,
         
     | 
| 
      
 362 
     | 
    
         
            +
                num_local_experts,
         
     | 
| 
       540 
363 
     | 
    
         
             
                hidden_size,
         
     | 
| 
       541 
     | 
    
         
            -
                dst_start,
         
     | 
| 
       542 
364 
     | 
    
         
             
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       543 
365 
     | 
    
         
             
            ):
         
     | 
| 
       544 
366 
     | 
    
         
             
                InDtype = down_output_ptr.dtype.element_ty
         
     | 
| 
         @@ -549,7 +371,6 @@ def post_reorder_triton_kernel( 
     | 
|
| 
       549 
371 
     | 
    
         
             
                topk_ids_ptr = topk_ids_ptr + src_idx * topk
         
     | 
| 
       550 
372 
     | 
    
         
             
                topk_weights_ptr = topk_weights_ptr + src_idx * topk
         
     | 
| 
       551 
373 
     | 
    
         | 
| 
       552 
     | 
    
         
            -
                computed = False
         
     | 
| 
       553 
374 
     | 
    
         
             
                store_ptr = output_ptr + src_idx * hidden_size
         
     | 
| 
       554 
375 
     | 
    
         | 
| 
       555 
376 
     | 
    
         
             
                vec = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
         @@ -561,37 +382,25 @@ def post_reorder_triton_kernel( 
     | 
|
| 
       561 
382 
     | 
    
         
             
                    sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
         
     | 
| 
       562 
383 
     | 
    
         
             
                    for idx in range(topk):
         
     | 
| 
       563 
384 
     | 
    
         
             
                        expert_id = tl.load(topk_ids_ptr + idx)
         
     | 
| 
       564 
     | 
    
         
            -
                        if expert_id  
     | 
| 
       565 
     | 
    
         
            -
                            computed = True
         
     | 
| 
      
 385 
     | 
    
         
            +
                        if expert_id != num_local_experts:
         
     | 
| 
       566 
386 
     | 
    
         
             
                            dst_idx_int32 = tl.load(src2dst_ptr + idx)
         
     | 
| 
       567 
387 
     | 
    
         
             
                            dst_idx = dst_idx_int32.to(tl.int64)
         
     | 
| 
       568 
     | 
    
         
            -
                            dst_idx = dst_idx - dst_start
         
     | 
| 
       569 
388 
     | 
    
         
             
                            weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
         
     | 
| 
       570 
389 
     | 
    
         
             
                            load_ptr = down_output_ptr + dst_idx * hidden_size
         
     | 
| 
       571 
390 
     | 
    
         
             
                            in_data = tl.load(load_ptr + offset, mask=mask)
         
     | 
| 
       572 
391 
     | 
    
         
             
                            sum_vec += in_data * weigh_scale
         
     | 
| 
       573 
392 
     | 
    
         
             
                    tl.store(store_ptr + offset, sum_vec, mask=mask)
         
     | 
| 
       574 
393 
     | 
    
         | 
| 
       575 
     | 
    
         
            -
                if computed == False:
         
     | 
| 
       576 
     | 
    
         
            -
                    for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
         
     | 
| 
       577 
     | 
    
         
            -
                        offset = start_offset + vec
         
     | 
| 
       578 
     | 
    
         
            -
                        mask = offset < hidden_size
         
     | 
| 
       579 
     | 
    
         
            -
                        tl.store(
         
     | 
| 
       580 
     | 
    
         
            -
                            store_ptr + offset, tl.zeros([BLOCK_SIZE], dtype=InDtype), mask=mask
         
     | 
| 
       581 
     | 
    
         
            -
                        )
         
     | 
| 
       582 
     | 
    
         
            -
             
     | 
| 
       583 
394 
     | 
    
         | 
| 
       584 
395 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       585 
     | 
    
         
            -
            def  
     | 
| 
      
 396 
     | 
    
         
            +
            def post_reorder_triton_kernel(
         
     | 
| 
       586 
397 
     | 
    
         
             
                down_output_ptr,
         
     | 
| 
       587 
398 
     | 
    
         
             
                output_ptr,
         
     | 
| 
       588 
399 
     | 
    
         
             
                src2dst_ptr,
         
     | 
| 
       589 
400 
     | 
    
         
             
                topk_ids_ptr,
         
     | 
| 
       590 
401 
     | 
    
         
             
                topk_weights_ptr,
         
     | 
| 
       591 
     | 
    
         
            -
                num_experts,
         
     | 
| 
       592 
402 
     | 
    
         
             
                topk,
         
     | 
| 
       593 
403 
     | 
    
         
             
                hidden_size,
         
     | 
| 
       594 
     | 
    
         
            -
                dst_start,
         
     | 
| 
       595 
404 
     | 
    
         
             
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
       596 
405 
     | 
    
         
             
            ):
         
     | 
| 
       597 
406 
     | 
    
         
             
                InDtype = down_output_ptr.dtype.element_ty
         
     | 
| 
         @@ -613,10 +422,9 @@ def post_reorder_triton_kernel_for_cutlass_moe( 
     | 
|
| 
       613 
422 
     | 
    
         
             
                    sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
         
     | 
| 
       614 
423 
     | 
    
         
             
                    for idx in range(topk):
         
     | 
| 
       615 
424 
     | 
    
         
             
                        expert_id = tl.load(topk_ids_ptr + idx)
         
     | 
| 
       616 
     | 
    
         
            -
                        if expert_id  
     | 
| 
      
 425 
     | 
    
         
            +
                        if expert_id > 0:
         
     | 
| 
       617 
426 
     | 
    
         
             
                            dst_idx_int32 = tl.load(src2dst_ptr + idx)
         
     | 
| 
       618 
427 
     | 
    
         
             
                            dst_idx = dst_idx_int32.to(tl.int64)
         
     | 
| 
       619 
     | 
    
         
            -
                            dst_idx = dst_idx - dst_start
         
     | 
| 
       620 
428 
     | 
    
         
             
                            weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
         
     | 
| 
       621 
429 
     | 
    
         
             
                            load_ptr = down_output_ptr + dst_idx * hidden_size
         
     | 
| 
       622 
430 
     | 
    
         
             
                            in_data = tl.load(load_ptr + offset, mask=mask)
         
     | 
| 
         @@ -624,232 +432,6 @@ def post_reorder_triton_kernel_for_cutlass_moe( 
     | 
|
| 
       624 
432 
     | 
    
         
             
                    tl.store(store_ptr + offset, sum_vec, mask=mask)
         
     | 
| 
       625 
433 
     | 
    
         | 
| 
       626 
434 
     | 
    
         | 
| 
       627 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       628 
     | 
    
         
            -
            def compute_m_range(
         
     | 
| 
       629 
     | 
    
         
            -
                pid,
         
     | 
| 
       630 
     | 
    
         
            -
                batch_size,
         
     | 
| 
       631 
     | 
    
         
            -
                seg_indptr,
         
     | 
| 
       632 
     | 
    
         
            -
                weight_indices,
         
     | 
| 
       633 
     | 
    
         
            -
                m_num_tiles_indptr,
         
     | 
| 
       634 
     | 
    
         
            -
                BLOCK_SIZE_M: tl.constexpr,
         
     | 
| 
       635 
     | 
    
         
            -
            ):
         
     | 
| 
       636 
     | 
    
         
            -
                idx = 0
         
     | 
| 
       637 
     | 
    
         
            -
                for bs in range(batch_size):
         
     | 
| 
       638 
     | 
    
         
            -
                    tiles = tl.load(m_num_tiles_indptr + bs)
         
     | 
| 
       639 
     | 
    
         
            -
                    if pid >= tiles:
         
     | 
| 
       640 
     | 
    
         
            -
                        idx = bs
         
     | 
| 
       641 
     | 
    
         
            -
             
     | 
| 
       642 
     | 
    
         
            -
                idx_start = tl.load(m_num_tiles_indptr + idx)
         
     | 
| 
       643 
     | 
    
         
            -
             
     | 
| 
       644 
     | 
    
         
            -
                m_range_start = tl.load(seg_indptr + idx) + (pid - idx_start) * BLOCK_SIZE_M
         
     | 
| 
       645 
     | 
    
         
            -
                m_range_end = min(tl.load(seg_indptr + idx + 1), m_range_start + BLOCK_SIZE_M)
         
     | 
| 
       646 
     | 
    
         
            -
                expert_id = tl.load(weight_indices + idx)
         
     | 
| 
       647 
     | 
    
         
            -
                return m_range_start, m_range_end, expert_id
         
     | 
| 
       648 
     | 
    
         
            -
             
     | 
| 
       649 
     | 
    
         
            -
             
     | 
| 
       650 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       651 
     | 
    
         
            -
            def grouped_gemm_triton_kernel(
         
     | 
| 
       652 
     | 
    
         
            -
                a,
         
     | 
| 
       653 
     | 
    
         
            -
                b,
         
     | 
| 
       654 
     | 
    
         
            -
                c,
         
     | 
| 
       655 
     | 
    
         
            -
                batch_size,
         
     | 
| 
       656 
     | 
    
         
            -
                N,
         
     | 
| 
       657 
     | 
    
         
            -
                K,
         
     | 
| 
       658 
     | 
    
         
            -
                seg_indptr,
         
     | 
| 
       659 
     | 
    
         
            -
                weight_indices,
         
     | 
| 
       660 
     | 
    
         
            -
                m_num_tiles_indptr,
         
     | 
| 
       661 
     | 
    
         
            -
                scale_a,
         
     | 
| 
       662 
     | 
    
         
            -
                scale_b,
         
     | 
| 
       663 
     | 
    
         
            -
                use_fp8_w8a8: tl.constexpr,
         
     | 
| 
       664 
     | 
    
         
            -
                group_n: tl.constexpr,
         
     | 
| 
       665 
     | 
    
         
            -
                group_k: tl.constexpr,
         
     | 
| 
       666 
     | 
    
         
            -
                a_stride_0: tl.constexpr,
         
     | 
| 
       667 
     | 
    
         
            -
                b_stride_0: tl.constexpr,
         
     | 
| 
       668 
     | 
    
         
            -
                b_stride_1: tl.constexpr,
         
     | 
| 
       669 
     | 
    
         
            -
                as_stride_0: tl.constexpr,
         
     | 
| 
       670 
     | 
    
         
            -
                as_stride_1: tl.constexpr,
         
     | 
| 
       671 
     | 
    
         
            -
                bs_stride_0: tl.constexpr,
         
     | 
| 
       672 
     | 
    
         
            -
                bs_stride_2: tl.constexpr,
         
     | 
| 
       673 
     | 
    
         
            -
                bs_stride_1: tl.constexpr,
         
     | 
| 
       674 
     | 
    
         
            -
                use_per_token_if_dynamic: tl.constexpr,
         
     | 
| 
       675 
     | 
    
         
            -
                BLOCK_SIZE_M: tl.constexpr,
         
     | 
| 
       676 
     | 
    
         
            -
                BLOCK_SIZE_N: tl.constexpr,
         
     | 
| 
       677 
     | 
    
         
            -
                BLOCK_SIZE_K: tl.constexpr,
         
     | 
| 
       678 
     | 
    
         
            -
            ):
         
     | 
| 
       679 
     | 
    
         
            -
                c_dtype = c.dtype.element_ty
         
     | 
| 
       680 
     | 
    
         
            -
             
     | 
| 
       681 
     | 
    
         
            -
                pid_m = tl.program_id(0)
         
     | 
| 
       682 
     | 
    
         
            -
                pid_n = tl.program_id(1)
         
     | 
| 
       683 
     | 
    
         
            -
                total_m_block = tl.load(m_num_tiles_indptr + batch_size)
         
     | 
| 
       684 
     | 
    
         
            -
                if pid_m >= total_m_block:
         
     | 
| 
       685 
     | 
    
         
            -
                    return
         
     | 
| 
       686 
     | 
    
         
            -
             
     | 
| 
       687 
     | 
    
         
            -
                m_range_start, m_range_end, expert_id = compute_m_range(
         
     | 
| 
       688 
     | 
    
         
            -
                    pid_m, batch_size, seg_indptr, weight_indices, m_num_tiles_indptr, BLOCK_SIZE_M
         
     | 
| 
       689 
     | 
    
         
            -
                )
         
     | 
| 
       690 
     | 
    
         
            -
                if m_range_end - m_range_start == 0:
         
     | 
| 
       691 
     | 
    
         
            -
                    return
         
     | 
| 
       692 
     | 
    
         
            -
             
     | 
| 
       693 
     | 
    
         
            -
                n_range_start = pid_n * BLOCK_SIZE_N
         
     | 
| 
       694 
     | 
    
         
            -
                n_range_end = min(n_range_start + BLOCK_SIZE_N, N)
         
     | 
| 
       695 
     | 
    
         
            -
             
     | 
| 
       696 
     | 
    
         
            -
                offs_am = tl.arange(0, BLOCK_SIZE_M)
         
     | 
| 
       697 
     | 
    
         
            -
                offs_bn = tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 
       698 
     | 
    
         
            -
             
     | 
| 
       699 
     | 
    
         
            -
                offs_am = tl.where(offs_am < m_range_end - m_range_start, offs_am, 0)
         
     | 
| 
       700 
     | 
    
         
            -
                offs_bn = tl.where(offs_bn < n_range_end - n_range_start, offs_bn, 0)
         
     | 
| 
       701 
     | 
    
         
            -
                offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
         
     | 
| 
       702 
     | 
    
         
            -
                offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
         
     | 
| 
       703 
     | 
    
         
            -
                offs_k = tl.arange(0, BLOCK_SIZE_K)
         
     | 
| 
       704 
     | 
    
         
            -
             
     | 
| 
       705 
     | 
    
         
            -
                a_ptr = a + (m_range_start + offs_am[:, None]) * a_stride_0 + offs_k[None, :]
         
     | 
| 
       706 
     | 
    
         
            -
                b_ptr = b + (
         
     | 
| 
       707 
     | 
    
         
            -
                    (expert_id * b_stride_0)
         
     | 
| 
       708 
     | 
    
         
            -
                    + (n_range_start + offs_bn[:, None]) * b_stride_1
         
     | 
| 
       709 
     | 
    
         
            -
                    + offs_k[None, :]
         
     | 
| 
       710 
     | 
    
         
            -
                )
         
     | 
| 
       711 
     | 
    
         
            -
             
     | 
| 
       712 
     | 
    
         
            -
                if group_k > 0 and group_n > 0:
         
     | 
| 
       713 
     | 
    
         
            -
                    a_scale_ptrs = scale_a + (m_range_start + offs_am[:, None]) * as_stride_0
         
     | 
| 
       714 
     | 
    
         
            -
                    offs_bsn = (n_range_start + offs_bn) // group_n
         
     | 
| 
       715 
     | 
    
         
            -
                    b_scale_ptrs = scale_b + (expert_id * bs_stride_0) + offs_bsn * bs_stride_1
         
     | 
| 
       716 
     | 
    
         
            -
             
     | 
| 
       717 
     | 
    
         
            -
                accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
         
     | 
| 
       718 
     | 
    
         
            -
                for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
         
     | 
| 
       719 
     | 
    
         
            -
                    a_tile = tl.load(
         
     | 
| 
       720 
     | 
    
         
            -
                        a_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
         
     | 
| 
       721 
     | 
    
         
            -
                    )
         
     | 
| 
       722 
     | 
    
         
            -
                    b_tile = tl.load(
         
     | 
| 
       723 
     | 
    
         
            -
                        b_ptr, mask=offs_k[None, :] < (K - k * BLOCK_SIZE_K), other=0.0
         
     | 
| 
       724 
     | 
    
         
            -
                    )
         
     | 
| 
       725 
     | 
    
         
            -
             
     | 
| 
       726 
     | 
    
         
            -
                    if group_k > 0 and group_n > 0:
         
     | 
| 
       727 
     | 
    
         
            -
                        k_start = k * BLOCK_SIZE_K
         
     | 
| 
       728 
     | 
    
         
            -
                        offs_ks = k_start // group_k
         
     | 
| 
       729 
     | 
    
         
            -
                        a_scale = tl.load(a_scale_ptrs + offs_ks * as_stride_1)
         
     | 
| 
       730 
     | 
    
         
            -
                        b_scale = tl.load(b_scale_ptrs + offs_ks * bs_stride_2)
         
     | 
| 
       731 
     | 
    
         
            -
                        accumulator += tl.dot(a_tile, b_tile.T) * a_scale * b_scale[None, :]
         
     | 
| 
       732 
     | 
    
         
            -
                    else:
         
     | 
| 
       733 
     | 
    
         
            -
                        accumulator = tl.dot(a_tile, b_tile.T, accumulator)
         
     | 
| 
       734 
     | 
    
         
            -
                    a_ptr += BLOCK_SIZE_K
         
     | 
| 
       735 
     | 
    
         
            -
                    b_ptr += BLOCK_SIZE_K
         
     | 
| 
       736 
     | 
    
         
            -
             
     | 
| 
       737 
     | 
    
         
            -
                if use_fp8_w8a8 and not (group_k > 0 and group_n > 0):
         
     | 
| 
       738 
     | 
    
         
            -
                    if use_per_token_if_dynamic:
         
     | 
| 
       739 
     | 
    
         
            -
                        scale_a_value = tl.load(scale_a + (m_range_start + offs_am[:, None]))
         
     | 
| 
       740 
     | 
    
         
            -
                    else:
         
     | 
| 
       741 
     | 
    
         
            -
                        scale_a_value = tl.load(scale_a + expert_id)
         
     | 
| 
       742 
     | 
    
         
            -
                    scale_b_value = tl.load(scale_b + expert_id)
         
     | 
| 
       743 
     | 
    
         
            -
                    accumulator *= scale_a_value * scale_b_value
         
     | 
| 
       744 
     | 
    
         
            -
             
     | 
| 
       745 
     | 
    
         
            -
                c_tile = accumulator.to(c_dtype)
         
     | 
| 
       746 
     | 
    
         
            -
             
     | 
| 
       747 
     | 
    
         
            -
                offs_cm = m_range_start + tl.arange(0, BLOCK_SIZE_M)
         
     | 
| 
       748 
     | 
    
         
            -
                offs_cn = n_range_start + tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 
       749 
     | 
    
         
            -
                c_ptr = c + offs_cm[:, None] * N + offs_cn[None, :]
         
     | 
| 
       750 
     | 
    
         
            -
                c_mask = (offs_cm[:, None] < m_range_end) & (offs_cn[None, :] < n_range_end)
         
     | 
| 
       751 
     | 
    
         
            -
                tl.store(c_ptr, c_tile, mask=c_mask)
         
     | 
| 
       752 
     | 
    
         
            -
             
     | 
| 
       753 
     | 
    
         
            -
             
     | 
| 
       754 
     | 
    
         
            -
            @triton.jit
         
     | 
| 
       755 
     | 
    
         
            -
            def compute_m_num_tiles_indptr(
         
     | 
| 
       756 
     | 
    
         
            -
                m_num_tiles_indptr, seg_indptr, batch_size: tl.constexpr, BLOCK_SIZE_M: tl.constexpr
         
     | 
| 
       757 
     | 
    
         
            -
            ):
         
     | 
| 
       758 
     | 
    
         
            -
                for bs in range(batch_size):
         
     | 
| 
       759 
     | 
    
         
            -
                    m = tl.load(seg_indptr + bs + 1) - tl.load(seg_indptr + bs)
         
     | 
| 
       760 
     | 
    
         
            -
                    cur_num_tiles = tl.cdiv(m, BLOCK_SIZE_M)
         
     | 
| 
       761 
     | 
    
         
            -
                    pre_num_tiles = tl.load(m_num_tiles_indptr + bs)
         
     | 
| 
       762 
     | 
    
         
            -
                    tl.store(m_num_tiles_indptr + bs + 1, pre_num_tiles + cur_num_tiles)
         
     | 
| 
       763 
     | 
    
         
            -
             
     | 
| 
       764 
     | 
    
         
            -
             
     | 
| 
       765 
     | 
    
         
            -
            def grouped_gemm_triton(
         
     | 
| 
       766 
     | 
    
         
            -
                a: torch.Tensor,
         
     | 
| 
       767 
     | 
    
         
            -
                b: torch.Tensor,
         
     | 
| 
       768 
     | 
    
         
            -
                c: torch.Tensor,
         
     | 
| 
       769 
     | 
    
         
            -
                batch_size: int,
         
     | 
| 
       770 
     | 
    
         
            -
                weight_column_major: bool,
         
     | 
| 
       771 
     | 
    
         
            -
                seg_indptr: Optional[torch.Tensor] = None,
         
     | 
| 
       772 
     | 
    
         
            -
                weight_indices: Optional[torch.Tensor] = None,
         
     | 
| 
       773 
     | 
    
         
            -
                use_fp8_w8a8: bool = False,
         
     | 
| 
       774 
     | 
    
         
            -
                scale_a: torch.Tensor = None,
         
     | 
| 
       775 
     | 
    
         
            -
                scale_b: torch.Tensor = None,
         
     | 
| 
       776 
     | 
    
         
            -
                block_shape: Optional[List[int]] = None,
         
     | 
| 
       777 
     | 
    
         
            -
                c_dtype=None,
         
     | 
| 
       778 
     | 
    
         
            -
                use_per_token_if_dynamic: bool = True,
         
     | 
| 
       779 
     | 
    
         
            -
            ):
         
     | 
| 
       780 
     | 
    
         
            -
                assert weight_column_major == True  # TODO: more
         
     | 
| 
       781 
     | 
    
         
            -
                if use_fp8_w8a8 and block_shape is None:
         
     | 
| 
       782 
     | 
    
         
            -
                    assert scale_a is not None and scale_b is not None
         
     | 
| 
       783 
     | 
    
         
            -
             
     | 
| 
       784 
     | 
    
         
            -
                if block_shape is not None:
         
     | 
| 
       785 
     | 
    
         
            -
                    a_original = a
         
     | 
| 
       786 
     | 
    
         
            -
             
     | 
| 
       787 
     | 
    
         
            -
                    assert len(block_shape) == 2
         
     | 
| 
       788 
     | 
    
         
            -
                    block_n, block_k = block_shape[0], block_shape[1]
         
     | 
| 
       789 
     | 
    
         
            -
                    a, scale_a = per_token_group_quant_fp8(a, block_k)
         
     | 
| 
       790 
     | 
    
         
            -
             
     | 
| 
       791 
     | 
    
         
            -
                    assert triton.cdiv(a.shape[-1], block_k) == scale_a.shape[-1]
         
     | 
| 
       792 
     | 
    
         
            -
                    assert triton.cdiv(b.shape[-2], block_n) == scale_b.shape[-2]
         
     | 
| 
       793 
     | 
    
         
            -
                    assert triton.cdiv(b.shape[-1], block_k) == scale_b.shape[-1]
         
     | 
| 
       794 
     | 
    
         
            -
             
     | 
| 
       795 
     | 
    
         
            -
                    dispose_tensor(a_original)
         
     | 
| 
       796 
     | 
    
         
            -
             
     | 
| 
       797 
     | 
    
         
            -
                # TODO: adjust config or tune kernel
         
     | 
| 
       798 
     | 
    
         
            -
                # Reduce block size to prevent L40 shared memory overflow.
         
     | 
| 
       799 
     | 
    
         
            -
                config = {
         
     | 
| 
       800 
     | 
    
         
            -
                    "BLOCK_SIZE_M": 64,
         
     | 
| 
       801 
     | 
    
         
            -
                    "BLOCK_SIZE_N": 32,
         
     | 
| 
       802 
     | 
    
         
            -
                    "BLOCK_SIZE_K": 128,
         
     | 
| 
       803 
     | 
    
         
            -
                }
         
     | 
| 
       804 
     | 
    
         
            -
             
     | 
| 
       805 
     | 
    
         
            -
                m_num_tiles_indptr = torch.zeros(batch_size + 1, device=a.device, dtype=torch.int64)
         
     | 
| 
       806 
     | 
    
         
            -
                compute_m_num_tiles_indptr[(1,)](
         
     | 
| 
       807 
     | 
    
         
            -
                    m_num_tiles_indptr, seg_indptr, batch_size, config["BLOCK_SIZE_M"]
         
     | 
| 
       808 
     | 
    
         
            -
                )
         
     | 
| 
       809 
     | 
    
         
            -
             
     | 
| 
       810 
     | 
    
         
            -
                if c is None:
         
     | 
| 
       811 
     | 
    
         
            -
                    assert c_dtype is not None
         
     | 
| 
       812 
     | 
    
         
            -
                    c = torch.empty(a.shape[0], b.shape[1], device=a.device, dtype=c_dtype)
         
     | 
| 
       813 
     | 
    
         
            -
             
     | 
| 
       814 
     | 
    
         
            -
                grid = lambda META: (
         
     | 
| 
       815 
     | 
    
         
            -
                    triton.cdiv(a.size(0), META["BLOCK_SIZE_M"]) + batch_size,
         
     | 
| 
       816 
     | 
    
         
            -
                    triton.cdiv(b.size(1), META["BLOCK_SIZE_N"]),
         
     | 
| 
       817 
     | 
    
         
            -
                )
         
     | 
| 
       818 
     | 
    
         
            -
             
     | 
| 
       819 
     | 
    
         
            -
                if use_fp8_w8a8 and block_shape is None and use_per_token_if_dynamic:
         
     | 
| 
       820 
     | 
    
         
            -
                    assert (
         
     | 
| 
       821 
     | 
    
         
            -
                        scale_a.shape[0] == a.shape[0]
         
     | 
| 
       822 
     | 
    
         
            -
                    ), f"scale_a.shape: {scale_a.shape}, a.shape: {a.shape}"
         
     | 
| 
       823 
     | 
    
         
            -
             
     | 
| 
       824 
     | 
    
         
            -
                grouped_gemm_triton_kernel[grid](
         
     | 
| 
       825 
     | 
    
         
            -
                    a,
         
     | 
| 
       826 
     | 
    
         
            -
                    b,
         
     | 
| 
       827 
     | 
    
         
            -
                    c,
         
     | 
| 
       828 
     | 
    
         
            -
                    batch_size,
         
     | 
| 
       829 
     | 
    
         
            -
                    b.size(1),
         
     | 
| 
       830 
     | 
    
         
            -
                    b.size(2),
         
     | 
| 
       831 
     | 
    
         
            -
                    seg_indptr,
         
     | 
| 
       832 
     | 
    
         
            -
                    weight_indices,
         
     | 
| 
       833 
     | 
    
         
            -
                    m_num_tiles_indptr,
         
     | 
| 
       834 
     | 
    
         
            -
                    scale_a,
         
     | 
| 
       835 
     | 
    
         
            -
                    scale_b,
         
     | 
| 
       836 
     | 
    
         
            -
                    use_fp8_w8a8,
         
     | 
| 
       837 
     | 
    
         
            -
                    0 if block_shape is None else block_shape[0],
         
     | 
| 
       838 
     | 
    
         
            -
                    0 if block_shape is None else block_shape[1],
         
     | 
| 
       839 
     | 
    
         
            -
                    a.stride(0),
         
     | 
| 
       840 
     | 
    
         
            -
                    b.stride(0),
         
     | 
| 
       841 
     | 
    
         
            -
                    b.stride(1),
         
     | 
| 
       842 
     | 
    
         
            -
                    scale_a.stride(0) if scale_a is not None and scale_a.ndim == 2 else 0,
         
     | 
| 
       843 
     | 
    
         
            -
                    scale_a.stride(1) if scale_a is not None and scale_a.ndim == 2 else 0,
         
     | 
| 
       844 
     | 
    
         
            -
                    scale_b.stride(0) if scale_b is not None and scale_b.ndim >= 2 else 0,
         
     | 
| 
       845 
     | 
    
         
            -
                    scale_b.stride(2) if scale_b is not None and scale_b.ndim == 3 else 0,
         
     | 
| 
       846 
     | 
    
         
            -
                    scale_b.stride(1) if scale_b is not None and scale_b.ndim >= 2 else 0,
         
     | 
| 
       847 
     | 
    
         
            -
                    use_per_token_if_dynamic,
         
     | 
| 
       848 
     | 
    
         
            -
                    **config,
         
     | 
| 
       849 
     | 
    
         
            -
                )
         
     | 
| 
       850 
     | 
    
         
            -
                return c
         
     | 
| 
       851 
     | 
    
         
            -
             
     | 
| 
       852 
     | 
    
         
            -
             
     | 
| 
       853 
435 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       854 
436 
     | 
    
         
             
            def _fwd_kernel_ep_scatter_1(
         
     | 
| 
       855 
437 
     | 
    
         
             
                num_recv_tokens_per_expert,
         
     | 
| 
         @@ -984,7 +566,9 @@ def ep_scatter( 
     | 
|
| 
       984 
566 
     | 
    
         
             
                    scale_hidden_size = ceil_div(scale_hidden_size, 4)
         
     | 
| 
       985 
567 
     | 
    
         | 
| 
       986 
568 
     | 
    
         
             
                assert m_indices.shape[0] % BLOCK_E == 0
         
     | 
| 
       987 
     | 
    
         
            -
                assert  
     | 
| 
      
 569 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 570 
     | 
    
         
            +
                    recv_x_scale.dtype == output_tensor_scale.dtype
         
     | 
| 
      
 571 
     | 
    
         
            +
                ), f"recv_x_scale.dtype: {recv_x_scale.dtype}, output_tensor_scale.dtype: {output_tensor_scale.dtype}"
         
     | 
| 
       988 
572 
     | 
    
         
             
                assert recv_x_scale.shape[1] == output_tensor_scale.shape[1] == scale_hidden_size
         
     | 
| 
       989 
573 
     | 
    
         | 
| 
       990 
574 
     | 
    
         
             
                _fwd_kernel_ep_scatter_1[(grid,)](
         
     | 
| 
         @@ -1104,10 +688,10 @@ def ep_gather( 
     | 
|
| 
       1104 
688 
     | 
    
         
             
                input_index: torch.Tensor,
         
     | 
| 
       1105 
689 
     | 
    
         
             
                output_tensor: torch.Tensor,
         
     | 
| 
       1106 
690 
     | 
    
         
             
            ):
         
     | 
| 
       1107 
     | 
    
         
            -
                BLOCK_D = 1024 if not is_in_ci() else 128  # block size of quantization
         
     | 
| 
       1108 
691 
     | 
    
         
             
                num_warps = 2
         
     | 
| 
       1109 
692 
     | 
    
         
             
                num_tokens = output_tensor.shape[0]
         
     | 
| 
       1110 
693 
     | 
    
         
             
                hidden_size = input_tensor.shape[1]
         
     | 
| 
      
 694 
     | 
    
         
            +
                BLOCK_D = 128 if hidden_size % 1024 != 0 else 1024  # block size of quantization
         
     | 
| 
       1111 
695 
     | 
    
         
             
                assert hidden_size % BLOCK_D == 0
         
     | 
| 
       1112 
696 
     | 
    
         
             
                grid = (triton.cdiv(hidden_size, BLOCK_D), min(num_tokens, 1024))
         
     | 
| 
       1113 
697 
     | 
    
         
             
                _fwd_kernel_ep_gather[grid](
         
     | 
| 
         @@ -1234,7 +818,7 @@ def deepgemm_compute_src2dst_triton_kernel( 
     | 
|
| 
       1234 
818 
     | 
    
         
             
                mask = dst_id < num_toks
         
     | 
| 
       1235 
819 
     | 
    
         
             
                src_id = tl.load(reorder_ids + dst_id, mask=mask)
         
     | 
| 
       1236 
820 
     | 
    
         
             
                expert_id = tl.load(topk_ids + src_id, mask=(src_id < num_toks))
         
     | 
| 
       1237 
     | 
    
         
            -
                expert_dst_start = tl.load(seg_indptr + expert_id)
         
     | 
| 
      
 821 
     | 
    
         
            +
                expert_dst_start = tl.load(seg_indptr + expert_id, mask=(expert_id >= 0))
         
     | 
| 
       1238 
822 
     | 
    
         
             
                expert_dst_offset = dst_id - expert_dst_start
         
     | 
| 
       1239 
823 
     | 
    
         
             
                dst_id = expert_id * m_max + expert_dst_offset
         
     | 
| 
       1240 
824 
     | 
    
         
             
                tl.store(src2dst + src_id, dst_id, mask=mask)
         
     | 
| 
         @@ -1248,10 +832,7 @@ def fill_gateup_input_triton_kernel( 
     | 
|
| 
       1248 
832 
     | 
    
         
             
                gateup_input_scale_ptr,
         
     | 
| 
       1249 
833 
     | 
    
         
             
                src2dst_ptr,
         
     | 
| 
       1250 
834 
     | 
    
         
             
                topk_ids_ptr,
         
     | 
| 
       1251 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       1252 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       1253 
835 
     | 
    
         
             
                topk,
         
     | 
| 
       1254 
     | 
    
         
            -
                m_max,
         
     | 
| 
       1255 
836 
     | 
    
         
             
                hidden_size,
         
     | 
| 
       1256 
837 
     | 
    
         
             
                scale_size,
         
     | 
| 
       1257 
838 
     | 
    
         
             
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
         @@ -1267,10 +848,9 @@ def fill_gateup_input_triton_kernel( 
     | 
|
| 
       1267 
848 
     | 
    
         
             
                vec = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
       1268 
849 
     | 
    
         
             
                for idx in range(topk):
         
     | 
| 
       1269 
850 
     | 
    
         
             
                    expert_id = tl.load(topk_ids_ptr + idx)
         
     | 
| 
       1270 
     | 
    
         
            -
                    if expert_id >=  
     | 
| 
      
 851 
     | 
    
         
            +
                    if expert_id >= 0:
         
     | 
| 
       1271 
852 
     | 
    
         
             
                        dst_idx_int32 = tl.load(src2dst_ptr + idx)
         
     | 
| 
       1272 
853 
     | 
    
         
             
                        dst_idx = dst_idx_int32.to(tl.int64)
         
     | 
| 
       1273 
     | 
    
         
            -
                        dst_idx = dst_idx - start_expert_id * m_max
         
     | 
| 
       1274 
854 
     | 
    
         
             
                        dst_ptr = gateup_input_ptr + dst_idx * hidden_size
         
     | 
| 
       1275 
855 
     | 
    
         
             
                        for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
         
     | 
| 
       1276 
856 
     | 
    
         
             
                            offset = start_offset + vec
         
     | 
| 
         @@ -1287,31 +867,31 @@ def fill_gateup_input_triton_kernel( 
     | 
|
| 
       1287 
867 
     | 
    
         | 
| 
       1288 
868 
     | 
    
         
             
            def moe_ep_deepgemm_preprocess(
         
     | 
| 
       1289 
869 
     | 
    
         
             
                topk_ids: torch.Tensor,
         
     | 
| 
       1290 
     | 
    
         
            -
                 
     | 
| 
      
 870 
     | 
    
         
            +
                num_local_experts: int,
         
     | 
| 
       1291 
871 
     | 
    
         
             
                hidden_states: torch.Tensor,
         
     | 
| 
       1292 
872 
     | 
    
         
             
                top_k: int,
         
     | 
| 
       1293 
     | 
    
         
            -
                start_expert_id,
         
     | 
| 
       1294 
     | 
    
         
            -
                end_expert_id,
         
     | 
| 
       1295 
873 
     | 
    
         
             
                block_shape,
         
     | 
| 
       1296 
874 
     | 
    
         
             
                output_dtype: torch.dtype = torch.float8_e4m3fn,
         
     | 
| 
       1297 
875 
     | 
    
         
             
            ):
         
     | 
| 
       1298 
876 
     | 
    
         
             
                reorder_topk_ids, reorder_ids = torch.sort(topk_ids.view(-1), stable=True)
         
     | 
| 
       1299 
     | 
    
         
            -
                seg_indptr = torch.zeros( 
     | 
| 
      
 877 
     | 
    
         
            +
                seg_indptr = torch.zeros(
         
     | 
| 
      
 878 
     | 
    
         
            +
                    num_local_experts + 1, device=topk_ids.device, dtype=torch.int64
         
     | 
| 
      
 879 
     | 
    
         
            +
                )
         
     | 
| 
       1300 
880 
     | 
    
         
             
                src2dst = torch.empty(topk_ids.numel(), device=topk_ids.device, dtype=torch.int32)
         
     | 
| 
       1301 
     | 
    
         
            -
                masked_m = torch. 
     | 
| 
      
 881 
     | 
    
         
            +
                masked_m = torch.empty(num_local_experts, device=topk_ids.device, dtype=torch.int32)
         
     | 
| 
       1302 
882 
     | 
    
         | 
| 
       1303 
     | 
    
         
            -
                compute_seg_indptr_triton_kernel[( 
     | 
| 
      
 883 
     | 
    
         
            +
                compute_seg_indptr_triton_kernel[(num_local_experts + 1,)](
         
     | 
| 
       1304 
884 
     | 
    
         
             
                    reorder_topk_ids, seg_indptr, topk_ids.numel()
         
     | 
| 
       1305 
885 
     | 
    
         
             
                )
         
     | 
| 
       1306 
886 
     | 
    
         | 
| 
       1307 
887 
     | 
    
         
             
                grid = lambda meta: (triton.cdiv(topk_ids.numel(), meta["BLOCK_SIZE"]),)
         
     | 
| 
       1308 
     | 
    
         
            -
                compute_masked_m_triton_kernel[( 
     | 
| 
      
 888 
     | 
    
         
            +
                compute_masked_m_triton_kernel[(num_local_experts,)](seg_indptr, masked_m)
         
     | 
| 
       1309 
889 
     | 
    
         | 
| 
       1310 
890 
     | 
    
         
             
                # For masked grouped GEMM, shape M should be multiple of the block M (current block M: {block_m}) https://github.com/deepseek-ai/DeepGEMM/blob/main/deep_gemm/jit_kernels/m_grouped_gemm.py#L165
         
     | 
| 
       1311 
     | 
    
         
            -
                m_max = (hidden_states.size(0) +  
     | 
| 
       1312 
     | 
    
         
            -
                expected_m = (topk_ids.numel()  
     | 
| 
      
 891 
     | 
    
         
            +
                m_max = (hidden_states.size(0) // 256 + 1) * 256
         
     | 
| 
      
 892 
     | 
    
         
            +
                expected_m = (topk_ids.numel() - 1) // num_local_experts + 1
         
     | 
| 
       1313 
893 
     | 
    
         
             
                gateup_input = torch.empty(
         
     | 
| 
       1314 
     | 
    
         
            -
                    ( 
     | 
| 
      
 894 
     | 
    
         
            +
                    (num_local_experts, m_max, hidden_states.size(1)),
         
     | 
| 
       1315 
895 
     | 
    
         
             
                    device=hidden_states.device,
         
     | 
| 
       1316 
896 
     | 
    
         
             
                    dtype=output_dtype,
         
     | 
| 
       1317 
897 
     | 
    
         
             
                )
         
     | 
| 
         @@ -1330,6 +910,8 @@ def moe_ep_deepgemm_preprocess( 
     | 
|
| 
       1330 
910 
     | 
    
         
             
                    block_shape = [128, 128]
         
     | 
| 
       1331 
911 
     | 
    
         
             
                assert len(block_shape) == 2
         
     | 
| 
       1332 
912 
     | 
    
         
             
                block_n, block_k = block_shape[0], block_shape[1]
         
     | 
| 
      
 913 
     | 
    
         
            +
             
     | 
| 
      
 914 
     | 
    
         
            +
                # TODO: fuse this with the preprocess
         
     | 
| 
       1333 
915 
     | 
    
         
             
                hidden_states, scale = per_token_group_quant_fp8(hidden_states, block_k)
         
     | 
| 
       1334 
916 
     | 
    
         | 
| 
       1335 
917 
     | 
    
         
             
                gateup_input_scale = torch.empty(
         
     | 
| 
         @@ -1345,18 +927,14 @@ def moe_ep_deepgemm_preprocess( 
     | 
|
| 
       1345 
927 
     | 
    
         
             
                    gateup_input_scale,
         
     | 
| 
       1346 
928 
     | 
    
         
             
                    src2dst,
         
     | 
| 
       1347 
929 
     | 
    
         
             
                    topk_ids,
         
     | 
| 
       1348 
     | 
    
         
            -
                    start_expert_id,
         
     | 
| 
       1349 
     | 
    
         
            -
                    end_expert_id,
         
     | 
| 
       1350 
930 
     | 
    
         
             
                    top_k,
         
     | 
| 
       1351 
     | 
    
         
            -
                    m_max,
         
     | 
| 
       1352 
931 
     | 
    
         
             
                    hidden_states.size(1),
         
     | 
| 
       1353 
932 
     | 
    
         
             
                    scale.size(1),
         
     | 
| 
       1354 
933 
     | 
    
         
             
                    BLOCK_SIZE=1024,
         
     | 
| 
       1355 
934 
     | 
    
         
             
                )
         
     | 
| 
       1356 
935 
     | 
    
         | 
| 
       1357 
936 
     | 
    
         
             
                return (
         
     | 
| 
       1358 
     | 
    
         
            -
                     
     | 
| 
       1359 
     | 
    
         
            -
                    masked_m[start_expert_id : (end_expert_id + 1)],
         
     | 
| 
      
 937 
     | 
    
         
            +
                    masked_m,
         
     | 
| 
       1360 
938 
     | 
    
         
             
                    expected_m,
         
     | 
| 
       1361 
939 
     | 
    
         
             
                    src2dst,
         
     | 
| 
       1362 
940 
     | 
    
         
             
                    gateup_input,
         
     |