sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -4,7 +4,6 @@ from __future__ import annotations 
     | 
|
| 
       4 
4 
     | 
    
         | 
| 
       5 
5 
     | 
    
         
             
            # ruff: noqa: SIM117
         
     | 
| 
       6 
6 
     | 
    
         
             
            import collections
         
     | 
| 
       7 
     | 
    
         
            -
            import concurrent
         
     | 
| 
       8 
7 
     | 
    
         
             
            import dataclasses
         
     | 
| 
       9 
8 
     | 
    
         
             
            import fnmatch
         
     | 
| 
       10 
9 
     | 
    
         
             
            import glob
         
     | 
| 
         @@ -12,13 +11,11 @@ import json 
     | 
|
| 
       12 
11 
     | 
    
         
             
            import logging
         
     | 
| 
       13 
12 
     | 
    
         
             
            import math
         
     | 
| 
       14 
13 
     | 
    
         
             
            import os
         
     | 
| 
       15 
     | 
    
         
            -
            import re
         
     | 
| 
       16 
14 
     | 
    
         
             
            import socket
         
     | 
| 
       17 
15 
     | 
    
         
             
            import threading
         
     | 
| 
       18 
16 
     | 
    
         
             
            import time
         
     | 
| 
       19 
17 
     | 
    
         
             
            from abc import ABC, abstractmethod
         
     | 
| 
       20 
     | 
    
         
            -
            from  
     | 
| 
       21 
     | 
    
         
            -
            from contextlib import contextmanager
         
     | 
| 
      
 18 
     | 
    
         
            +
            from contextlib import contextmanager, suppress
         
     | 
| 
       22 
19 
     | 
    
         
             
            from typing import (
         
     | 
| 
       23 
20 
     | 
    
         
             
                TYPE_CHECKING,
         
     | 
| 
       24 
21 
     | 
    
         
             
                Any,
         
     | 
| 
         @@ -30,17 +27,28 @@ from typing import ( 
     | 
|
| 
       30 
27 
     | 
    
         
             
                Tuple,
         
     | 
| 
       31 
28 
     | 
    
         
             
                cast,
         
     | 
| 
       32 
29 
     | 
    
         
             
            )
         
     | 
| 
       33 
     | 
    
         
            -
            from urllib.parse import urlparse
         
     | 
| 
       34 
30 
     | 
    
         | 
| 
       35 
31 
     | 
    
         
             
            import huggingface_hub
         
     | 
| 
       36 
32 
     | 
    
         
             
            import numpy as np
         
     | 
| 
       37 
     | 
    
         
            -
            import requests
         
     | 
| 
       38 
     | 
    
         
            -
            import safetensors.torch
         
     | 
| 
       39 
33 
     | 
    
         
             
            import torch
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            # Try to import accelerate (optional dependency)
         
     | 
| 
      
 38 
     | 
    
         
            +
            try:
         
     | 
| 
      
 39 
     | 
    
         
            +
                from accelerate import infer_auto_device_map, init_empty_weights
         
     | 
| 
      
 40 
     | 
    
         
            +
                from accelerate.utils import get_max_memory
         
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
                HAS_ACCELERATE = True
         
     | 
| 
      
 43 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 44 
     | 
    
         
            +
                HAS_ACCELERATE = False
         
     | 
| 
      
 45 
     | 
    
         
            +
                infer_auto_device_map = None
         
     | 
| 
      
 46 
     | 
    
         
            +
                init_empty_weights = None
         
     | 
| 
      
 47 
     | 
    
         
            +
                get_max_memory = None
         
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
       40 
49 
     | 
    
         
             
            from huggingface_hub import HfApi, hf_hub_download
         
     | 
| 
       41 
50 
     | 
    
         
             
            from torch import nn
         
     | 
| 
       42 
     | 
    
         
            -
            from  
     | 
| 
       43 
     | 
    
         
            -
            from transformers import AutoModelForCausalLM
         
     | 
| 
      
 51 
     | 
    
         
            +
            from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
         
     | 
| 
       44 
52 
     | 
    
         
             
            from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
         
     | 
| 
       45 
53 
     | 
    
         | 
| 
       46 
54 
     | 
    
         
             
            from sglang.srt.configs.load_config import LoadConfig, LoadFormat
         
     | 
| 
         @@ -54,14 +62,23 @@ from sglang.srt.distributed import ( 
     | 
|
| 
       54 
62 
     | 
    
         
             
                get_tensor_model_parallel_rank,
         
     | 
| 
       55 
63 
     | 
    
         
             
                get_tensor_model_parallel_world_size,
         
     | 
| 
       56 
64 
     | 
    
         
             
            )
         
     | 
| 
      
 65 
     | 
    
         
            +
            from sglang.srt.layers.modelopt_utils import QUANT_CFG_CHOICES
         
     | 
| 
      
 66 
     | 
    
         
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
      
 67 
     | 
    
         
            +
            from sglang.srt.model_loader.remote_instance_weight_loader_utils import (
         
     | 
| 
      
 68 
     | 
    
         
            +
                trigger_transferring_weights_request,
         
     | 
| 
      
 69 
     | 
    
         
            +
            )
         
     | 
| 
       57 
70 
     | 
    
         
             
            from sglang.srt.model_loader.utils import (
         
     | 
| 
       58 
71 
     | 
    
         
             
                get_model_architecture,
         
     | 
| 
       59 
72 
     | 
    
         
             
                post_load_weights,
         
     | 
| 
       60 
73 
     | 
    
         
             
                set_default_torch_dtype,
         
     | 
| 
       61 
74 
     | 
    
         
             
            )
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
            # Constants for memory management
         
     | 
| 
      
 77 
     | 
    
         
            +
            DEFAULT_GPU_MEMORY_FRACTION_FOR_CALIBRATION = (
         
     | 
| 
      
 78 
     | 
    
         
            +
                0.8  # Reserve 20% GPU memory headroom for ModelOpt calibration
         
     | 
| 
      
 79 
     | 
    
         
            +
            )
         
     | 
| 
      
 80 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
       62 
81 
     | 
    
         
             
            from sglang.srt.model_loader.weight_utils import (
         
     | 
| 
       63 
     | 
    
         
            -
                _BAR_FORMAT,
         
     | 
| 
       64 
     | 
    
         
            -
                default_weight_loader,
         
     | 
| 
       65 
82 
     | 
    
         
             
                download_safetensors_index_file_from_hf,
         
     | 
| 
       66 
83 
     | 
    
         
             
                download_weights_from_hf,
         
     | 
| 
       67 
84 
     | 
    
         
             
                filter_duplicate_safetensors_files,
         
     | 
| 
         @@ -77,14 +94,12 @@ from sglang.srt.model_loader.weight_utils import ( 
     | 
|
| 
       77 
94 
     | 
    
         
             
                safetensors_weights_iterator,
         
     | 
| 
       78 
95 
     | 
    
         
             
                set_runai_streamer_env,
         
     | 
| 
       79 
96 
     | 
    
         
             
            )
         
     | 
| 
       80 
     | 
    
         
            -
            from sglang.srt.remote_instance_weight_loader_utils import (
         
     | 
| 
       81 
     | 
    
         
            -
                trigger_transferring_weights_request,
         
     | 
| 
       82 
     | 
    
         
            -
            )
         
     | 
| 
       83 
97 
     | 
    
         
             
            from sglang.srt.utils import (
         
     | 
| 
       84 
98 
     | 
    
         
             
                get_bool_env_var,
         
     | 
| 
       85 
99 
     | 
    
         
             
                get_device_capability,
         
     | 
| 
       86 
100 
     | 
    
         
             
                is_npu,
         
     | 
| 
       87 
101 
     | 
    
         
             
                is_pin_memory_available,
         
     | 
| 
      
 102 
     | 
    
         
            +
                rank0_log,
         
     | 
| 
       88 
103 
     | 
    
         
             
                set_weight_attrs,
         
     | 
| 
       89 
104 
     | 
    
         
             
            )
         
     | 
| 
       90 
105 
     | 
    
         | 
| 
         @@ -94,6 +109,8 @@ if TYPE_CHECKING: 
     | 
|
| 
       94 
109 
     | 
    
         
             
                from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       95 
110 
     | 
    
         | 
| 
       96 
111 
     | 
    
         
             
            _is_npu = is_npu()
         
     | 
| 
      
 112 
     | 
    
         
            +
            # ModelOpt: QUANT_CFG_CHOICES is imported from modelopt_utils.py
         
     | 
| 
      
 113 
     | 
    
         
            +
            # which contains the complete mapping of quantization config choices
         
     | 
| 
       97 
114 
     | 
    
         | 
| 
       98 
115 
     | 
    
         | 
| 
       99 
116 
     | 
    
         
             
            @contextmanager
         
     | 
| 
         @@ -163,11 +180,12 @@ def _get_quantization_config( 
     | 
|
| 
       163 
180 
     | 
    
         
             
                model_config: ModelConfig,
         
     | 
| 
       164 
181 
     | 
    
         
             
                load_config: LoadConfig,
         
     | 
| 
       165 
182 
     | 
    
         
             
                packed_modules_mapping: Dict[str, List[str]],
         
     | 
| 
      
 183 
     | 
    
         
            +
                remap_prefix: Dict[str, str] | None = None,
         
     | 
| 
       166 
184 
     | 
    
         
             
            ) -> Optional[QuantizationConfig]:
         
     | 
| 
       167 
185 
     | 
    
         
             
                """Get the quantization config."""
         
     | 
| 
       168 
186 
     | 
    
         
             
                if model_config.quantization is not None:
         
     | 
| 
       169 
187 
     | 
    
         
             
                    quant_config = get_quant_config(
         
     | 
| 
       170 
     | 
    
         
            -
                        model_config, load_config, packed_modules_mapping
         
     | 
| 
      
 188 
     | 
    
         
            +
                        model_config, load_config, packed_modules_mapping, remap_prefix
         
     | 
| 
       171 
189 
     | 
    
         
             
                    )
         
     | 
| 
       172 
190 
     | 
    
         
             
                    # (yizhang2077) workaround for nvidia/Llama-4-Maverick-17B-128E-Eagle3
         
     | 
| 
       173 
191 
     | 
    
         
             
                    if quant_config is None:
         
     | 
| 
         @@ -203,10 +221,14 @@ def _initialize_model( 
     | 
|
| 
       203 
221 
     | 
    
         
             
                """Initialize a model with the given configurations."""
         
     | 
| 
       204 
222 
     | 
    
         
             
                model_class, _ = get_model_architecture(model_config)
         
     | 
| 
       205 
223 
     | 
    
         
             
                packed_modules_mapping = getattr(model_class, "packed_modules_mapping", {})
         
     | 
| 
      
 224 
     | 
    
         
            +
                remap_prefix = getattr(model_class, "remap_prefix", None)
         
     | 
| 
       206 
225 
     | 
    
         
             
                if _is_npu:
         
     | 
| 
       207 
226 
     | 
    
         
             
                    packed_modules_mapping.update(
         
     | 
| 
       208 
227 
     | 
    
         
             
                        {
         
     | 
| 
       209 
     | 
    
         
            -
                            "visual": { 
     | 
| 
      
 228 
     | 
    
         
            +
                            "visual": {
         
     | 
| 
      
 229 
     | 
    
         
            +
                                "qkv_proj": ["qkv"],
         
     | 
| 
      
 230 
     | 
    
         
            +
                                "gate_up_proj": ["gate_proj", "up_proj"],
         
     | 
| 
      
 231 
     | 
    
         
            +
                            },
         
     | 
| 
       210 
232 
     | 
    
         
             
                            "vision_model": {
         
     | 
| 
       211 
233 
     | 
    
         
             
                                "qkv_proj": ["q_proj", "k_proj", "v_proj"],
         
     | 
| 
       212 
234 
     | 
    
         
             
                                "proj": ["out_proj"],
         
     | 
| 
         @@ -223,13 +245,22 @@ def _initialize_model( 
     | 
|
| 
       223 
245 
     | 
    
         
             
                    )
         
     | 
| 
       224 
246 
     | 
    
         | 
| 
       225 
247 
     | 
    
         
             
                quant_config = _get_quantization_config(
         
     | 
| 
       226 
     | 
    
         
            -
                    model_config, load_config, packed_modules_mapping
         
     | 
| 
       227 
     | 
    
         
            -
                )
         
     | 
| 
       228 
     | 
    
         
            -
                return model_class(
         
     | 
| 
       229 
     | 
    
         
            -
                    config=model_config.hf_config,
         
     | 
| 
       230 
     | 
    
         
            -
                    quant_config=quant_config,
         
     | 
| 
      
 248 
     | 
    
         
            +
                    model_config, load_config, packed_modules_mapping, remap_prefix
         
     | 
| 
       231 
249 
     | 
    
         
             
                )
         
     | 
| 
       232 
250 
     | 
    
         | 
| 
      
 251 
     | 
    
         
            +
                # Build kwargs conditionally
         
     | 
| 
      
 252 
     | 
    
         
            +
                kwargs = {
         
     | 
| 
      
 253 
     | 
    
         
            +
                    "config": model_config.hf_config,
         
     | 
| 
      
 254 
     | 
    
         
            +
                    "quant_config": quant_config,
         
     | 
| 
      
 255 
     | 
    
         
            +
                }
         
     | 
| 
      
 256 
     | 
    
         
            +
             
     | 
| 
      
 257 
     | 
    
         
            +
                # Only add sparse head kwargs if envs.SGLANG_EMBEDDINGS_SPARSE_HEAD.is_set()
         
     | 
| 
      
 258 
     | 
    
         
            +
                if envs.SGLANG_EMBEDDINGS_SPARSE_HEAD.is_set():
         
     | 
| 
      
 259 
     | 
    
         
            +
                    kwargs["sparse_head"] = envs.SGLANG_EMBEDDINGS_SPARSE_HEAD.value
         
     | 
| 
      
 260 
     | 
    
         
            +
                    kwargs["model_path"] = model_config.model_path
         
     | 
| 
      
 261 
     | 
    
         
            +
             
     | 
| 
      
 262 
     | 
    
         
            +
                return model_class(**kwargs)
         
     | 
| 
      
 263 
     | 
    
         
            +
             
     | 
| 
       233 
264 
     | 
    
         | 
| 
       234 
265 
     | 
    
         
             
            class BaseModelLoader(ABC):
         
     | 
| 
       235 
266 
     | 
    
         
             
                """Base class for model loaders."""
         
     | 
| 
         @@ -421,10 +452,8 @@ class DefaultModelLoader(BaseModelLoader): 
     | 
|
| 
       421 
452 
     | 
    
         
             
                            hf_weights_files,
         
     | 
| 
       422 
453 
     | 
    
         
             
                        )
         
     | 
| 
       423 
454 
     | 
    
         
             
                    elif use_safetensors:
         
     | 
| 
       424 
     | 
    
         
            -
                         
     | 
| 
       425 
     | 
    
         
            -
             
     | 
| 
       426 
     | 
    
         
            -
                        weight_loader_disable_mmap = global_server_args_dict.get(
         
     | 
| 
       427 
     | 
    
         
            -
                            "weight_loader_disable_mmap"
         
     | 
| 
      
 455 
     | 
    
         
            +
                        weight_loader_disable_mmap = (
         
     | 
| 
      
 456 
     | 
    
         
            +
                            get_global_server_args().weight_loader_disable_mmap
         
     | 
| 
       428 
457 
     | 
    
         
             
                        )
         
     | 
| 
       429 
458 
     | 
    
         | 
| 
       430 
459 
     | 
    
         
             
                        if extra_config.get("enable_multithread_load"):
         
     | 
| 
         @@ -474,12 +503,87 @@ class DefaultModelLoader(BaseModelLoader): 
     | 
|
| 
       474 
503 
     | 
    
         
             
                        model_config.model_path, model_config.revision, fall_back_to_pt=True
         
     | 
| 
       475 
504 
     | 
    
         
             
                    )
         
     | 
| 
       476 
505 
     | 
    
         | 
| 
      
 506 
     | 
    
         
            +
                def _load_modelopt_base_model(self, model_config: ModelConfig) -> nn.Module:
         
     | 
| 
      
 507 
     | 
    
         
            +
                    """Load and prepare the base model for ModelOpt quantization.
         
     | 
| 
      
 508 
     | 
    
         
            +
             
     | 
| 
      
 509 
     | 
    
         
            +
                    This method handles the common model loading logic shared between
         
     | 
| 
      
 510 
     | 
    
         
            +
                    DefaultModelLoader (conditional) and ModelOptModelLoader (dedicated).
         
     | 
| 
      
 511 
     | 
    
         
            +
                    """
         
     | 
| 
      
 512 
     | 
    
         
            +
                    if not HAS_ACCELERATE:
         
     | 
| 
      
 513 
     | 
    
         
            +
                        raise ImportError(
         
     | 
| 
      
 514 
     | 
    
         
            +
                            "accelerate is required for ModelOpt quantization. "
         
     | 
| 
      
 515 
     | 
    
         
            +
                            "Please install it with: pip install accelerate"
         
     | 
| 
      
 516 
     | 
    
         
            +
                        )
         
     | 
| 
      
 517 
     | 
    
         
            +
             
     | 
| 
      
 518 
     | 
    
         
            +
                    hf_config = AutoConfig.from_pretrained(
         
     | 
| 
      
 519 
     | 
    
         
            +
                        model_config.model_path, trust_remote_code=True
         
     | 
| 
      
 520 
     | 
    
         
            +
                    )
         
     | 
| 
      
 521 
     | 
    
         
            +
                    with init_empty_weights():
         
     | 
| 
      
 522 
     | 
    
         
            +
                        torch_dtype = getattr(hf_config, "torch_dtype", torch.float16)
         
     | 
| 
      
 523 
     | 
    
         
            +
                        model = AutoModelForCausalLM.from_config(
         
     | 
| 
      
 524 
     | 
    
         
            +
                            hf_config, torch_dtype=torch_dtype, trust_remote_code=True
         
     | 
| 
      
 525 
     | 
    
         
            +
                        )
         
     | 
| 
      
 526 
     | 
    
         
            +
                    max_memory = get_max_memory()
         
     | 
| 
      
 527 
     | 
    
         
            +
                    inferred_device_map = infer_auto_device_map(model, max_memory=max_memory)
         
     | 
| 
      
 528 
     | 
    
         
            +
             
     | 
| 
      
 529 
     | 
    
         
            +
                    on_cpu = "cpu" in inferred_device_map.values()
         
     | 
| 
      
 530 
     | 
    
         
            +
                    model_kwargs = {"torch_dtype": "auto"}
         
     | 
| 
      
 531 
     | 
    
         
            +
                    device_map = "auto"
         
     | 
| 
      
 532 
     | 
    
         
            +
             
     | 
| 
      
 533 
     | 
    
         
            +
                    if on_cpu:
         
     | 
| 
      
 534 
     | 
    
         
            +
                        for device in max_memory.keys():
         
     | 
| 
      
 535 
     | 
    
         
            +
                            if isinstance(device, int):
         
     | 
| 
      
 536 
     | 
    
         
            +
                                max_memory[device] *= DEFAULT_GPU_MEMORY_FRACTION_FOR_CALIBRATION
         
     | 
| 
      
 537 
     | 
    
         
            +
             
     | 
| 
      
 538 
     | 
    
         
            +
                        logger.warning(
         
     | 
| 
      
 539 
     | 
    
         
            +
                            "Model does not fit to the GPU mem. "
         
     | 
| 
      
 540 
     | 
    
         
            +
                            f"We apply the following memory limit for calibration: \n{max_memory}\n"
         
     | 
| 
      
 541 
     | 
    
         
            +
                            f"If you hit GPU OOM issue, please adjust the memory fraction "
         
     | 
| 
      
 542 
     | 
    
         
            +
                            f"(currently {DEFAULT_GPU_MEMORY_FRACTION_FOR_CALIBRATION}) or "
         
     | 
| 
      
 543 
     | 
    
         
            +
                            "reduce the calibration `batch_size` manually."
         
     | 
| 
      
 544 
     | 
    
         
            +
                        )
         
     | 
| 
      
 545 
     | 
    
         
            +
                        model_kwargs["max_memory"] = max_memory
         
     | 
| 
      
 546 
     | 
    
         
            +
             
     | 
| 
      
 547 
     | 
    
         
            +
                    model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 
      
 548 
     | 
    
         
            +
                        model_config.model_path,
         
     | 
| 
      
 549 
     | 
    
         
            +
                        device_map=device_map,
         
     | 
| 
      
 550 
     | 
    
         
            +
                        **model_kwargs,
         
     | 
| 
      
 551 
     | 
    
         
            +
                        trust_remote_code=True,
         
     | 
| 
      
 552 
     | 
    
         
            +
                    )
         
     | 
| 
      
 553 
     | 
    
         
            +
                    # Handle both legacy modelopt_quant and unified quantization flags
         
     | 
| 
      
 554 
     | 
    
         
            +
                    if hasattr(model_config, "modelopt_quant") and model_config.modelopt_quant:
         
     | 
| 
      
 555 
     | 
    
         
            +
                        # Legacy approach
         
     | 
| 
      
 556 
     | 
    
         
            +
                        quant_choice_str = model_config.modelopt_quant
         
     | 
| 
      
 557 
     | 
    
         
            +
                        rank0_log(f"ModelOpt quantization requested (legacy): {quant_choice_str}")
         
     | 
| 
      
 558 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 559 
     | 
    
         
            +
                        # Unified approach - extract quantization type
         
     | 
| 
      
 560 
     | 
    
         
            +
                        quant_choice_str = model_config._get_modelopt_quant_type()
         
     | 
| 
      
 561 
     | 
    
         
            +
                        rank0_log(
         
     | 
| 
      
 562 
     | 
    
         
            +
                            f"ModelOpt quantization requested (unified): {model_config.quantization} -> {quant_choice_str}"
         
     | 
| 
      
 563 
     | 
    
         
            +
                        )
         
     | 
| 
      
 564 
     | 
    
         
            +
             
     | 
| 
      
 565 
     | 
    
         
            +
                    if not isinstance(quant_choice_str, str):
         
     | 
| 
      
 566 
     | 
    
         
            +
                        raise TypeError(
         
     | 
| 
      
 567 
     | 
    
         
            +
                            f"Quantization type must be a string (e.g., 'fp8'), "
         
     | 
| 
      
 568 
     | 
    
         
            +
                            f"got {type(quant_choice_str)}"
         
     | 
| 
      
 569 
     | 
    
         
            +
                        )
         
     | 
| 
      
 570 
     | 
    
         
            +
             
     | 
| 
      
 571 
     | 
    
         
            +
                    return model
         
     | 
| 
      
 572 
     | 
    
         
            +
             
     | 
| 
       477 
573 
     | 
    
         
             
                def load_model(
         
     | 
| 
       478 
574 
     | 
    
         
             
                    self,
         
     | 
| 
       479 
575 
     | 
    
         
             
                    *,
         
     | 
| 
       480 
576 
     | 
    
         
             
                    model_config: ModelConfig,
         
     | 
| 
       481 
577 
     | 
    
         
             
                    device_config: DeviceConfig,
         
     | 
| 
       482 
578 
     | 
    
         
             
                ) -> nn.Module:
         
     | 
| 
      
 579 
     | 
    
         
            +
             
     | 
| 
      
 580 
     | 
    
         
            +
                    if hasattr(model_config, "modelopt_quant") and model_config.modelopt_quant:
         
     | 
| 
      
 581 
     | 
    
         
            +
                        # Load base model using shared method
         
     | 
| 
      
 582 
     | 
    
         
            +
                        model = self._load_modelopt_base_model(model_config)
         
     | 
| 
      
 583 
     | 
    
         
            +
                        # Note: DefaultModelLoader doesn't do additional quantization processing
         
     | 
| 
      
 584 
     | 
    
         
            +
                        # For full ModelOpt quantization, use ModelOptModelLoader
         
     | 
| 
      
 585 
     | 
    
         
            +
                        return model.eval()
         
     | 
| 
      
 586 
     | 
    
         
            +
             
     | 
| 
       483 
587 
     | 
    
         
             
                    target_device = torch.device(device_config.device)
         
     | 
| 
       484 
588 
     | 
    
         
             
                    with set_default_torch_dtype(model_config.dtype):
         
     | 
| 
       485 
589 
     | 
    
         
             
                        with target_device:
         
     | 
| 
         @@ -488,9 +592,9 @@ class DefaultModelLoader(BaseModelLoader): 
     | 
|
| 
       488 
592 
     | 
    
         
             
                                self.load_config,
         
     | 
| 
       489 
593 
     | 
    
         
             
                            )
         
     | 
| 
       490 
594 
     | 
    
         | 
| 
       491 
     | 
    
         
            -
             
     | 
| 
       492 
     | 
    
         
            -
             
     | 
| 
       493 
     | 
    
         
            -
             
     | 
| 
      
 595 
     | 
    
         
            +
                        self.load_weights_and_postprocess(
         
     | 
| 
      
 596 
     | 
    
         
            +
                            model, self._get_all_weights(model_config, model), target_device
         
     | 
| 
      
 597 
     | 
    
         
            +
                        )
         
     | 
| 
       494 
598 
     | 
    
         | 
| 
       495 
599 
     | 
    
         
             
                    return model.eval()
         
     | 
| 
       496 
600 
     | 
    
         | 
| 
         @@ -508,6 +612,8 @@ class DefaultModelLoader(BaseModelLoader): 
     | 
|
| 
       508 
612 
     | 
    
         
             
                            # parameters onto device for processing and back off after.
         
     | 
| 
       509 
613 
     | 
    
         
             
                            with device_loading_context(module, target_device):
         
     | 
| 
       510 
614 
     | 
    
         
             
                                quant_method.process_weights_after_loading(module)
         
     | 
| 
      
 615 
     | 
    
         
            +
                            if _is_npu:
         
     | 
| 
      
 616 
     | 
    
         
            +
                                torch.npu.empty_cache()
         
     | 
| 
       511 
617 
     | 
    
         | 
| 
       512 
618 
     | 
    
         | 
| 
       513 
619 
     | 
    
         
             
            class LayeredModelLoader(DefaultModelLoader):
         
     | 
| 
         @@ -526,9 +632,9 @@ class LayeredModelLoader(DefaultModelLoader): 
     | 
|
| 
       526 
632 
     | 
    
         
             
                    device_config: DeviceConfig,
         
     | 
| 
       527 
633 
     | 
    
         
             
                ) -> nn.Module:
         
     | 
| 
       528 
634 
     | 
    
         
             
                    from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
         
     | 
| 
       529 
     | 
    
         
            -
                    from sglang.srt. 
     | 
| 
      
 635 
     | 
    
         
            +
                    from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       530 
636 
     | 
    
         | 
| 
       531 
     | 
    
         
            -
                    torchao_config =  
     | 
| 
      
 637 
     | 
    
         
            +
                    torchao_config = get_global_server_args().torchao_config
         
     | 
| 
       532 
638 
     | 
    
         
             
                    target_device = torch.device(device_config.device)
         
     | 
| 
       533 
639 
     | 
    
         | 
| 
       534 
640 
     | 
    
         
             
                    with set_default_torch_dtype(model_config.dtype):
         
     | 
| 
         @@ -1417,7 +1523,7 @@ class RemoteInstanceModelLoader(BaseModelLoader): 
     | 
|
| 
       1417 
1523 
     | 
    
         
             
                        f"load format {load_config.load_format}"
         
     | 
| 
       1418 
1524 
     | 
    
         
             
                    )
         
     | 
| 
       1419 
1525 
     | 
    
         | 
| 
       1420 
     | 
    
         
            -
                    model_weights = f"instance://{ 
     | 
| 
      
 1526 
     | 
    
         
            +
                    model_weights = f"instance://{load_config.remote_instance_weight_loader_seed_instance_ip}:{load_config.remote_instance_weight_loader_send_weights_group_ports[load_config.tp_rank]}"
         
     | 
| 
       1421 
1527 
     | 
    
         | 
| 
       1422 
1528 
     | 
    
         
             
                    with set_default_torch_dtype(model_config.dtype):
         
     | 
| 
       1423 
1529 
     | 
    
         
             
                        with torch.device(device_config.device):
         
     | 
| 
         @@ -1439,11 +1545,12 @@ class RemoteInstanceModelLoader(BaseModelLoader): 
     | 
|
| 
       1439 
1545 
     | 
    
         
             
                def load_model_from_remote_instance(
         
     | 
| 
       1440 
1546 
     | 
    
         
             
                    self, model, client, model_config: ModelConfig, device_config: DeviceConfig
         
     | 
| 
       1441 
1547 
     | 
    
         
             
                ) -> nn.Module:
         
     | 
| 
      
 1548 
     | 
    
         
            +
                    load_config = self.load_config
         
     | 
| 
       1442 
1549 
     | 
    
         
             
                    instance_ip = socket.gethostbyname(socket.gethostname())
         
     | 
| 
       1443 
1550 
     | 
    
         
             
                    start_build_group_tic = time.time()
         
     | 
| 
       1444 
1551 
     | 
    
         
             
                    client.build_group(
         
     | 
| 
       1445 
1552 
     | 
    
         
             
                        gpu_id=device_config.gpu_id,
         
     | 
| 
       1446 
     | 
    
         
            -
                        tp_rank= 
     | 
| 
      
 1553 
     | 
    
         
            +
                        tp_rank=load_config.tp_rank,
         
     | 
| 
       1447 
1554 
     | 
    
         
             
                        instance_ip=instance_ip,
         
     | 
| 
       1448 
1555 
     | 
    
         
             
                    )
         
     | 
| 
       1449 
1556 
     | 
    
         
             
                    torch.cuda.synchronize()
         
     | 
| 
         @@ -1452,13 +1559,13 @@ class RemoteInstanceModelLoader(BaseModelLoader): 
     | 
|
| 
       1452 
1559 
     | 
    
         
             
                        f"finish building group for remote instance, time used: {(end_build_group_tic - start_build_group_tic):.4f}s"
         
     | 
| 
       1453 
1560 
     | 
    
         
             
                    )
         
     | 
| 
       1454 
1561 
     | 
    
         | 
| 
       1455 
     | 
    
         
            -
                    if  
     | 
| 
      
 1562 
     | 
    
         
            +
                    if load_config.tp_rank == 0:
         
     | 
| 
       1456 
1563 
     | 
    
         
             
                        t = threading.Thread(
         
     | 
| 
       1457 
1564 
     | 
    
         
             
                            target=trigger_transferring_weights_request,
         
     | 
| 
       1458 
1565 
     | 
    
         
             
                            args=(
         
     | 
| 
       1459 
     | 
    
         
            -
                                 
     | 
| 
       1460 
     | 
    
         
            -
                                 
     | 
| 
       1461 
     | 
    
         
            -
                                 
     | 
| 
      
 1566 
     | 
    
         
            +
                                load_config.remote_instance_weight_loader_seed_instance_ip,
         
     | 
| 
      
 1567 
     | 
    
         
            +
                                load_config.remote_instance_weight_loader_seed_instance_service_port,
         
     | 
| 
      
 1568 
     | 
    
         
            +
                                load_config.remote_instance_weight_loader_send_weights_group_ports,
         
     | 
| 
       1462 
1569 
     | 
    
         
             
                                instance_ip,
         
     | 
| 
       1463 
1570 
     | 
    
         
             
                            ),
         
     | 
| 
       1464 
1571 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -1664,9 +1771,303 @@ def load_model_with_cpu_quantization( 
     | 
|
| 
       1664 
1771 
     | 
    
         
             
                return model.eval()
         
     | 
| 
       1665 
1772 
     | 
    
         | 
| 
       1666 
1773 
     | 
    
         | 
| 
       1667 
     | 
    
         
            -
             
     | 
| 
      
 1774 
     | 
    
         
            +
            class ModelOptModelLoader(DefaultModelLoader):
         
     | 
| 
      
 1775 
     | 
    
         
            +
                """
         
     | 
| 
      
 1776 
     | 
    
         
            +
                Model loader that applies NVIDIA Model Optimizer quantization
         
     | 
| 
      
 1777 
     | 
    
         
            +
                """
         
     | 
| 
      
 1778 
     | 
    
         
            +
             
     | 
| 
      
 1779 
     | 
    
         
            +
                def __init__(self, load_config: LoadConfig):
         
     | 
| 
      
 1780 
     | 
    
         
            +
                    super().__init__(load_config)
         
     | 
| 
      
 1781 
     | 
    
         
            +
                    # Any ModelOpt specific initialization if needed
         
     | 
| 
      
 1782 
     | 
    
         
            +
             
     | 
| 
      
 1783 
     | 
    
         
            +
                def _setup_modelopt_quantization(
         
     | 
| 
      
 1784 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1785 
     | 
    
         
            +
                    model,
         
     | 
| 
      
 1786 
     | 
    
         
            +
                    tokenizer,
         
     | 
| 
      
 1787 
     | 
    
         
            +
                    quant_cfg,
         
     | 
| 
      
 1788 
     | 
    
         
            +
                    quantized_ckpt_restore_path: str | None = None,
         
     | 
| 
      
 1789 
     | 
    
         
            +
                    quantized_ckpt_save_path: str | None = None,
         
     | 
| 
      
 1790 
     | 
    
         
            +
                    export_path: str | None = None,
         
     | 
| 
      
 1791 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 1792 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1793 
     | 
    
         
            +
                    Set up ModelOpt quantization for the given model.
         
     | 
| 
      
 1794 
     | 
    
         
            +
             
     | 
| 
      
 1795 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 1796 
     | 
    
         
            +
                        model: The model to quantize
         
     | 
| 
      
 1797 
     | 
    
         
            +
                        tokenizer: The tokenizer associated with the model
         
     | 
| 
      
 1798 
     | 
    
         
            +
                        quant_cfg: The quantization configuration
         
     | 
| 
      
 1799 
     | 
    
         
            +
                        quantized_ckpt_restore_path: Path to restore quantized checkpoint from
         
     | 
| 
      
 1800 
     | 
    
         
            +
                        quantized_ckpt_save_path: Path to save quantized checkpoint to
         
     | 
| 
      
 1801 
     | 
    
         
            +
                        export_path: Path to export the quantized model in HuggingFace format
         
     | 
| 
      
 1802 
     | 
    
         
            +
             
     | 
| 
      
 1803 
     | 
    
         
            +
                    Raises:
         
     | 
| 
      
 1804 
     | 
    
         
            +
                        ImportError: If ModelOpt is not available
         
     | 
| 
      
 1805 
     | 
    
         
            +
                        Exception: If quantization setup fails
         
     | 
| 
      
 1806 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1807 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 1808 
     | 
    
         
            +
                        import modelopt.torch.opt as mto
         
     | 
| 
      
 1809 
     | 
    
         
            +
                        import modelopt.torch.quantization as mtq
         
     | 
| 
      
 1810 
     | 
    
         
            +
                        from modelopt.torch.quantization.utils import is_quantized
         
     | 
| 
      
 1811 
     | 
    
         
            +
                    except ImportError as e:
         
     | 
| 
      
 1812 
     | 
    
         
            +
                        raise ImportError(
         
     | 
| 
      
 1813 
     | 
    
         
            +
                            "ModelOpt is not available. Please install modelopt."
         
     | 
| 
      
 1814 
     | 
    
         
            +
                        ) from e
         
     | 
| 
      
 1815 
     | 
    
         
            +
             
     | 
| 
      
 1816 
     | 
    
         
            +
                    if is_quantized(model):
         
     | 
| 
      
 1817 
     | 
    
         
            +
                        rank0_log("Model is already quantized, skipping quantization setup.")
         
     | 
| 
      
 1818 
     | 
    
         
            +
                        return
         
     | 
| 
      
 1819 
     | 
    
         
            +
                    # Restore from checkpoint if provided
         
     | 
| 
      
 1820 
     | 
    
         
            +
                    if quantized_ckpt_restore_path:
         
     | 
| 
      
 1821 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 1822 
     | 
    
         
            +
                            mto.restore(model, quantized_ckpt_restore_path)
         
     | 
| 
      
 1823 
     | 
    
         
            +
                            rank0_log(
         
     | 
| 
      
 1824 
     | 
    
         
            +
                                f"Restored quantized model from {quantized_ckpt_restore_path}"
         
     | 
| 
      
 1825 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1826 
     | 
    
         
            +
             
     | 
| 
      
 1827 
     | 
    
         
            +
                            # Export model if path provided (even when restoring from checkpoint)
         
     | 
| 
      
 1828 
     | 
    
         
            +
                            self._maybe_export_modelopt(model, export_path)
         
     | 
| 
      
 1829 
     | 
    
         
            +
                            return
         
     | 
| 
      
 1830 
     | 
    
         
            +
                        except Exception as e:
         
     | 
| 
      
 1831 
     | 
    
         
            +
                            logger.warning(
         
     | 
| 
      
 1832 
     | 
    
         
            +
                                f"Failed to restore from {quantized_ckpt_restore_path}: {e}"
         
     | 
| 
      
 1833 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1834 
     | 
    
         
            +
                            rank0_log("Proceeding with calibration-based quantization...")
         
     | 
| 
      
 1835 
     | 
    
         
            +
             
     | 
| 
      
 1836 
     | 
    
         
            +
                    # Set up calibration-based quantization
         
     | 
| 
      
 1837 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 1838 
     | 
    
         
            +
                        # Left padding tends to work better for batched generation with decoder-only LMs
         
     | 
| 
      
 1839 
     | 
    
         
            +
                        with suppress(Exception):
         
     | 
| 
      
 1840 
     | 
    
         
            +
                            tokenizer.padding_side = "left"
         
     | 
| 
      
 1841 
     | 
    
         
            +
             
     | 
| 
      
 1842 
     | 
    
         
            +
                        from modelopt.torch.utils.dataset_utils import (
         
     | 
| 
      
 1843 
     | 
    
         
            +
                            create_forward_loop,
         
     | 
| 
      
 1844 
     | 
    
         
            +
                            get_dataset_dataloader,
         
     | 
| 
      
 1845 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1846 
     | 
    
         
            +
             
     | 
| 
      
 1847 
     | 
    
         
            +
                        # Create calibration dataloader
         
     | 
| 
      
 1848 
     | 
    
         
            +
                        calib_dataloader = get_dataset_dataloader(
         
     | 
| 
      
 1849 
     | 
    
         
            +
                            dataset_name="cnn_dailymail",  # TODO: Consider making this configurable
         
     | 
| 
      
 1850 
     | 
    
         
            +
                            tokenizer=tokenizer,
         
     | 
| 
      
 1851 
     | 
    
         
            +
                            batch_size=36,  # TODO: Consider making this configurable
         
     | 
| 
      
 1852 
     | 
    
         
            +
                            num_samples=512,  # TODO: Consider making this configurable
         
     | 
| 
      
 1853 
     | 
    
         
            +
                            device=model.device,
         
     | 
| 
      
 1854 
     | 
    
         
            +
                            include_labels=False,
         
     | 
| 
      
 1855 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1856 
     | 
    
         
            +
             
     | 
| 
      
 1857 
     | 
    
         
            +
                        calibrate_loop = create_forward_loop(dataloader=calib_dataloader)
         
     | 
| 
      
 1858 
     | 
    
         
            +
             
     | 
| 
      
 1859 
     | 
    
         
            +
                        # Apply quantization
         
     | 
| 
      
 1860 
     | 
    
         
            +
                        mtq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
         
     | 
| 
      
 1861 
     | 
    
         
            +
             
     | 
| 
      
 1862 
     | 
    
         
            +
                        if get_tensor_model_parallel_rank() == 0:
         
     | 
| 
      
 1863 
     | 
    
         
            +
                            mtq.print_quant_summary(model)
         
     | 
| 
      
 1864 
     | 
    
         
            +
             
     | 
| 
      
 1865 
     | 
    
         
            +
                        # Save checkpoint if path provided
         
     | 
| 
      
 1866 
     | 
    
         
            +
                        if quantized_ckpt_save_path:
         
     | 
| 
      
 1867 
     | 
    
         
            +
                            try:
         
     | 
| 
      
 1868 
     | 
    
         
            +
                                mto.save(model, quantized_ckpt_save_path)
         
     | 
| 
      
 1869 
     | 
    
         
            +
                                rank0_log(f"Quantized model saved to {quantized_ckpt_save_path}")
         
     | 
| 
      
 1870 
     | 
    
         
            +
                            except Exception as e:
         
     | 
| 
      
 1871 
     | 
    
         
            +
                                logger.warning(
         
     | 
| 
      
 1872 
     | 
    
         
            +
                                    f"Failed to save quantized checkpoint to {quantized_ckpt_save_path}: {e}"
         
     | 
| 
      
 1873 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1874 
     | 
    
         
            +
             
     | 
| 
      
 1875 
     | 
    
         
            +
                        # Export model if path provided
         
     | 
| 
      
 1876 
     | 
    
         
            +
                        self._maybe_export_modelopt(model, export_path)
         
     | 
| 
      
 1877 
     | 
    
         
            +
             
     | 
| 
      
 1878 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 1879 
     | 
    
         
            +
                        raise Exception(f"Failed to set up ModelOpt quantization: {e}") from e
         
     | 
| 
      
 1880 
     | 
    
         
            +
             
     | 
| 
      
 1881 
     | 
    
         
            +
                def _maybe_export_modelopt(self, model, export_path: str | None) -> None:
         
     | 
| 
      
 1882 
     | 
    
         
            +
                    """Export model to HuggingFace format if export_path is provided."""
         
     | 
| 
      
 1883 
     | 
    
         
            +
                    if export_path:
         
     | 
| 
      
 1884 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 1885 
     | 
    
         
            +
                            # Get the original model path from the model config
         
     | 
| 
      
 1886 
     | 
    
         
            +
                            original_model_path = getattr(self, "_original_model_path", None)
         
     | 
| 
      
 1887 
     | 
    
         
            +
                            self._export_modelopt_checkpoint(
         
     | 
| 
      
 1888 
     | 
    
         
            +
                                model, export_path, original_model_path
         
     | 
| 
      
 1889 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1890 
     | 
    
         
            +
                            rank0_log(
         
     | 
| 
      
 1891 
     | 
    
         
            +
                                f"Quantized model exported to HuggingFace format at {export_path}"
         
     | 
| 
      
 1892 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1893 
     | 
    
         
            +
                        except Exception as e:
         
     | 
| 
      
 1894 
     | 
    
         
            +
                            rank0_log(
         
     | 
| 
      
 1895 
     | 
    
         
            +
                                f"Warning: Failed to export quantized model to {export_path}: {e}"
         
     | 
| 
      
 1896 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1897 
     | 
    
         
            +
             
     | 
| 
      
 1898 
     | 
    
         
            +
                def _export_modelopt_checkpoint(
         
     | 
| 
      
 1899 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1900 
     | 
    
         
            +
                    model,
         
     | 
| 
      
 1901 
     | 
    
         
            +
                    export_path: str,
         
     | 
| 
      
 1902 
     | 
    
         
            +
                    model_path: str = None,
         
     | 
| 
      
 1903 
     | 
    
         
            +
                    trust_remote_code: bool = True,
         
     | 
| 
      
 1904 
     | 
    
         
            +
                ) -> None:
         
     | 
| 
      
 1905 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1906 
     | 
    
         
            +
                    Export the quantized model to HuggingFace format using ModelOpt export API.
         
     | 
| 
      
 1907 
     | 
    
         
            +
             
     | 
| 
      
 1908 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 1909 
     | 
    
         
            +
                        model: The quantized model to export
         
     | 
| 
      
 1910 
     | 
    
         
            +
                        export_path: Directory path to export the model to
         
     | 
| 
      
 1911 
     | 
    
         
            +
                        model_path: Path to the original model (for tokenizer export)
         
     | 
| 
      
 1912 
     | 
    
         
            +
                        trust_remote_code: Whether to trust remote code for tokenizer loading
         
     | 
| 
      
 1913 
     | 
    
         
            +
             
     | 
| 
      
 1914 
     | 
    
         
            +
                    Raises:
         
     | 
| 
      
 1915 
     | 
    
         
            +
                        ImportError: If ModelOpt export functionality is not available
         
     | 
| 
      
 1916 
     | 
    
         
            +
                        Exception: If export fails
         
     | 
| 
      
 1917 
     | 
    
         
            +
                    """
         
     | 
| 
      
 1918 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 1919 
     | 
    
         
            +
                        from modelopt.torch.export import export_hf_checkpoint
         
     | 
| 
      
 1920 
     | 
    
         
            +
                        from transformers import AutoTokenizer
         
     | 
| 
      
 1921 
     | 
    
         
            +
                    except ImportError as e:
         
     | 
| 
      
 1922 
     | 
    
         
            +
                        raise ImportError(
         
     | 
| 
      
 1923 
     | 
    
         
            +
                            "ModelOpt export functionality is not available. "
         
     | 
| 
      
 1924 
     | 
    
         
            +
                            "Please ensure you have the latest version of modelopt installed."
         
     | 
| 
      
 1925 
     | 
    
         
            +
                        ) from e
         
     | 
| 
      
 1926 
     | 
    
         
            +
             
     | 
| 
      
 1927 
     | 
    
         
            +
                    # Create export directory if it doesn't exist
         
     | 
| 
      
 1928 
     | 
    
         
            +
                    os.makedirs(export_path, exist_ok=True)
         
     | 
| 
      
 1929 
     | 
    
         
            +
             
     | 
| 
      
 1930 
     | 
    
         
            +
                    # Export the quantized model
         
     | 
| 
      
 1931 
     | 
    
         
            +
                    export_hf_checkpoint(model, export_dir=export_path)
         
     | 
| 
      
 1932 
     | 
    
         
            +
             
     | 
| 
      
 1933 
     | 
    
         
            +
                    # Export the tokenizer if model_path is provided
         
     | 
| 
      
 1934 
     | 
    
         
            +
                    if model_path:
         
     | 
| 
      
 1935 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 1936 
     | 
    
         
            +
                            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 
      
 1937 
     | 
    
         
            +
                                model_path, trust_remote_code=trust_remote_code
         
     | 
| 
      
 1938 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1939 
     | 
    
         
            +
                            tokenizer.save_pretrained(export_path)
         
     | 
| 
      
 1940 
     | 
    
         
            +
                            rank0_log(f"Tokenizer exported to {export_path}")
         
     | 
| 
      
 1941 
     | 
    
         
            +
                        except Exception as e:
         
     | 
| 
      
 1942 
     | 
    
         
            +
                            rank0_log(f"Warning: Failed to export tokenizer: {e}")
         
     | 
| 
      
 1943 
     | 
    
         
            +
             
     | 
| 
      
 1944 
     | 
    
         
            +
                def load_model(
         
     | 
| 
      
 1945 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 1946 
     | 
    
         
            +
                    *,
         
     | 
| 
      
 1947 
     | 
    
         
            +
                    model_config: ModelConfig,
         
     | 
| 
      
 1948 
     | 
    
         
            +
                    device_config: DeviceConfig,
         
     | 
| 
      
 1949 
     | 
    
         
            +
                ) -> nn.Module:
         
     | 
| 
      
 1950 
     | 
    
         
            +
             
     | 
| 
      
 1951 
     | 
    
         
            +
                    logger.info("ModelOptModelLoader: Loading base model...")
         
     | 
| 
      
 1952 
     | 
    
         
            +
             
     | 
| 
      
 1953 
     | 
    
         
            +
                    # Store the original model path for tokenizer export
         
     | 
| 
      
 1954 
     | 
    
         
            +
                    self._original_model_path = model_config.model_path
         
     | 
| 
      
 1955 
     | 
    
         
            +
             
     | 
| 
      
 1956 
     | 
    
         
            +
                    # Check if model is already quantized
         
     | 
| 
      
 1957 
     | 
    
         
            +
                    if model_config._is_already_quantized():
         
     | 
| 
      
 1958 
     | 
    
         
            +
                        logger.info("Model is already quantized, loading directly...")
         
     | 
| 
      
 1959 
     | 
    
         
            +
                        # Use default loading for pre-quantized models
         
     | 
| 
      
 1960 
     | 
    
         
            +
                        return super().load_model(
         
     | 
| 
      
 1961 
     | 
    
         
            +
                            model_config=model_config, device_config=device_config
         
     | 
| 
      
 1962 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1963 
     | 
    
         
            +
             
     | 
| 
      
 1964 
     | 
    
         
            +
                    # TODO: Quantize-and-serve mode has been disabled at the ModelConfig level
         
     | 
| 
      
 1965 
     | 
    
         
            +
                    # All quantization now uses the standard workflow (quantize + export/save)
         
     | 
| 
      
 1966 
     | 
    
         
            +
                    logger.info("Standard quantization mode: Will quantize and export/save")
         
     | 
| 
      
 1967 
     | 
    
         
            +
                    return self._standard_quantization_workflow(model_config, device_config)
         
     | 
| 
      
 1968 
     | 
    
         
            +
             
     | 
| 
      
 1969 
     | 
    
         
            +
                def _standard_quantization_workflow(
         
     | 
| 
      
 1970 
     | 
    
         
            +
                    self, model_config: ModelConfig, device_config: DeviceConfig
         
     | 
| 
      
 1971 
     | 
    
         
            +
                ) -> nn.Module:
         
     | 
| 
      
 1972 
     | 
    
         
            +
                    """Standard quantization workflow: quantize, save checkpoint, export, then return model."""
         
     | 
| 
      
 1973 
     | 
    
         
            +
                    # Use shared method from parent class to load base model for quantization
         
     | 
| 
      
 1974 
     | 
    
         
            +
                    model = self._load_modelopt_base_model(model_config)
         
     | 
| 
      
 1975 
     | 
    
         
            +
             
     | 
| 
      
 1976 
     | 
    
         
            +
                    # Import ModelOpt modules
         
     | 
| 
      
 1977 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 1978 
     | 
    
         
            +
                        import modelopt.torch.quantization as mtq
         
     | 
| 
      
 1979 
     | 
    
         
            +
                    except ImportError:
         
     | 
| 
      
 1980 
     | 
    
         
            +
                        logger.error(
         
     | 
| 
      
 1981 
     | 
    
         
            +
                            "NVIDIA Model Optimizer (modelopt) library not found. "
         
     | 
| 
      
 1982 
     | 
    
         
            +
                            "Please install it to use ModelOpt quantization."
         
     | 
| 
      
 1983 
     | 
    
         
            +
                        )
         
     | 
| 
      
 1984 
     | 
    
         
            +
                        raise
         
     | 
| 
      
 1985 
     | 
    
         
            +
             
     | 
| 
      
 1986 
     | 
    
         
            +
                    # Handle both old modelopt_quant and new unified quantization flags
         
     | 
| 
      
 1987 
     | 
    
         
            +
                    if hasattr(model_config, "modelopt_quant") and model_config.modelopt_quant:
         
     | 
| 
      
 1988 
     | 
    
         
            +
                        # Legacy modelopt_quant flag
         
     | 
| 
      
 1989 
     | 
    
         
            +
                        quant_choice_str = model_config.modelopt_quant
         
     | 
| 
      
 1990 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1991 
     | 
    
         
            +
                        # Unified quantization flag - extract the type (fp8/fp4)
         
     | 
| 
      
 1992 
     | 
    
         
            +
                        quant_choice_str = model_config._get_modelopt_quant_type()
         
     | 
| 
      
 1993 
     | 
    
         
            +
             
     | 
| 
      
 1994 
     | 
    
         
            +
                    quant_cfg_name = QUANT_CFG_CHOICES.get(quant_choice_str)
         
     | 
| 
      
 1995 
     | 
    
         
            +
                    if not quant_cfg_name:
         
     | 
| 
      
 1996 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 1997 
     | 
    
         
            +
                            f"Invalid quantization choice: '{quant_choice_str}'. "
         
     | 
| 
      
 1998 
     | 
    
         
            +
                            f"Available choices: {list(QUANT_CFG_CHOICES.keys())}"
         
     | 
| 
      
 1999 
     | 
    
         
            +
                        )
         
     | 
| 
      
 2000 
     | 
    
         
            +
             
     | 
| 
      
 2001 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 2002 
     | 
    
         
            +
                        # getattr will fetch the config object, e.g., mtq.FP8_DEFAULT_CFG
         
     | 
| 
      
 2003 
     | 
    
         
            +
                        quant_cfg = getattr(mtq, quant_cfg_name)
         
     | 
| 
      
 2004 
     | 
    
         
            +
                    except AttributeError:
         
     | 
| 
      
 2005 
     | 
    
         
            +
                        raise AttributeError(
         
     | 
| 
      
 2006 
     | 
    
         
            +
                            f"ModelOpt quantization config '{quant_cfg_name}' not found. "
         
     | 
| 
      
 2007 
     | 
    
         
            +
                            "Please verify the ModelOpt library installation."
         
     | 
| 
      
 2008 
     | 
    
         
            +
                        )
         
     | 
| 
      
 2009 
     | 
    
         
            +
             
     | 
| 
      
 2010 
     | 
    
         
            +
                    logger.info(
         
     | 
| 
      
 2011 
     | 
    
         
            +
                        f"Quantizing model with ModelOpt using config: mtq.{quant_cfg_name}"
         
     | 
| 
      
 2012 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2013 
     | 
    
         
            +
             
     | 
| 
      
 2014 
     | 
    
         
            +
                    # Get ModelOpt configuration from LoadConfig
         
     | 
| 
      
 2015 
     | 
    
         
            +
                    modelopt_config = self.load_config.modelopt_config
         
     | 
| 
      
 2016 
     | 
    
         
            +
                    quantized_ckpt_restore_path = (
         
     | 
| 
      
 2017 
     | 
    
         
            +
                        modelopt_config.checkpoint_restore_path if modelopt_config else None
         
     | 
| 
      
 2018 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2019 
     | 
    
         
            +
                    quantized_ckpt_save_path = (
         
     | 
| 
      
 2020 
     | 
    
         
            +
                        modelopt_config.checkpoint_save_path if modelopt_config else None
         
     | 
| 
      
 2021 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2022 
     | 
    
         
            +
                    export_path = modelopt_config.export_path if modelopt_config else None
         
     | 
| 
      
 2023 
     | 
    
         
            +
                    tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 
      
 2024 
     | 
    
         
            +
                        model_config.model_path, use_fast=True
         
     | 
| 
      
 2025 
     | 
    
         
            +
                    )
         
     | 
| 
      
 2026 
     | 
    
         
            +
             
     | 
| 
      
 2027 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 2028 
     | 
    
         
            +
                        self._setup_modelopt_quantization(
         
     | 
| 
      
 2029 
     | 
    
         
            +
                            model,
         
     | 
| 
      
 2030 
     | 
    
         
            +
                            tokenizer,
         
     | 
| 
      
 2031 
     | 
    
         
            +
                            quant_cfg,
         
     | 
| 
      
 2032 
     | 
    
         
            +
                            quantized_ckpt_restore_path=quantized_ckpt_restore_path,
         
     | 
| 
      
 2033 
     | 
    
         
            +
                            quantized_ckpt_save_path=quantized_ckpt_save_path,
         
     | 
| 
      
 2034 
     | 
    
         
            +
                            export_path=export_path,
         
     | 
| 
      
 2035 
     | 
    
         
            +
                        )
         
     | 
| 
      
 2036 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 2037 
     | 
    
         
            +
                        logger.warning(f"ModelOpt quantization failed: {e}")
         
     | 
| 
      
 2038 
     | 
    
         
            +
                        rank0_log("Proceeding without quantization...")
         
     | 
| 
      
 2039 
     | 
    
         
            +
             
     | 
| 
      
 2040 
     | 
    
         
            +
                    return model.eval()
         
     | 
| 
      
 2041 
     | 
    
         
            +
             
     | 
| 
      
 2042 
     | 
    
         
            +
             
     | 
| 
      
 2043 
     | 
    
         
            +
            def get_model_loader(
         
     | 
| 
      
 2044 
     | 
    
         
            +
                load_config: LoadConfig, model_config: Optional[ModelConfig] = None
         
     | 
| 
      
 2045 
     | 
    
         
            +
            ) -> BaseModelLoader:
         
     | 
| 
       1668 
2046 
     | 
    
         
             
                """Get a model loader based on the load format."""
         
     | 
| 
       1669 
2047 
     | 
    
         | 
| 
      
 2048 
     | 
    
         
            +
                if model_config and (
         
     | 
| 
      
 2049 
     | 
    
         
            +
                    (hasattr(model_config, "modelopt_quant") and model_config.modelopt_quant)
         
     | 
| 
      
 2050 
     | 
    
         
            +
                    or model_config.quantization in ["modelopt_fp8", "modelopt_fp4", "modelopt"]
         
     | 
| 
      
 2051 
     | 
    
         
            +
                ):
         
     | 
| 
      
 2052 
     | 
    
         
            +
                    logger.info("Using ModelOptModelLoader due to ModelOpt quantization config.")
         
     | 
| 
      
 2053 
     | 
    
         
            +
                    return ModelOptModelLoader(load_config)
         
     | 
| 
      
 2054 
     | 
    
         
            +
             
     | 
| 
      
 2055 
     | 
    
         
            +
                # Use ModelOptModelLoader for unified quantization flags
         
     | 
| 
      
 2056 
     | 
    
         
            +
                if (
         
     | 
| 
      
 2057 
     | 
    
         
            +
                    model_config
         
     | 
| 
      
 2058 
     | 
    
         
            +
                    and hasattr(model_config, "quantization")
         
     | 
| 
      
 2059 
     | 
    
         
            +
                    and model_config.quantization in ["modelopt_fp8", "modelopt_fp4"]
         
     | 
| 
      
 2060 
     | 
    
         
            +
                ):
         
     | 
| 
      
 2061 
     | 
    
         
            +
                    if model_config._is_already_quantized():
         
     | 
| 
      
 2062 
     | 
    
         
            +
                        logger.info(
         
     | 
| 
      
 2063 
     | 
    
         
            +
                            f"Using ModelOptModelLoader for pre-quantized model: {model_config.quantization}"
         
     | 
| 
      
 2064 
     | 
    
         
            +
                        )
         
     | 
| 
      
 2065 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 2066 
     | 
    
         
            +
                        logger.info(
         
     | 
| 
      
 2067 
     | 
    
         
            +
                            f"Using ModelOptModelLoader for quantization: {model_config.quantization}"
         
     | 
| 
      
 2068 
     | 
    
         
            +
                        )
         
     | 
| 
      
 2069 
     | 
    
         
            +
                    return ModelOptModelLoader(load_config)
         
     | 
| 
      
 2070 
     | 
    
         
            +
             
     | 
| 
       1670 
2071 
     | 
    
         
             
                if isinstance(load_config.load_format, type):
         
     | 
| 
       1671 
2072 
     | 
    
         
             
                    return load_config.load_format(load_config)
         
     | 
| 
       1672 
2073 
     | 
    
         | 
    
        sglang/srt/model_loader/utils.py
    CHANGED
    
    | 
         @@ -99,7 +99,6 @@ def get_model_architecture(model_config: ModelConfig) -> Tuple[Type[nn.Module], 
     | 
|
| 
       99 
99 
     | 
    
         | 
| 
       100 
100 
     | 
    
         
             
                if not is_native_supported or model_config.model_impl == ModelImpl.TRANSFORMERS:
         
     | 
| 
       101 
101 
     | 
    
         
             
                    architectures = resolve_transformers_arch(model_config, architectures)
         
     | 
| 
       102 
     | 
    
         
            -
             
     | 
| 
       103 
102 
     | 
    
         
             
                return ModelRegistry.resolve_model_cls(architectures)
         
     | 
| 
       104 
103 
     | 
    
         | 
| 
       105 
104 
     | 
    
         |