sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,5 +1,4 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            import math
         
     | 
| 
       2 
     | 
    
         
            -
            import os
         
     | 
| 
       3 
2 
     | 
    
         
             
            from dataclasses import dataclass
         
     | 
| 
       4 
3 
     | 
    
         
             
            from typing import Dict, List, Optional, Tuple
         
     | 
| 
       5 
4 
     | 
    
         | 
| 
         @@ -12,6 +11,8 @@ from transformers import ( 
     | 
|
| 
       12 
11 
     | 
    
         
             
                ProcessorMixin,
         
     | 
| 
       13 
12 
     | 
    
         
             
            )
         
     | 
| 
       14 
13 
     | 
    
         | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.configs.deepseek_ocr import BASE_SIZE, IMAGE_SIZE, MAX_CROPS, MIN_CROPS
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
       15 
16 
     | 
    
         | 
| 
       16 
17 
     | 
    
         
             
            def select_best_resolution(image_size, candidate_resolutions):
         
     | 
| 
       17 
18 
     | 
    
         
             
                # used for cropping
         
     | 
| 
         @@ -62,6 +63,7 @@ class DictOutput(object): 
     | 
|
| 
       62 
63 
     | 
    
         
             
            class VLChatProcessorOutput(DictOutput):
         
     | 
| 
       63 
64 
     | 
    
         
             
                input_ids: torch.LongTensor
         
     | 
| 
       64 
65 
     | 
    
         
             
                target_ids: torch.LongTensor
         
     | 
| 
      
 66 
     | 
    
         
            +
                images_crop: torch.LongTensor
         
     | 
| 
       65 
67 
     | 
    
         
             
                pixel_values: (
         
     | 
| 
       66 
68 
     | 
    
         
             
                    torch.Tensor
         
     | 
| 
       67 
69 
     | 
    
         
             
                )  # rename from "images" to "pixel_values" for compatibility
         
     | 
| 
         @@ -105,6 +107,68 @@ class ImageTransform(object): 
     | 
|
| 
       105 
107 
     | 
    
         
             
                    return x
         
     | 
| 
       106 
108 
     | 
    
         | 
| 
       107 
109 
     | 
    
         | 
| 
      
 110 
     | 
    
         
            +
            def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
         
     | 
| 
      
 111 
     | 
    
         
            +
                best_ratio_diff = float("inf")
         
     | 
| 
      
 112 
     | 
    
         
            +
                best_ratio = (1, 1)
         
     | 
| 
      
 113 
     | 
    
         
            +
                area = width * height
         
     | 
| 
      
 114 
     | 
    
         
            +
                for ratio in target_ratios:
         
     | 
| 
      
 115 
     | 
    
         
            +
                    target_aspect_ratio = ratio[0] / ratio[1]
         
     | 
| 
      
 116 
     | 
    
         
            +
                    ratio_diff = abs(aspect_ratio - target_aspect_ratio)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    if ratio_diff < best_ratio_diff:
         
     | 
| 
      
 118 
     | 
    
         
            +
                        best_ratio_diff = ratio_diff
         
     | 
| 
      
 119 
     | 
    
         
            +
                        best_ratio = ratio
         
     | 
| 
      
 120 
     | 
    
         
            +
                    elif ratio_diff == best_ratio_diff:
         
     | 
| 
      
 121 
     | 
    
         
            +
                        if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
         
     | 
| 
      
 122 
     | 
    
         
            +
                            best_ratio = ratio
         
     | 
| 
      
 123 
     | 
    
         
            +
                return best_ratio
         
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
             
     | 
| 
      
 126 
     | 
    
         
            +
            def dynamic_preprocess(
         
     | 
| 
      
 127 
     | 
    
         
            +
                image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False
         
     | 
| 
      
 128 
     | 
    
         
            +
            ):
         
     | 
| 
      
 129 
     | 
    
         
            +
                orig_width, orig_height = image.size
         
     | 
| 
      
 130 
     | 
    
         
            +
                aspect_ratio = orig_width / orig_height
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
                # calculate the existing image aspect ratio
         
     | 
| 
      
 133 
     | 
    
         
            +
                target_ratios = set(
         
     | 
| 
      
 134 
     | 
    
         
            +
                    (i, j)
         
     | 
| 
      
 135 
     | 
    
         
            +
                    for n in range(min_num, max_num + 1)
         
     | 
| 
      
 136 
     | 
    
         
            +
                    for i in range(1, n + 1)
         
     | 
| 
      
 137 
     | 
    
         
            +
                    for j in range(1, n + 1)
         
     | 
| 
      
 138 
     | 
    
         
            +
                    if i * j <= max_num and i * j >= min_num
         
     | 
| 
      
 139 
     | 
    
         
            +
                )
         
     | 
| 
      
 140 
     | 
    
         
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                # find the closest aspect ratio to the target
         
     | 
| 
      
 143 
     | 
    
         
            +
                target_aspect_ratio = find_closest_aspect_ratio(
         
     | 
| 
      
 144 
     | 
    
         
            +
                    aspect_ratio, target_ratios, orig_width, orig_height, image_size
         
     | 
| 
      
 145 
     | 
    
         
            +
                )
         
     | 
| 
      
 146 
     | 
    
         
            +
             
     | 
| 
      
 147 
     | 
    
         
            +
                # calculate the target width and height
         
     | 
| 
      
 148 
     | 
    
         
            +
                target_width = image_size * target_aspect_ratio[0]
         
     | 
| 
      
 149 
     | 
    
         
            +
                target_height = image_size * target_aspect_ratio[1]
         
     | 
| 
      
 150 
     | 
    
         
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
                # resize the image
         
     | 
| 
      
 153 
     | 
    
         
            +
                resized_img = image.resize((target_width, target_height))
         
     | 
| 
      
 154 
     | 
    
         
            +
                processed_images = []
         
     | 
| 
      
 155 
     | 
    
         
            +
                for i in range(blocks):
         
     | 
| 
      
 156 
     | 
    
         
            +
                    box = (
         
     | 
| 
      
 157 
     | 
    
         
            +
                        (i % (target_width // image_size)) * image_size,
         
     | 
| 
      
 158 
     | 
    
         
            +
                        (i // (target_width // image_size)) * image_size,
         
     | 
| 
      
 159 
     | 
    
         
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         
     | 
| 
      
 160 
     | 
    
         
            +
                        ((i // (target_width // image_size)) + 1) * image_size,
         
     | 
| 
      
 161 
     | 
    
         
            +
                    )
         
     | 
| 
      
 162 
     | 
    
         
            +
                    # split the image
         
     | 
| 
      
 163 
     | 
    
         
            +
                    split_img = resized_img.crop(box)
         
     | 
| 
      
 164 
     | 
    
         
            +
                    processed_images.append(split_img)
         
     | 
| 
      
 165 
     | 
    
         
            +
                assert len(processed_images) == blocks
         
     | 
| 
      
 166 
     | 
    
         
            +
                if use_thumbnail and len(processed_images) != 1:
         
     | 
| 
      
 167 
     | 
    
         
            +
                    thumbnail_img = image.resize((image_size, image_size))
         
     | 
| 
      
 168 
     | 
    
         
            +
                    processed_images.append(thumbnail_img)
         
     | 
| 
      
 169 
     | 
    
         
            +
                return processed_images, target_aspect_ratio
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
       108 
172 
     | 
    
         
             
            class DeepseekVLV2Processor(ProcessorMixin):
         
     | 
| 
       109 
173 
     | 
    
         
             
                tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
         
     | 
| 
       110 
174 
     | 
    
         
             
                attributes = ["tokenizer"]
         
     | 
| 
         @@ -134,7 +198,7 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       134 
198 
     | 
    
         
             
                    self.image_std = image_std
         
     | 
| 
       135 
199 
     | 
    
         
             
                    self.normalize = normalize
         
     | 
| 
       136 
200 
     | 
    
         
             
                    self.downsample_ratio = downsample_ratio
         
     | 
| 
       137 
     | 
    
         
            -
             
     | 
| 
      
 201 
     | 
    
         
            +
                    self.base_size = BASE_SIZE
         
     | 
| 
       138 
202 
     | 
    
         
             
                    self.image_transform = ImageTransform(
         
     | 
| 
       139 
203 
     | 
    
         
             
                        mean=image_mean, std=image_std, normalize=normalize
         
     | 
| 
       140 
204 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -177,7 +241,7 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       177 
241 
     | 
    
         
             
                        **kwargs,
         
     | 
| 
       178 
242 
     | 
    
         
             
                    )
         
     | 
| 
       179 
243 
     | 
    
         | 
| 
       180 
     | 
    
         
            -
                def format_messages_v2(self, messages, pil_images, max_req_input_len=-1):
         
     | 
| 
      
 244 
     | 
    
         
            +
                def format_messages_v2(self, messages: str, pil_images, max_req_input_len=-1):
         
     | 
| 
       181 
245 
     | 
    
         
             
                    """play the role of format_messages_v2 and get_images_info in the last version"""
         
     | 
| 
       182 
246 
     | 
    
         
             
                    tokenized_data = []
         
     | 
| 
       183 
247 
     | 
    
         
             
                    masked_tokenized_data = []  # labels
         
     | 
| 
         @@ -187,35 +251,34 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       187 
251 
     | 
    
         | 
| 
       188 
252 
     | 
    
         
             
                    image_index = 0
         
     | 
| 
       189 
253 
     | 
    
         
             
                    image_token_cnt = messages.count(self.image_token)
         
     | 
| 
       190 
     | 
    
         
            -
                     
     | 
| 
      
 254 
     | 
    
         
            +
                    (
         
     | 
| 
      
 255 
     | 
    
         
            +
                        input_ids,
         
     | 
| 
      
 256 
     | 
    
         
            +
                        images,
         
     | 
| 
      
 257 
     | 
    
         
            +
                        images_crop,
         
     | 
| 
      
 258 
     | 
    
         
            +
                        seq_mask,
         
     | 
| 
      
 259 
     | 
    
         
            +
                        spatial_crop,
         
     | 
| 
      
 260 
     | 
    
         
            +
                        num_image_tokens,
         
     | 
| 
      
 261 
     | 
    
         
            +
                        image_shapes,
         
     | 
| 
      
 262 
     | 
    
         
            +
                    ) = self.tokenize_with_images(
         
     | 
| 
       191 
263 
     | 
    
         
             
                        messages,
         
     | 
| 
       192 
264 
     | 
    
         
             
                        pil_images[image_index : image_index + image_token_cnt],
         
     | 
| 
       193 
265 
     | 
    
         
             
                        bos=True,
         
     | 
| 
       194 
266 
     | 
    
         
             
                        eos=True,
         
     | 
| 
       195 
267 
     | 
    
         
             
                        cropping=len(pil_images) <= 2,
         
     | 
| 
       196 
     | 
    
         
            -
                        max_req_input_len=max_req_input_len,
         
     | 
| 
       197 
268 
     | 
    
         
             
                    )
         
     | 
| 
       198 
269 
     | 
    
         | 
| 
       199 
270 
     | 
    
         
             
                    image_index = image_token_cnt
         
     | 
| 
       200 
     | 
    
         
            -
                    tokenized_data += tokenized_str
         
     | 
| 
       201 
     | 
    
         
            -
                    if self.mask_prompt:
         
     | 
| 
       202 
     | 
    
         
            -
                        masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
         
     | 
| 
       203 
     | 
    
         
            -
                    else:
         
     | 
| 
       204 
     | 
    
         
            -
                        masked_tokenized_data += tokenized_str
         
     | 
| 
       205 
271 
     | 
    
         
             
                    images_list += images
         
     | 
| 
       206 
272 
     | 
    
         
             
                    images_seq_mask += seq_mask
         
     | 
| 
       207 
     | 
    
         
            -
                    images_spatial_crop  
     | 
| 
       208 
     | 
    
         
            -
             
     | 
| 
       209 
     | 
    
         
            -
                    assert len(tokenized_data) == len(
         
     | 
| 
       210 
     | 
    
         
            -
                        images_seq_mask
         
     | 
| 
       211 
     | 
    
         
            -
                    ), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
         
     | 
| 
      
 273 
     | 
    
         
            +
                    images_spatial_crop = spatial_crop
         
     | 
| 
       212 
274 
     | 
    
         | 
| 
       213 
275 
     | 
    
         
             
                    return (
         
     | 
| 
       214 
     | 
    
         
            -
                         
     | 
| 
      
 276 
     | 
    
         
            +
                        input_ids,
         
     | 
| 
       215 
277 
     | 
    
         
             
                        masked_tokenized_data,
         
     | 
| 
       216 
278 
     | 
    
         
             
                        images_list,
         
     | 
| 
       217 
279 
     | 
    
         
             
                        images_seq_mask,
         
     | 
| 
       218 
280 
     | 
    
         
             
                        images_spatial_crop,
         
     | 
| 
      
 281 
     | 
    
         
            +
                        images_crop,
         
     | 
| 
       219 
282 
     | 
    
         
             
                    )
         
     | 
| 
       220 
283 
     | 
    
         | 
| 
       221 
284 
     | 
    
         
             
                @property
         
     | 
| 
         @@ -252,6 +315,7 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       252 
315 
     | 
    
         
             
                    inference_mode: bool = True,
         
     | 
| 
       253 
316 
     | 
    
         
             
                    system_prompt: str = "",
         
     | 
| 
       254 
317 
     | 
    
         
             
                    max_req_input_len: int = -1,
         
     | 
| 
      
 318 
     | 
    
         
            +
                    cropping: bool = True,
         
     | 
| 
       255 
319 
     | 
    
         
             
                    **kwargs,
         
     | 
| 
       256 
320 
     | 
    
         
             
                ):
         
     | 
| 
       257 
321 
     | 
    
         
             
                    """
         
     | 
| 
         @@ -275,47 +339,22 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       275 
339 
     | 
    
         
             
                            - num_image_tokens (List[int]): the number of image tokens
         
     | 
| 
       276 
340 
     | 
    
         
             
                    """
         
     | 
| 
       277 
341 
     | 
    
         | 
| 
       278 
     | 
    
         
            -
                     
     | 
| 
       279 
     | 
    
         
            -
                        prompt is None or conversations is None
         
     | 
| 
       280 
     | 
    
         
            -
                    ), "prompt and conversations cannot be used at the same time."
         
     | 
| 
       281 
     | 
    
         
            -
             
     | 
| 
      
 342 
     | 
    
         
            +
                    prompt = conversations or prompt
         
     | 
| 
       282 
343 
     | 
    
         
             
                    (
         
     | 
| 
       283 
     | 
    
         
            -
                         
     | 
| 
      
 344 
     | 
    
         
            +
                        input_ids,
         
     | 
| 
       284 
345 
     | 
    
         
             
                        masked_tokenized_str,
         
     | 
| 
       285 
346 
     | 
    
         
             
                        images_list,
         
     | 
| 
       286 
347 
     | 
    
         
             
                        images_seq_mask,
         
     | 
| 
       287 
348 
     | 
    
         
             
                        images_spatial_crop,
         
     | 
| 
       288 
     | 
    
         
            -
             
     | 
| 
      
 349 
     | 
    
         
            +
                        images_crop,
         
     | 
| 
      
 350 
     | 
    
         
            +
                    ) = self.format_messages_v2(prompt, images, max_req_input_len)
         
     | 
| 
       289 
351 
     | 
    
         | 
| 
       290 
     | 
    
         
            -
                    assert (
         
     | 
| 
       291 
     | 
    
         
            -
                        len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
         
     | 
| 
       292 
     | 
    
         
            -
                    ), (
         
     | 
| 
       293 
     | 
    
         
            -
                        f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
         
     | 
| 
       294 
     | 
    
         
            -
                        f"imags_seq_mask's length {len(images_seq_mask)}, are not equal"
         
     | 
| 
       295 
     | 
    
         
            -
                    )
         
     | 
| 
       296 
     | 
    
         
            -
             
     | 
| 
       297 
     | 
    
         
            -
                    input_ids = torch.LongTensor(tokenized_str)
         
     | 
| 
       298 
352 
     | 
    
         
             
                    target_ids = torch.LongTensor(masked_tokenized_str)
         
     | 
| 
       299 
     | 
    
         
            -
                    images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
         
     | 
| 
       300 
     | 
    
         
            -
             
     | 
| 
       301 
     | 
    
         
            -
                    # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
         
     | 
| 
       302 
     | 
    
         
            -
                    target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
         
     | 
| 
       303 
     | 
    
         
            -
                        self.ignore_id
         
     | 
| 
       304 
     | 
    
         
            -
                    )
         
     | 
| 
       305 
     | 
    
         
            -
                    input_ids[input_ids < 0] = self.pad_id
         
     | 
| 
       306 
     | 
    
         
            -
             
     | 
| 
       307 
     | 
    
         
            -
                    if inference_mode:
         
     | 
| 
       308 
     | 
    
         
            -
                        assert input_ids[-1] == self.eos_id
         
     | 
| 
       309 
     | 
    
         
            -
                        input_ids = input_ids[:-1]
         
     | 
| 
       310 
     | 
    
         
            -
                        target_ids = target_ids[:-1]
         
     | 
| 
       311 
     | 
    
         
            -
                        images_seq_mask = images_seq_mask[:-1]
         
     | 
| 
       312 
353 
     | 
    
         | 
| 
       313 
354 
     | 
    
         
             
                    if len(images_list) == 0:
         
     | 
| 
       314 
355 
     | 
    
         
             
                        images = torch.zeros((1, 3, self.image_size, self.image_size))
         
     | 
| 
       315 
     | 
    
         
            -
                        images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
         
     | 
| 
       316 
356 
     | 
    
         
             
                    else:
         
     | 
| 
       317 
357 
     | 
    
         
             
                        images = torch.stack(images_list, dim=0)
         
     | 
| 
       318 
     | 
    
         
            -
                        images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
         
     | 
| 
       319 
358 
     | 
    
         | 
| 
       320 
359 
     | 
    
         
             
                    images_spatial_crop = torch.stack(
         
     | 
| 
       321 
360 
     | 
    
         
             
                        [images_spatial_crop], dim=0
         
     | 
| 
         @@ -324,6 +363,7 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       324 
363 
     | 
    
         
             
                    prepare = VLChatProcessorOutput(
         
     | 
| 
       325 
364 
     | 
    
         
             
                        input_ids=input_ids,
         
     | 
| 
       326 
365 
     | 
    
         
             
                        target_ids=target_ids,
         
     | 
| 
      
 366 
     | 
    
         
            +
                        images_crop=images_crop,
         
     | 
| 
       327 
367 
     | 
    
         
             
                        pixel_values=images,
         
     | 
| 
       328 
368 
     | 
    
         
             
                        images_seq_mask=images_seq_mask,
         
     | 
| 
       329 
369 
     | 
    
         
             
                        images_spatial_crop=images_spatial_crop,
         
     | 
| 
         @@ -341,10 +381,14 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       341 
381 
     | 
    
         
             
                    inference_mode: bool = True,
         
     | 
| 
       342 
382 
     | 
    
         
             
                    system_prompt: str = "",
         
     | 
| 
       343 
383 
     | 
    
         
             
                    max_req_input_len: int = -1,
         
     | 
| 
      
 384 
     | 
    
         
            +
                    text: list[str] = None,
         
     | 
| 
       344 
385 
     | 
    
         
             
                    **kwargs,
         
     | 
| 
       345 
386 
     | 
    
         
             
                ):
         
     | 
| 
      
 387 
     | 
    
         
            +
                    assert text is None or isinstance(text, list)
         
     | 
| 
      
 388 
     | 
    
         
            +
                    if text is not None:
         
     | 
| 
      
 389 
     | 
    
         
            +
                        text = text[0]
         
     | 
| 
       346 
390 
     | 
    
         
             
                    prepare = self.process_one(
         
     | 
| 
       347 
     | 
    
         
            -
                        prompt=prompt,
         
     | 
| 
      
 391 
     | 
    
         
            +
                        prompt=prompt or text,
         
     | 
| 
       348 
392 
     | 
    
         
             
                        conversations=conversations,
         
     | 
| 
       349 
393 
     | 
    
         
             
                        images=images,
         
     | 
| 
       350 
394 
     | 
    
         
             
                        apply_sft_format=apply_sft_format,
         
     | 
| 
         @@ -369,85 +413,83 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       369 
413 
     | 
    
         
             
                    bos: bool = True,
         
     | 
| 
       370 
414 
     | 
    
         
             
                    eos: bool = True,
         
     | 
| 
       371 
415 
     | 
    
         
             
                    cropping: bool = True,
         
     | 
| 
       372 
     | 
    
         
            -
                    max_req_input_len: int = -1,
         
     | 
| 
       373 
416 
     | 
    
         
             
                ):
         
     | 
| 
       374 
417 
     | 
    
         
             
                    """Tokenize text with <image> tags."""
         
     | 
| 
       375 
     | 
    
         
            -
             
     | 
| 
      
 418 
     | 
    
         
            +
             
     | 
| 
      
 419 
     | 
    
         
            +
                    conversation = conversation
         
     | 
| 
      
 420 
     | 
    
         
            +
                    assert conversation.count(self.image_token) == len(images)
         
     | 
| 
       376 
421 
     | 
    
         
             
                    text_splits = conversation.split(self.image_token)
         
     | 
| 
      
 422 
     | 
    
         
            +
                    images_list, images_crop_list, images_seq_mask, images_spatial_crop = (
         
     | 
| 
      
 423 
     | 
    
         
            +
                        [],
         
     | 
| 
      
 424 
     | 
    
         
            +
                        [],
         
     | 
| 
      
 425 
     | 
    
         
            +
                        [],
         
     | 
| 
      
 426 
     | 
    
         
            +
                        [],
         
     | 
| 
      
 427 
     | 
    
         
            +
                    )
         
     | 
| 
      
 428 
     | 
    
         
            +
                    image_shapes = []
         
     | 
| 
      
 429 
     | 
    
         
            +
                    num_image_tokens = []
         
     | 
| 
       377 
430 
     | 
    
         
             
                    tokenized_str = []
         
     | 
| 
       378 
431 
     | 
    
         
             
                    for text_sep, image in zip(text_splits, images):
         
     | 
| 
       379 
432 
     | 
    
         
             
                        """encode text_sep"""
         
     | 
| 
       380 
433 
     | 
    
         
             
                        tokenized_sep = self.encode(text_sep, bos=False, eos=False)
         
     | 
| 
      
 434 
     | 
    
         
            +
             
     | 
| 
       381 
435 
     | 
    
         
             
                        tokenized_str += tokenized_sep
         
     | 
| 
       382 
436 
     | 
    
         
             
                        images_seq_mask += [False] * len(tokenized_sep)
         
     | 
| 
       383 
437 
     | 
    
         | 
| 
       384 
     | 
    
         
            -
                         
     | 
| 
       385 
     | 
    
         
            -
             
     | 
| 
       386 
     | 
    
         
            -
             
     | 
| 
       387 
     | 
    
         
            -
             
     | 
| 
       388 
     | 
    
         
            -
                            )
         
     | 
| 
      
 438 
     | 
    
         
            +
                        image_shapes.append(image.size)
         
     | 
| 
      
 439 
     | 
    
         
            +
             
     | 
| 
      
 440 
     | 
    
         
            +
                        if image.size[0] <= 640 and image.size[1] <= 640:
         
     | 
| 
      
 441 
     | 
    
         
            +
                            crop_ratio = [1, 1]
         
     | 
| 
       389 
442 
     | 
    
         
             
                        else:
         
     | 
| 
       390 
     | 
    
         
            -
                             
     | 
| 
       391 
     | 
    
         
            -
             
     | 
| 
      
 443 
     | 
    
         
            +
                            if cropping:
         
     | 
| 
      
 444 
     | 
    
         
            +
                                images_crop_raw, crop_ratio = dynamic_preprocess(
         
     | 
| 
      
 445 
     | 
    
         
            +
                                    image, image_size=IMAGE_SIZE
         
     | 
| 
      
 446 
     | 
    
         
            +
                                )
         
     | 
| 
      
 447 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 448 
     | 
    
         
            +
                                crop_ratio = [1, 1]
         
     | 
| 
       392 
449 
     | 
    
         | 
| 
       393 
450 
     | 
    
         
             
                        """process the global view"""
         
     | 
| 
      
 451 
     | 
    
         
            +
                        if self.image_size <= 640 and not cropping:
         
     | 
| 
      
 452 
     | 
    
         
            +
                            image = image.resize((self.image_size, self.image_size))
         
     | 
| 
      
 453 
     | 
    
         
            +
             
     | 
| 
       394 
454 
     | 
    
         
             
                        global_view = ImageOps.pad(
         
     | 
| 
       395 
455 
     | 
    
         
             
                            image,
         
     | 
| 
       396 
     | 
    
         
            -
                            (self. 
     | 
| 
      
 456 
     | 
    
         
            +
                            (self.base_size, self.base_size),
         
     | 
| 
       397 
457 
     | 
    
         
             
                            color=tuple(int(x * 255) for x in self.image_transform.mean),
         
     | 
| 
       398 
458 
     | 
    
         
             
                        )
         
     | 
| 
       399 
459 
     | 
    
         
             
                        images_list.append(self.image_transform(global_view))
         
     | 
| 
       400 
460 
     | 
    
         | 
| 
       401 
     | 
    
         
            -
                         
     | 
| 
       402 
     | 
    
         
            -
                        local_view = ImageOps.pad(
         
     | 
| 
       403 
     | 
    
         
            -
                            image,
         
     | 
| 
       404 
     | 
    
         
            -
                            (best_width, best_height),
         
     | 
| 
       405 
     | 
    
         
            -
                            color=tuple(int(x * 255) for x in self.image_transform.mean),
         
     | 
| 
       406 
     | 
    
         
            -
                        )
         
     | 
| 
       407 
     | 
    
         
            -
                        for i in range(0, best_height, self.image_size):
         
     | 
| 
       408 
     | 
    
         
            -
                            for j in range(0, best_width, self.image_size):
         
     | 
| 
       409 
     | 
    
         
            -
                                images_list.append(
         
     | 
| 
       410 
     | 
    
         
            -
                                    self.image_transform(
         
     | 
| 
       411 
     | 
    
         
            -
                                        local_view.crop(
         
     | 
| 
       412 
     | 
    
         
            -
                                            (j, i, j + self.image_size, i + self.image_size)
         
     | 
| 
       413 
     | 
    
         
            -
                                        )
         
     | 
| 
       414 
     | 
    
         
            -
                                    )
         
     | 
| 
       415 
     | 
    
         
            -
                                )
         
     | 
| 
       416 
     | 
    
         
            -
             
     | 
| 
       417 
     | 
    
         
            -
                        """record height / width crop num"""
         
     | 
| 
       418 
     | 
    
         
            -
                        num_width_tiles, num_height_tiles = (
         
     | 
| 
       419 
     | 
    
         
            -
                            best_width // self.image_size,
         
     | 
| 
       420 
     | 
    
         
            -
                            best_height // self.image_size,
         
     | 
| 
       421 
     | 
    
         
            -
                        )
         
     | 
| 
      
 461 
     | 
    
         
            +
                        num_width_tiles, num_height_tiles = crop_ratio
         
     | 
| 
       422 
462 
     | 
    
         
             
                        images_spatial_crop.append([num_width_tiles, num_height_tiles])
         
     | 
| 
       423 
463 
     | 
    
         | 
| 
      
 464 
     | 
    
         
            +
                        if num_width_tiles > 1 or num_height_tiles > 1:
         
     | 
| 
      
 465 
     | 
    
         
            +
                            for i in range(len(images_crop_raw)):
         
     | 
| 
      
 466 
     | 
    
         
            +
                                images_crop_list.append(self.image_transform(images_crop_raw[i]))
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
       424 
468 
     | 
    
         
             
                        """add image tokens"""
         
     | 
| 
       425 
     | 
    
         
            -
                         
     | 
| 
      
 469 
     | 
    
         
            +
                        num_queries = math.ceil(
         
     | 
| 
       426 
470 
     | 
    
         
             
                            (self.image_size // self.patch_size) / self.downsample_ratio
         
     | 
| 
       427 
471 
     | 
    
         
             
                        )
         
     | 
| 
       428 
     | 
    
         
            -
                         
     | 
| 
       429 
     | 
    
         
            -
             
     | 
| 
       430 
     | 
    
         
            -
                        # add a separator between global and local views
         
     | 
| 
       431 
     | 
    
         
            -
                        tokenized_image += [self.image_token_id]
         
     | 
| 
       432 
     | 
    
         
            -
                        # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
         
     | 
| 
       433 
     | 
    
         
            -
                        tokenized_image += (
         
     | 
| 
       434 
     | 
    
         
            -
                            [self.image_token_id]
         
     | 
| 
       435 
     | 
    
         
            -
                            * (num_height_tiles * h)
         
     | 
| 
       436 
     | 
    
         
            -
                            * (num_width_tiles * w + 1)
         
     | 
| 
      
 472 
     | 
    
         
            +
                        num_queries_base = math.ceil(
         
     | 
| 
      
 473 
     | 
    
         
            +
                            (self.base_size // self.patch_size) / self.downsample_ratio
         
     | 
| 
       437 
474 
     | 
    
         
             
                        )
         
     | 
| 
       438 
475 
     | 
    
         | 
| 
      
 476 
     | 
    
         
            +
                        tokenized_image = (
         
     | 
| 
      
 477 
     | 
    
         
            +
                            [self.image_token_id] * num_queries_base + [self.image_token_id]
         
     | 
| 
      
 478 
     | 
    
         
            +
                        ) * num_queries_base
         
     | 
| 
      
 479 
     | 
    
         
            +
                        tokenized_image += [self.image_token_id]
         
     | 
| 
      
 480 
     | 
    
         
            +
                        if num_width_tiles > 1 or num_height_tiles > 1:
         
     | 
| 
      
 481 
     | 
    
         
            +
                            tokenized_image += (
         
     | 
| 
      
 482 
     | 
    
         
            +
                                [self.image_token_id] * (num_queries * num_width_tiles)
         
     | 
| 
      
 483 
     | 
    
         
            +
                                + [self.image_token_id]
         
     | 
| 
      
 484 
     | 
    
         
            +
                            ) * (num_queries * num_height_tiles)
         
     | 
| 
       439 
485 
     | 
    
         
             
                        tokenized_str += tokenized_image
         
     | 
| 
      
 486 
     | 
    
         
            +
             
     | 
| 
       440 
487 
     | 
    
         
             
                        images_seq_mask += [True] * len(tokenized_image)
         
     | 
| 
       441 
     | 
    
         
            -
                         
     | 
| 
      
 488 
     | 
    
         
            +
                        num_image_tokens.append(len(tokenized_image))
         
     | 
| 
       442 
489 
     | 
    
         | 
| 
       443 
490 
     | 
    
         
             
                    """process the last text split"""
         
     | 
| 
       444 
491 
     | 
    
         
             
                    tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
         
     | 
| 
       445 
     | 
    
         
            -
             
     | 
| 
       446 
     | 
    
         
            -
                    if max_req_input_len > -1:
         
     | 
| 
       447 
     | 
    
         
            -
                        if max_req_input_len < len(tokenized_sep) + len(tokenized_str) - 1:
         
     | 
| 
       448 
     | 
    
         
            -
                            rest = max_req_input_len - len(tokenized_sep) - 1 - 1024
         
     | 
| 
       449 
     | 
    
         
            -
                            tokenized_str = tokenized_str[:rest]
         
     | 
| 
       450 
     | 
    
         
            -
                            images_seq_mask = images_seq_mask[:rest]
         
     | 
| 
      
 492 
     | 
    
         
            +
             
     | 
| 
       451 
493 
     | 
    
         
             
                    tokenized_str += tokenized_sep
         
     | 
| 
       452 
494 
     | 
    
         
             
                    images_seq_mask += [False] * len(tokenized_sep)
         
     | 
| 
       453 
495 
     | 
    
         | 
| 
         @@ -463,7 +505,64 @@ class DeepseekVLV2Processor(ProcessorMixin): 
     | 
|
| 
       463 
505 
     | 
    
         
             
                        images_seq_mask
         
     | 
| 
       464 
506 
     | 
    
         
             
                    ), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
         
     | 
| 
       465 
507 
     | 
    
         | 
| 
       466 
     | 
    
         
            -
                     
     | 
| 
      
 508 
     | 
    
         
            +
                    masked_tokenized_str = []
         
     | 
| 
      
 509 
     | 
    
         
            +
                    for token_index in tokenized_str:
         
     | 
| 
      
 510 
     | 
    
         
            +
                        if token_index != self.image_token_id:
         
     | 
| 
      
 511 
     | 
    
         
            +
                            masked_tokenized_str.append(token_index)
         
     | 
| 
      
 512 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 513 
     | 
    
         
            +
                            masked_tokenized_str.append(self.ignore_id)
         
     | 
| 
      
 514 
     | 
    
         
            +
             
     | 
| 
      
 515 
     | 
    
         
            +
                    assert (
         
     | 
| 
      
 516 
     | 
    
         
            +
                        len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
         
     | 
| 
      
 517 
     | 
    
         
            +
                    ), (
         
     | 
| 
      
 518 
     | 
    
         
            +
                        f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
         
     | 
| 
      
 519 
     | 
    
         
            +
                        f"imags_seq_mask's length {len(images_seq_mask)}, are not equal"
         
     | 
| 
      
 520 
     | 
    
         
            +
                    )
         
     | 
| 
      
 521 
     | 
    
         
            +
                    input_ids = torch.LongTensor(tokenized_str)
         
     | 
| 
      
 522 
     | 
    
         
            +
                    target_ids = torch.LongTensor(masked_tokenized_str)
         
     | 
| 
      
 523 
     | 
    
         
            +
                    images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
         
     | 
| 
      
 524 
     | 
    
         
            +
             
     | 
| 
      
 525 
     | 
    
         
            +
                    # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
         
     | 
| 
      
 526 
     | 
    
         
            +
                    target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
         
     | 
| 
      
 527 
     | 
    
         
            +
                        self.ignore_id
         
     | 
| 
      
 528 
     | 
    
         
            +
                    )
         
     | 
| 
      
 529 
     | 
    
         
            +
                    input_ids[input_ids < 0] = self.pad_id
         
     | 
| 
      
 530 
     | 
    
         
            +
             
     | 
| 
      
 531 
     | 
    
         
            +
                    inference_mode = True
         
     | 
| 
      
 532 
     | 
    
         
            +
             
     | 
| 
      
 533 
     | 
    
         
            +
                    if inference_mode:
         
     | 
| 
      
 534 
     | 
    
         
            +
                        # Remove the ending eos token
         
     | 
| 
      
 535 
     | 
    
         
            +
                        assert input_ids[-1] == self.eos_id
         
     | 
| 
      
 536 
     | 
    
         
            +
                        input_ids = input_ids[:-1]
         
     | 
| 
      
 537 
     | 
    
         
            +
                        target_ids = target_ids[:-1]
         
     | 
| 
      
 538 
     | 
    
         
            +
                        images_seq_mask = images_seq_mask[:-1]
         
     | 
| 
      
 539 
     | 
    
         
            +
             
     | 
| 
      
 540 
     | 
    
         
            +
                    if len(images_list) == 0:
         
     | 
| 
      
 541 
     | 
    
         
            +
                        pixel_values = torch.zeros((1, 3, self.base_size, self.base_size))
         
     | 
| 
      
 542 
     | 
    
         
            +
                        images_spatial_crop = torch.zeros((1, 1), dtype=torch.long)
         
     | 
| 
      
 543 
     | 
    
         
            +
                        images_crop = torch.zeros(
         
     | 
| 
      
 544 
     | 
    
         
            +
                            (1, 3, self.image_size, self.image_size)
         
     | 
| 
      
 545 
     | 
    
         
            +
                        ).unsqueeze(0)
         
     | 
| 
      
 546 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 547 
     | 
    
         
            +
                        pixel_values = torch.stack(images_list, dim=0)
         
     | 
| 
      
 548 
     | 
    
         
            +
                        images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
         
     | 
| 
      
 549 
     | 
    
         
            +
                        if images_crop_list:
         
     | 
| 
      
 550 
     | 
    
         
            +
                            images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0)
         
     | 
| 
      
 551 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 552 
     | 
    
         
            +
                            images_crop = torch.zeros(
         
     | 
| 
      
 553 
     | 
    
         
            +
                                (1, 3, self.image_size, self.image_size)
         
     | 
| 
      
 554 
     | 
    
         
            +
                            ).unsqueeze(0)
         
     | 
| 
      
 555 
     | 
    
         
            +
             
     | 
| 
      
 556 
     | 
    
         
            +
                    input_ids = input_ids.unsqueeze(0)
         
     | 
| 
      
 557 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 558 
     | 
    
         
            +
                        input_ids,
         
     | 
| 
      
 559 
     | 
    
         
            +
                        pixel_values,
         
     | 
| 
      
 560 
     | 
    
         
            +
                        images_crop,
         
     | 
| 
      
 561 
     | 
    
         
            +
                        images_seq_mask,
         
     | 
| 
      
 562 
     | 
    
         
            +
                        images_spatial_crop,
         
     | 
| 
      
 563 
     | 
    
         
            +
                        num_image_tokens,
         
     | 
| 
      
 564 
     | 
    
         
            +
                        image_shapes,
         
     | 
| 
      
 565 
     | 
    
         
            +
                    )
         
     | 
| 
       467 
566 
     | 
    
         | 
| 
       468 
567 
     | 
    
         | 
| 
       469 
568 
     | 
    
         
             
            class DeepseekVL2VisionEncoderConfig(PretrainedConfig):
         
     | 
| 
         @@ -548,7 +647,6 @@ class DeepseekVL2MlpProjectorConfig(PretrainedConfig): 
     | 
|
| 
       548 
647 
     | 
    
         | 
| 
       549 
648 
     | 
    
         | 
| 
       550 
649 
     | 
    
         
             
            class DeepseekV2Config(PretrainedConfig):
         
     | 
| 
       551 
     | 
    
         
            -
             
     | 
| 
       552 
650 
     | 
    
         
             
                model_type = "deepseek_v2"
         
     | 
| 
       553 
651 
     | 
    
         
             
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 
       554 
652 
     | 
    
         | 
| 
         @@ -0,0 +1,64 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from typing import Optional
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            from transformers import AutoProcessor, Qwen2_5_VLProcessor
         
     | 
| 
      
 4 
     | 
    
         
            +
            from transformers.image_processing_utils import BaseImageProcessor
         
     | 
| 
      
 5 
     | 
    
         
            +
            from transformers.models.qwen2 import Qwen2Config
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            from sglang.srt.configs.dots_vlm import DotsVisionConfig
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            class DotsOCRConfig(Qwen2Config):
         
     | 
| 
      
 11 
     | 
    
         
            +
                model_type = "dots_ocr"
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 14 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 15 
     | 
    
         
            +
                    image_token_id=151665,
         
     | 
| 
      
 16 
     | 
    
         
            +
                    video_token_id=151656,
         
     | 
| 
      
 17 
     | 
    
         
            +
                    vision_config: Optional[dict] = None,
         
     | 
| 
      
 18 
     | 
    
         
            +
                    *args,
         
     | 
| 
      
 19 
     | 
    
         
            +
                    **kwargs
         
     | 
| 
      
 20 
     | 
    
         
            +
                ):
         
     | 
| 
      
 21 
     | 
    
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 
      
 22 
     | 
    
         
            +
                    self.image_token_id = image_token_id
         
     | 
| 
      
 23 
     | 
    
         
            +
                    self.video_token_id = video_token_id
         
     | 
| 
      
 24 
     | 
    
         
            +
                    self.vision_config = DotsVisionConfig(**(vision_config or {}))
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
                def save_pretrained(self, save_directory, **kwargs):
         
     | 
| 
      
 27 
     | 
    
         
            +
                    self._auto_class = None
         
     | 
| 
      
 28 
     | 
    
         
            +
                    super().save_pretrained(save_directory, **kwargs)
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
            class DummyVideoProcessor(BaseImageProcessor):
         
     | 
| 
      
 32 
     | 
    
         
            +
                model_input_names = ["pixel_values"]
         
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
                def __call__(self, *args, **kwargs):
         
     | 
| 
      
 35 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
            class DotsVLProcessor(Qwen2_5_VLProcessor):
         
     | 
| 
      
 39 
     | 
    
         
            +
                def __init__(
         
     | 
| 
      
 40 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 41 
     | 
    
         
            +
                    image_processor=None,
         
     | 
| 
      
 42 
     | 
    
         
            +
                    tokenizer=None,
         
     | 
| 
      
 43 
     | 
    
         
            +
                    video_processor=None,
         
     | 
| 
      
 44 
     | 
    
         
            +
                    chat_template=None,
         
     | 
| 
      
 45 
     | 
    
         
            +
                    **kwargs
         
     | 
| 
      
 46 
     | 
    
         
            +
                ):
         
     | 
| 
      
 47 
     | 
    
         
            +
                    if video_processor is None:
         
     | 
| 
      
 48 
     | 
    
         
            +
                        video_processor = DummyVideoProcessor()
         
     | 
| 
      
 49 
     | 
    
         
            +
                    super().__init__(
         
     | 
| 
      
 50 
     | 
    
         
            +
                        image_processor, tokenizer, video_processor, chat_template=chat_template
         
     | 
| 
      
 51 
     | 
    
         
            +
                    )
         
     | 
| 
      
 52 
     | 
    
         
            +
                    self.image_token = (
         
     | 
| 
      
 53 
     | 
    
         
            +
                        "<|imgpad|>"
         
     | 
| 
      
 54 
     | 
    
         
            +
                        if not hasattr(tokenizer, "image_token")
         
     | 
| 
      
 55 
     | 
    
         
            +
                        else tokenizer.image_token
         
     | 
| 
      
 56 
     | 
    
         
            +
                    )
         
     | 
| 
      
 57 
     | 
    
         
            +
                    self.image_token_id = (
         
     | 
| 
      
 58 
     | 
    
         
            +
                        tokenizer.image_token_id
         
     | 
| 
      
 59 
     | 
    
         
            +
                        if getattr(tokenizer, "image_token_id", None) is not None
         
     | 
| 
      
 60 
     | 
    
         
            +
                        else tokenizer.convert_tokens_to_ids(self.image_token)
         
     | 
| 
      
 61 
     | 
    
         
            +
                    )
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
            AutoProcessor.register(DotsOCRConfig, DotsVLProcessor)
         
     | 
    
        sglang/srt/configs/dots_vlm.py
    CHANGED
    
    | 
         @@ -1,10 +1,5 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            from  
     | 
| 
       2 
     | 
    
         
            -
             
     | 
| 
       3 
     | 
    
         
            -
            from transformers import AutoProcessor, LlamaTokenizerFast, PretrainedConfig
         
     | 
| 
       4 
     | 
    
         
            -
            from transformers.feature_extraction_utils import BatchFeature
         
     | 
| 
       5 
     | 
    
         
            -
            from transformers.image_utils import ImageInput
         
     | 
| 
       6 
     | 
    
         
            -
            from transformers.processing_utils import ProcessingKwargs, Unpack
         
     | 
| 
       7 
     | 
    
         
            -
            from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
         
     | 
| 
      
 1 
     | 
    
         
            +
            from transformers import AutoProcessor, PretrainedConfig
         
     | 
| 
      
 2 
     | 
    
         
            +
            from transformers.processing_utils import ProcessingKwargs
         
     | 
| 
       8 
3 
     | 
    
         | 
| 
       9 
4 
     | 
    
         
             
            try:
         
     | 
| 
       10 
5 
     | 
    
         
             
                from transformers import Qwen2_5_VLProcessor
         
     |