sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -10,19 +10,21 @@ from typing import TYPE_CHECKING, Optional, Union 
     | 
|
| 
       10 
10 
     | 
    
         | 
| 
       11 
11 
     | 
    
         
             
            import torch
         
     | 
| 
       12 
12 
     | 
    
         
             
            import triton
         
     | 
| 
      
 13 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
       13 
14 
     | 
    
         | 
| 
       14 
15 
     | 
    
         
             
            from sglang.srt.layers.attention.flashinfer_mla_backend import (
         
     | 
| 
       15 
16 
     | 
    
         
             
                FlashInferMLAAttnBackend,
         
     | 
| 
       16 
17 
     | 
    
         
             
                FlashInferMLAMultiStepDraftBackend,
         
     | 
| 
       17 
18 
     | 
    
         
             
            )
         
     | 
| 
       18 
19 
     | 
    
         
             
            from sglang.srt.layers.attention.utils import (
         
     | 
| 
       19 
     | 
    
         
            -
                TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       20 
20 
     | 
    
         
             
                create_flashmla_kv_indices_triton,
         
     | 
| 
      
 21 
     | 
    
         
            +
                get_num_page_per_block_flashmla,
         
     | 
| 
       21 
22 
     | 
    
         
             
            )
         
     | 
| 
       22 
23 
     | 
    
         
             
            from sglang.srt.layers.dp_attention import get_attention_tp_size
         
     | 
| 
       23 
     | 
    
         
            -
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         
     | 
| 
       24 
24 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
         
     | 
| 
       25 
     | 
    
         
            -
            from sglang.srt. 
     | 
| 
      
 25 
     | 
    
         
            +
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
      
 26 
     | 
    
         
            +
            from sglang.srt.utils import is_cuda, is_flashinfer_available
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.utils.common import cached_triton_kernel
         
     | 
| 
       26 
28 
     | 
    
         | 
| 
       27 
29 
     | 
    
         
             
            if is_flashinfer_available():
         
     | 
| 
       28 
30 
     | 
    
         
             
                import flashinfer
         
     | 
| 
         @@ -30,7 +32,12 @@ if is_flashinfer_available(): 
     | 
|
| 
       30 
32 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       31 
33 
     | 
    
         
             
                from sglang.srt.layers.radix_attention import RadixAttention
         
     | 
| 
       32 
34 
     | 
    
         
             
                from sglang.srt.model_executor.model_runner import ModelRunner
         
     | 
| 
       33 
     | 
    
         
            -
                from sglang.srt.speculative.spec_info import  
     | 
| 
      
 35 
     | 
    
         
            +
                from sglang.srt.speculative.spec_info import SpecInput
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            _is_cuda = is_cuda()
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
            if _is_cuda:
         
     | 
| 
      
 40 
     | 
    
         
            +
                from sgl_kernel import concat_mla_absorb_q
         
     | 
| 
       34 
41 
     | 
    
         | 
| 
       35 
42 
     | 
    
         
             
            # Constants
         
     | 
| 
       36 
43 
     | 
    
         
             
            DEFAULT_WORKSPACE_SIZE_MB = 128  # Memory workspace size in MB
         
     | 
| 
         @@ -43,6 +50,153 @@ DEFAULT_WORKSPACE_SIZE_MB = 128  # Memory workspace size in MB 
     | 
|
| 
       43 
50 
     | 
    
         
             
            # compute the LCM with other padding constraints.
         
     | 
| 
       44 
51 
     | 
    
         
             
            TRTLLM_BLOCK_CONSTRAINT = 128
         
     | 
| 
       45 
52 
     | 
    
         | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
            @cached_triton_kernel(lambda _, kwargs: (kwargs["BLOCK_SIZE"]))
         
     | 
| 
      
 55 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 56 
     | 
    
         
            +
            def pad_draft_extend_query_kernel(
         
     | 
| 
      
 57 
     | 
    
         
            +
                q_ptr,  # Input query tensor [total_seq_len, num_heads, head_dim]
         
     | 
| 
      
 58 
     | 
    
         
            +
                padded_q_ptr,  # Output padded query tensor [batch_size, max_seq_len, num_heads, head_dim]
         
     | 
| 
      
 59 
     | 
    
         
            +
                seq_lens_q_ptr,  # Sequence lengths for each sequence [batch_size]
         
     | 
| 
      
 60 
     | 
    
         
            +
                cumsum_ptr,  # Cumulative sum of accept lengths [batch_size + 1]
         
     | 
| 
      
 61 
     | 
    
         
            +
                batch_size,
         
     | 
| 
      
 62 
     | 
    
         
            +
                max_seq_len,
         
     | 
| 
      
 63 
     | 
    
         
            +
                num_heads,
         
     | 
| 
      
 64 
     | 
    
         
            +
                head_dim,
         
     | 
| 
      
 65 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 66 
     | 
    
         
            +
            ):
         
     | 
| 
      
 67 
     | 
    
         
            +
                """Triton kernel for padding draft extended query tensor with parallelized head and dim processing."""
         
     | 
| 
      
 68 
     | 
    
         
            +
                # Use 3D program IDs: (batch_seq, head_block, dim_block)
         
     | 
| 
      
 69 
     | 
    
         
            +
                batch_seq_pid = tl.program_id(0)
         
     | 
| 
      
 70 
     | 
    
         
            +
                head_pid = tl.program_id(1)
         
     | 
| 
      
 71 
     | 
    
         
            +
                dim_pid = tl.program_id(2)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                batch_id = batch_seq_pid // max_seq_len
         
     | 
| 
      
 74 
     | 
    
         
            +
                seq_pos = batch_seq_pid % max_seq_len
         
     | 
| 
      
 75 
     | 
    
         
            +
             
     | 
| 
      
 76 
     | 
    
         
            +
                if batch_id >= batch_size:
         
     | 
| 
      
 77 
     | 
    
         
            +
                    return
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                # Load accept length for this batch
         
     | 
| 
      
 80 
     | 
    
         
            +
                seq_len = tl.load(seq_lens_q_ptr + batch_id)
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
                if seq_pos >= seq_len:
         
     | 
| 
      
 83 
     | 
    
         
            +
                    return
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                # Load cumulative sum to get start position in input tensor
         
     | 
| 
      
 86 
     | 
    
         
            +
                input_start = tl.load(cumsum_ptr + batch_id)
         
     | 
| 
      
 87 
     | 
    
         
            +
                input_pos = input_start + seq_pos
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
                # Calculate head and dim block ranges
         
     | 
| 
      
 90 
     | 
    
         
            +
                head_start = head_pid * BLOCK_SIZE
         
     | 
| 
      
 91 
     | 
    
         
            +
                head_end = tl.minimum(head_start + BLOCK_SIZE, num_heads)
         
     | 
| 
      
 92 
     | 
    
         
            +
                head_mask = tl.arange(0, BLOCK_SIZE) < (head_end - head_start)
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
                dim_start = dim_pid * BLOCK_SIZE
         
     | 
| 
      
 95 
     | 
    
         
            +
                dim_end = tl.minimum(dim_start + BLOCK_SIZE, head_dim)
         
     | 
| 
      
 96 
     | 
    
         
            +
                dim_mask = tl.arange(0, BLOCK_SIZE) < (dim_end - dim_start)
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
                # Calculate input offset
         
     | 
| 
      
 99 
     | 
    
         
            +
                input_offset = (
         
     | 
| 
      
 100 
     | 
    
         
            +
                    input_pos * num_heads * head_dim
         
     | 
| 
      
 101 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * head_dim
         
     | 
| 
      
 102 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 103 
     | 
    
         
            +
                )
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                # Load data
         
     | 
| 
      
 106 
     | 
    
         
            +
                data = tl.load(
         
     | 
| 
      
 107 
     | 
    
         
            +
                    q_ptr + input_offset,
         
     | 
| 
      
 108 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 109 
     | 
    
         
            +
                    other=0.0,
         
     | 
| 
      
 110 
     | 
    
         
            +
                )
         
     | 
| 
      
 111 
     | 
    
         
            +
             
     | 
| 
      
 112 
     | 
    
         
            +
                # Calculate output offset
         
     | 
| 
      
 113 
     | 
    
         
            +
                output_offset = (
         
     | 
| 
      
 114 
     | 
    
         
            +
                    batch_id * max_seq_len * num_heads * head_dim
         
     | 
| 
      
 115 
     | 
    
         
            +
                    + seq_pos * num_heads * head_dim
         
     | 
| 
      
 116 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * head_dim
         
     | 
| 
      
 117 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 118 
     | 
    
         
            +
                )
         
     | 
| 
      
 119 
     | 
    
         
            +
             
     | 
| 
      
 120 
     | 
    
         
            +
                # Store data
         
     | 
| 
      
 121 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 122 
     | 
    
         
            +
                    padded_q_ptr + output_offset,
         
     | 
| 
      
 123 
     | 
    
         
            +
                    data,
         
     | 
| 
      
 124 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 125 
     | 
    
         
            +
                )
         
     | 
| 
      
 126 
     | 
    
         
            +
             
     | 
| 
      
 127 
     | 
    
         
            +
             
     | 
| 
      
 128 
     | 
    
         
            +
            @cached_triton_kernel(lambda _, kwargs: (kwargs["BLOCK_SIZE"]))
         
     | 
| 
      
 129 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 130 
     | 
    
         
            +
            def unpad_draft_extend_output_kernel(
         
     | 
| 
      
 131 
     | 
    
         
            +
                raw_out_ptr,  # Input raw output tensor (batch_size, token_per_batch, tp_q_head_num, v_head_dim)
         
     | 
| 
      
 132 
     | 
    
         
            +
                output_ptr,  # Output tensor (-1, tp_q_head_num, v_head_dim)
         
     | 
| 
      
 133 
     | 
    
         
            +
                accept_length_ptr,  # Accept lengths for each sequence [batch_size]
         
     | 
| 
      
 134 
     | 
    
         
            +
                cumsum_ptr,  # Cumulative sum of accept lengths [batch_size + 1]
         
     | 
| 
      
 135 
     | 
    
         
            +
                batch_size,
         
     | 
| 
      
 136 
     | 
    
         
            +
                token_per_batch,
         
     | 
| 
      
 137 
     | 
    
         
            +
                tp_q_head_num,
         
     | 
| 
      
 138 
     | 
    
         
            +
                v_head_dim,
         
     | 
| 
      
 139 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 140 
     | 
    
         
            +
            ):
         
     | 
| 
      
 141 
     | 
    
         
            +
                """Triton kernel for unpadding draft extended output tensor with parallelized head and dim processing."""
         
     | 
| 
      
 142 
     | 
    
         
            +
                batch_seq_pid = tl.program_id(0)
         
     | 
| 
      
 143 
     | 
    
         
            +
                head_pid = tl.program_id(1)
         
     | 
| 
      
 144 
     | 
    
         
            +
                dim_pid = tl.program_id(2)
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                batch_id = batch_seq_pid // token_per_batch
         
     | 
| 
      
 147 
     | 
    
         
            +
                seq_pos = batch_seq_pid % token_per_batch
         
     | 
| 
      
 148 
     | 
    
         
            +
             
     | 
| 
      
 149 
     | 
    
         
            +
                if batch_id >= batch_size:
         
     | 
| 
      
 150 
     | 
    
         
            +
                    return
         
     | 
| 
      
 151 
     | 
    
         
            +
             
     | 
| 
      
 152 
     | 
    
         
            +
                # Load accept length for this batch
         
     | 
| 
      
 153 
     | 
    
         
            +
                accept_len = tl.load(accept_length_ptr + batch_id)
         
     | 
| 
      
 154 
     | 
    
         
            +
             
     | 
| 
      
 155 
     | 
    
         
            +
                if seq_pos >= accept_len:
         
     | 
| 
      
 156 
     | 
    
         
            +
                    return
         
     | 
| 
      
 157 
     | 
    
         
            +
             
     | 
| 
      
 158 
     | 
    
         
            +
                # Load cumulative sum to get start position in output tensor
         
     | 
| 
      
 159 
     | 
    
         
            +
                output_start = tl.load(cumsum_ptr + batch_id)
         
     | 
| 
      
 160 
     | 
    
         
            +
                output_pos = output_start + seq_pos
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                # Calculate head and dim block ranges
         
     | 
| 
      
 163 
     | 
    
         
            +
                head_start = head_pid * BLOCK_SIZE
         
     | 
| 
      
 164 
     | 
    
         
            +
                head_end = tl.minimum(head_start + BLOCK_SIZE, tp_q_head_num)
         
     | 
| 
      
 165 
     | 
    
         
            +
                head_mask = tl.arange(0, BLOCK_SIZE) < (head_end - head_start)
         
     | 
| 
      
 166 
     | 
    
         
            +
             
     | 
| 
      
 167 
     | 
    
         
            +
                dim_start = dim_pid * BLOCK_SIZE
         
     | 
| 
      
 168 
     | 
    
         
            +
                dim_end = tl.minimum(dim_start + BLOCK_SIZE, v_head_dim)
         
     | 
| 
      
 169 
     | 
    
         
            +
                dim_mask = tl.arange(0, BLOCK_SIZE) < (dim_end - dim_start)
         
     | 
| 
      
 170 
     | 
    
         
            +
             
     | 
| 
      
 171 
     | 
    
         
            +
                # Calculate input offset: (batch_id, seq_pos, head_id, dim_id)
         
     | 
| 
      
 172 
     | 
    
         
            +
                input_offset = (
         
     | 
| 
      
 173 
     | 
    
         
            +
                    batch_id * token_per_batch * tp_q_head_num * v_head_dim
         
     | 
| 
      
 174 
     | 
    
         
            +
                    + seq_pos * tp_q_head_num * v_head_dim
         
     | 
| 
      
 175 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * v_head_dim
         
     | 
| 
      
 176 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 177 
     | 
    
         
            +
                )
         
     | 
| 
      
 178 
     | 
    
         
            +
             
     | 
| 
      
 179 
     | 
    
         
            +
                # Load data
         
     | 
| 
      
 180 
     | 
    
         
            +
                data = tl.load(
         
     | 
| 
      
 181 
     | 
    
         
            +
                    raw_out_ptr + input_offset,
         
     | 
| 
      
 182 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 183 
     | 
    
         
            +
                    other=0.0,
         
     | 
| 
      
 184 
     | 
    
         
            +
                )
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                output_offset = (
         
     | 
| 
      
 187 
     | 
    
         
            +
                    output_pos * tp_q_head_num * v_head_dim
         
     | 
| 
      
 188 
     | 
    
         
            +
                    + (head_start + tl.arange(0, BLOCK_SIZE))[:, None] * v_head_dim
         
     | 
| 
      
 189 
     | 
    
         
            +
                    + (dim_start + tl.arange(0, BLOCK_SIZE))[None, :]
         
     | 
| 
      
 190 
     | 
    
         
            +
                )
         
     | 
| 
      
 191 
     | 
    
         
            +
             
     | 
| 
      
 192 
     | 
    
         
            +
                # Store data
         
     | 
| 
      
 193 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 194 
     | 
    
         
            +
                    output_ptr + output_offset,
         
     | 
| 
      
 195 
     | 
    
         
            +
                    data,
         
     | 
| 
      
 196 
     | 
    
         
            +
                    mask=head_mask[:, None] & dim_mask[None, :],
         
     | 
| 
      
 197 
     | 
    
         
            +
                )
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
             
     | 
| 
       46 
200 
     | 
    
         
             
            global_zero_init_workspace_buffer = None
         
     | 
| 
       47 
201 
     | 
    
         | 
| 
       48 
202 
     | 
    
         | 
| 
         @@ -60,7 +214,11 @@ class TRTLLMMLADecodeMetadata: 
     | 
|
| 
       60 
214 
     | 
    
         
             
                """Metadata for TRTLLM MLA decode operations."""
         
     | 
| 
       61 
215 
     | 
    
         | 
| 
       62 
216 
     | 
    
         
             
                block_kv_indices: Optional[torch.Tensor] = None
         
     | 
| 
       63 
     | 
    
         
            -
                 
     | 
| 
      
 217 
     | 
    
         
            +
                max_seq_len_k: Optional[int] = None
         
     | 
| 
      
 218 
     | 
    
         
            +
                max_seq_len_q: Optional[int] = None
         
     | 
| 
      
 219 
     | 
    
         
            +
                sum_seq_lens_q: Optional[int] = None
         
     | 
| 
      
 220 
     | 
    
         
            +
                cu_seqlens_q: Optional[torch.Tensor] = None
         
     | 
| 
      
 221 
     | 
    
         
            +
                seq_lens_q: Optional[torch.Tensor] = None
         
     | 
| 
       64 
222 
     | 
    
         | 
| 
       65 
223 
     | 
    
         | 
| 
       66 
224 
     | 
    
         
             
            class TRTLLMMLABackend(FlashInferMLAAttnBackend):
         
     | 
| 
         @@ -115,12 +273,16 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       115 
273 
     | 
    
         
             
                    # CUDA graph state
         
     | 
| 
       116 
274 
     | 
    
         
             
                    self.decode_cuda_graph_metadata = {}
         
     | 
| 
       117 
275 
     | 
    
         
             
                    self.decode_cuda_graph_kv_indices = None
         
     | 
| 
      
 276 
     | 
    
         
            +
                    self.padded_q_buffer = None
         
     | 
| 
      
 277 
     | 
    
         
            +
                    self.unpad_output_buffer = None
         
     | 
| 
       118 
278 
     | 
    
         
             
                    self.forward_prefill_metadata: Optional[TRTLLMMLAPrefillMetadata] = None
         
     | 
| 
       119 
279 
     | 
    
         
             
                    self.forward_decode_metadata: Union[TRTLLMMLADecodeMetadata, None] = None
         
     | 
| 
       120 
280 
     | 
    
         | 
| 
       121 
     | 
    
         
            -
                    self.disable_chunked_prefix_cache =  
     | 
| 
       122 
     | 
    
         
            -
                         
     | 
| 
       123 
     | 
    
         
            -
                     
     | 
| 
      
 281 
     | 
    
         
            +
                    self.disable_chunked_prefix_cache = (
         
     | 
| 
      
 282 
     | 
    
         
            +
                        get_global_server_args().disable_chunked_prefix_cache
         
     | 
| 
      
 283 
     | 
    
         
            +
                    )
         
     | 
| 
      
 284 
     | 
    
         
            +
             
     | 
| 
      
 285 
     | 
    
         
            +
                    self.num_draft_tokens = model_runner.server_args.speculative_num_draft_tokens
         
     | 
| 
       124 
286 
     | 
    
         | 
| 
       125 
287 
     | 
    
         
             
                def _calc_padded_blocks(self, max_seq_len: int) -> int:
         
     | 
| 
       126 
288 
     | 
    
         
             
                    """
         
     | 
| 
         @@ -136,9 +298,10 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       136 
298 
     | 
    
         | 
| 
       137 
299 
     | 
    
         
             
                    # Apply dual constraints (take LCM to satisfy both):
         
     | 
| 
       138 
300 
     | 
    
         
             
                    # 1. TRT-LLM: block_num % (128 / page_size) == 0
         
     | 
| 
       139 
     | 
    
         
            -
                    # 2. Triton:  
     | 
| 
      
 301 
     | 
    
         
            +
                    # 2. Triton: number of pages per block
         
     | 
| 
       140 
302 
     | 
    
         
             
                    trtllm_constraint = TRTLLM_BLOCK_CONSTRAINT // self.page_size
         
     | 
| 
       141 
     | 
    
         
            -
                     
     | 
| 
      
 303 
     | 
    
         
            +
                    triton_constraint = get_num_page_per_block_flashmla(self.page_size)
         
     | 
| 
      
 304 
     | 
    
         
            +
                    constraint_lcm = math.lcm(trtllm_constraint, triton_constraint)
         
     | 
| 
       142 
305 
     | 
    
         | 
| 
       143 
306 
     | 
    
         
             
                    if blocks % constraint_lcm != 0:
         
     | 
| 
       144 
307 
     | 
    
         
             
                        blocks = triton.cdiv(blocks, constraint_lcm) * constraint_lcm
         
     | 
| 
         @@ -177,7 +340,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       177 
340 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       178 
341 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       179 
342 
     | 
    
         
             
                        max_blocks,
         
     | 
| 
       180 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       181 
343 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       182 
344 
     | 
    
         
             
                    )
         
     | 
| 
       183 
345 
     | 
    
         | 
| 
         @@ -196,6 +358,21 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       196 
358 
     | 
    
         
             
                    self.decode_cuda_graph_kv_indices = torch.full(
         
     | 
| 
       197 
359 
     | 
    
         
             
                        (max_bs, max_blocks_per_seq), -1, dtype=torch.int32, device=self.device
         
     | 
| 
       198 
360 
     | 
    
         
             
                    )
         
     | 
| 
      
 361 
     | 
    
         
            +
                    num_tokens_per_bs = max_num_tokens // max_bs
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
                    # Buffer for padded query: (max_bs, max_draft_tokens, num_q_heads, v_head_dim)
         
     | 
| 
      
 364 
     | 
    
         
            +
                    self.padded_q_buffer = torch.zeros(
         
     | 
| 
      
 365 
     | 
    
         
            +
                        (max_bs, num_tokens_per_bs, self.num_q_heads, self.kv_cache_dim),
         
     | 
| 
      
 366 
     | 
    
         
            +
                        dtype=self.data_type,
         
     | 
| 
      
 367 
     | 
    
         
            +
                        device=self.device,
         
     | 
| 
      
 368 
     | 
    
         
            +
                    )
         
     | 
| 
      
 369 
     | 
    
         
            +
             
     | 
| 
      
 370 
     | 
    
         
            +
                    # Buffer for unpadded output: (max_num_tokens, num_q_heads, v_head_dim)
         
     | 
| 
      
 371 
     | 
    
         
            +
                    self.unpad_output_buffer = torch.zeros(
         
     | 
| 
      
 372 
     | 
    
         
            +
                        (max_num_tokens, self.num_q_heads, 512),
         
     | 
| 
      
 373 
     | 
    
         
            +
                        dtype=self.data_type,
         
     | 
| 
      
 374 
     | 
    
         
            +
                        device=self.device,
         
     | 
| 
      
 375 
     | 
    
         
            +
                    )
         
     | 
| 
       199 
376 
     | 
    
         | 
| 
       200 
377 
     | 
    
         
             
                    super().init_cuda_graph_state(max_bs, max_num_tokens, kv_indices_buf)
         
     | 
| 
       201 
378 
     | 
    
         | 
| 
         @@ -207,12 +384,16 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       207 
384 
     | 
    
         
             
                    seq_lens: torch.Tensor,
         
     | 
| 
       208 
385 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       209 
386 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       210 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 387 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       211 
388 
     | 
    
         
             
                ):
         
     | 
| 
       212 
389 
     | 
    
         
             
                    """Initialize metadata for CUDA graph capture."""
         
     | 
| 
       213 
390 
     | 
    
         | 
| 
       214 
391 
     | 
    
         
             
                    # Delegate to parent for non-decode modes.
         
     | 
| 
       215 
     | 
    
         
            -
                    if  
     | 
| 
      
 392 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 393 
     | 
    
         
            +
                        not forward_mode.is_decode_or_idle()
         
     | 
| 
      
 394 
     | 
    
         
            +
                        and not forward_mode.is_target_verify()
         
     | 
| 
      
 395 
     | 
    
         
            +
                        and not forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 396 
     | 
    
         
            +
                    ):
         
     | 
| 
       216 
397 
     | 
    
         
             
                        return super().init_forward_metadata_capture_cuda_graph(
         
     | 
| 
       217 
398 
     | 
    
         
             
                            bs,
         
     | 
| 
       218 
399 
     | 
    
         
             
                            num_tokens,
         
     | 
| 
         @@ -223,6 +404,9 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       223 
404 
     | 
    
         
             
                            spec_info,
         
     | 
| 
       224 
405 
     | 
    
         
             
                        )
         
     | 
| 
       225 
406 
     | 
    
         | 
| 
      
 407 
     | 
    
         
            +
                    if forward_mode.is_target_verify():
         
     | 
| 
      
 408 
     | 
    
         
            +
                        seq_lens = seq_lens + self.num_draft_tokens
         
     | 
| 
      
 409 
     | 
    
         
            +
             
     | 
| 
       226 
410 
     | 
    
         
             
                    # Custom fast-path for decode/idle.
         
     | 
| 
       227 
411 
     | 
    
         
             
                    # Capture with full width so future longer sequences are safe during replay
         
     | 
| 
       228 
412 
     | 
    
         
             
                    max_blocks_per_seq = self._calc_padded_blocks(self.max_context_len)
         
     | 
| 
         @@ -236,7 +420,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       236 
420 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       237 
421 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       238 
422 
     | 
    
         
             
                        max_blocks_per_seq,
         
     | 
| 
       239 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       240 
423 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       241 
424 
     | 
    
         
             
                    )
         
     | 
| 
       242 
425 
     | 
    
         | 
| 
         @@ -249,6 +432,20 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       249 
432 
     | 
    
         
             
                        block_kv_indices,
         
     | 
| 
       250 
433 
     | 
    
         
             
                        max_seq_len_val,
         
     | 
| 
       251 
434 
     | 
    
         
             
                    )
         
     | 
| 
      
 435 
     | 
    
         
            +
                    if forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 436 
     | 
    
         
            +
                        num_tokens_per_bs = num_tokens // bs
         
     | 
| 
      
 437 
     | 
    
         
            +
                        metadata.max_seq_len_q = num_tokens_per_bs + 1
         
     | 
| 
      
 438 
     | 
    
         
            +
                        metadata.sum_seq_lens_q = num_tokens_per_bs * bs
         
     | 
| 
      
 439 
     | 
    
         
            +
                        metadata.cu_seqlens_q = torch.arange(
         
     | 
| 
      
 440 
     | 
    
         
            +
                            0,
         
     | 
| 
      
 441 
     | 
    
         
            +
                            bs * num_tokens_per_bs + 1,
         
     | 
| 
      
 442 
     | 
    
         
            +
                            num_tokens_per_bs,
         
     | 
| 
      
 443 
     | 
    
         
            +
                            dtype=torch.int32,
         
     | 
| 
      
 444 
     | 
    
         
            +
                            device=seq_lens.device,
         
     | 
| 
      
 445 
     | 
    
         
            +
                        )
         
     | 
| 
      
 446 
     | 
    
         
            +
                        metadata.seq_lens_q = torch.full(
         
     | 
| 
      
 447 
     | 
    
         
            +
                            (bs,), num_tokens_per_bs, dtype=torch.int32, device=seq_lens.device
         
     | 
| 
      
 448 
     | 
    
         
            +
                        )
         
     | 
| 
       252 
449 
     | 
    
         
             
                    self.decode_cuda_graph_metadata[bs] = metadata
         
     | 
| 
       253 
450 
     | 
    
         
             
                    self.forward_decode_metadata = metadata
         
     | 
| 
       254 
451 
     | 
    
         | 
| 
         @@ -260,12 +457,16 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       260 
457 
     | 
    
         
             
                    seq_lens_sum: int,
         
     | 
| 
       261 
458 
     | 
    
         
             
                    encoder_lens: Optional[torch.Tensor],
         
     | 
| 
       262 
459 
     | 
    
         
             
                    forward_mode: ForwardMode,
         
     | 
| 
       263 
     | 
    
         
            -
                    spec_info: Optional[ 
     | 
| 
      
 460 
     | 
    
         
            +
                    spec_info: Optional[SpecInput],
         
     | 
| 
       264 
461 
     | 
    
         
             
                    seq_lens_cpu: Optional[torch.Tensor],
         
     | 
| 
       265 
462 
     | 
    
         
             
                ):
         
     | 
| 
       266 
463 
     | 
    
         
             
                    """Replay CUDA graph with new inputs."""
         
     | 
| 
       267 
464 
     | 
    
         
             
                    # Delegate to parent for non-decode modes.
         
     | 
| 
       268 
     | 
    
         
            -
                    if  
     | 
| 
      
 465 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 466 
     | 
    
         
            +
                        not forward_mode.is_decode_or_idle()
         
     | 
| 
      
 467 
     | 
    
         
            +
                        and not forward_mode.is_target_verify()
         
     | 
| 
      
 468 
     | 
    
         
            +
                        and not forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 469 
     | 
    
         
            +
                    ):
         
     | 
| 
       269 
470 
     | 
    
         
             
                        return super().init_forward_metadata_replay_cuda_graph(
         
     | 
| 
       270 
471 
     | 
    
         
             
                            bs,
         
     | 
| 
       271 
472 
     | 
    
         
             
                            req_pool_indices,
         
     | 
| 
         @@ -277,8 +478,25 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       277 
478 
     | 
    
         
             
                            seq_lens_cpu,
         
     | 
| 
       278 
479 
     | 
    
         
             
                        )
         
     | 
| 
       279 
480 
     | 
    
         | 
| 
      
 481 
     | 
    
         
            +
                    if forward_mode.is_target_verify():
         
     | 
| 
      
 482 
     | 
    
         
            +
                        seq_lens = seq_lens + self.num_draft_tokens
         
     | 
| 
      
 483 
     | 
    
         
            +
                        del seq_lens_sum  # not handle "num_draft_tokens" but we do not need it
         
     | 
| 
      
 484 
     | 
    
         
            +
             
     | 
| 
       280 
485 
     | 
    
         
             
                    metadata = self.decode_cuda_graph_metadata[bs]
         
     | 
| 
       281 
486 
     | 
    
         | 
| 
      
 487 
     | 
    
         
            +
                    if forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 488 
     | 
    
         
            +
                        accept_length = spec_info.accept_length[:bs]
         
     | 
| 
      
 489 
     | 
    
         
            +
                        if spec_info.accept_length_cpu:
         
     | 
| 
      
 490 
     | 
    
         
            +
                            metadata.max_seq_len_q = max(spec_info.accept_length_cpu[:bs])
         
     | 
| 
      
 491 
     | 
    
         
            +
                            metadata.sum_seq_lens_q = sum(spec_info.accept_length_cpu[:bs])
         
     | 
| 
      
 492 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 493 
     | 
    
         
            +
                            metadata.max_seq_len_q = 1
         
     | 
| 
      
 494 
     | 
    
         
            +
                            metadata.sum_seq_lens_q = bs
         
     | 
| 
      
 495 
     | 
    
         
            +
                        metadata.cu_seqlens_q[1:].copy_(
         
     | 
| 
      
 496 
     | 
    
         
            +
                            torch.cumsum(accept_length, dim=0, dtype=torch.int32)
         
     | 
| 
      
 497 
     | 
    
         
            +
                        )
         
     | 
| 
      
 498 
     | 
    
         
            +
                        metadata.seq_lens_q.copy_(accept_length)
         
     | 
| 
      
 499 
     | 
    
         
            +
             
     | 
| 
       282 
500 
     | 
    
         
             
                    # Update block indices for new sequences.
         
     | 
| 
       283 
501 
     | 
    
         
             
                    create_flashmla_kv_indices_triton[(bs,)](
         
     | 
| 
       284 
502 
     | 
    
         
             
                        self.req_to_token,
         
     | 
| 
         @@ -288,7 +506,6 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       288 
506 
     | 
    
         
             
                        metadata.block_kv_indices,
         
     | 
| 
       289 
507 
     | 
    
         
             
                        self.req_to_token.stride(0),
         
     | 
| 
       290 
508 
     | 
    
         
             
                        metadata.block_kv_indices.shape[1],
         
     | 
| 
       291 
     | 
    
         
            -
                        NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
         
     | 
| 
       292 
509 
     | 
    
         
             
                        PAGED_SIZE=self.page_size,
         
     | 
| 
       293 
510 
     | 
    
         
             
                    )
         
     | 
| 
       294 
511 
     | 
    
         | 
| 
         @@ -309,7 +526,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       309 
526 
     | 
    
         
             
                    if (
         
     | 
| 
       310 
527 
     | 
    
         
             
                        forward_batch.forward_mode.is_extend()
         
     | 
| 
       311 
528 
     | 
    
         
             
                        and not forward_batch.forward_mode.is_target_verify()
         
     | 
| 
       312 
     | 
    
         
            -
                        and not forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 529 
     | 
    
         
            +
                        and not forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
       313 
530 
     | 
    
         
             
                    ):
         
     | 
| 
       314 
531 
     | 
    
         
             
                        if self.disable_chunked_prefix_cache:
         
     | 
| 
       315 
532 
     | 
    
         
             
                            super().init_forward_metadata(forward_batch)
         
     | 
| 
         @@ -327,7 +544,11 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       327 
544 
     | 
    
         
             
                            cum_seq_lens_q,
         
     | 
| 
       328 
545 
     | 
    
         
             
                            seq_lens,
         
     | 
| 
       329 
546 
     | 
    
         
             
                        )
         
     | 
| 
       330 
     | 
    
         
            -
                    elif  
     | 
| 
      
 547 
     | 
    
         
            +
                    elif (
         
     | 
| 
      
 548 
     | 
    
         
            +
                        forward_batch.forward_mode.is_decode_or_idle()
         
     | 
| 
      
 549 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_target_verify()
         
     | 
| 
      
 550 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
      
 551 
     | 
    
         
            +
                    ):
         
     | 
| 
       331 
552 
     | 
    
         
             
                        bs = forward_batch.batch_size
         
     | 
| 
       332 
553 
     | 
    
         | 
| 
       333 
554 
     | 
    
         
             
                        # Get maximum sequence length.
         
     | 
| 
         @@ -336,19 +557,42 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       336 
557 
     | 
    
         
             
                        else:
         
     | 
| 
       337 
558 
     | 
    
         
             
                            max_seq = forward_batch.seq_lens.max().item()
         
     | 
| 
       338 
559 
     | 
    
         | 
| 
      
 560 
     | 
    
         
            +
                        seq_lens = forward_batch.seq_lens
         
     | 
| 
      
 561 
     | 
    
         
            +
             
     | 
| 
      
 562 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 563 
     | 
    
         
            +
                            max_seq = max_seq + self.num_draft_tokens
         
     | 
| 
      
 564 
     | 
    
         
            +
                            seq_lens = seq_lens + self.num_draft_tokens
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
       339 
566 
     | 
    
         
             
                        max_seqlen_pad = self._calc_padded_blocks(max_seq)
         
     | 
| 
       340 
567 
     | 
    
         
             
                        block_kv_indices = self._create_block_kv_indices(
         
     | 
| 
       341 
568 
     | 
    
         
             
                            bs,
         
     | 
| 
       342 
569 
     | 
    
         
             
                            max_seqlen_pad,
         
     | 
| 
       343 
570 
     | 
    
         
             
                            forward_batch.req_pool_indices,
         
     | 
| 
       344 
     | 
    
         
            -
                             
     | 
| 
       345 
     | 
    
         
            -
                             
     | 
| 
      
 571 
     | 
    
         
            +
                            seq_lens,
         
     | 
| 
      
 572 
     | 
    
         
            +
                            seq_lens.device,
         
     | 
| 
       346 
573 
     | 
    
         
             
                        )
         
     | 
| 
       347 
574 
     | 
    
         | 
| 
       348 
575 
     | 
    
         
             
                        max_seq_len_val = int(max_seq)
         
     | 
| 
       349 
576 
     | 
    
         
             
                        self.forward_decode_metadata = TRTLLMMLADecodeMetadata(
         
     | 
| 
       350 
577 
     | 
    
         
             
                            block_kv_indices, max_seq_len_val
         
     | 
| 
       351 
578 
     | 
    
         
             
                        )
         
     | 
| 
      
 579 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 580 
     | 
    
         
            +
                            max_seq = forward_batch.seq_lens_cpu.max().item()
         
     | 
| 
      
 581 
     | 
    
         
            +
             
     | 
| 
      
 582 
     | 
    
         
            +
                            sum_seq_lens_q = sum(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 583 
     | 
    
         
            +
                            max_seq_len_q = max(forward_batch.extend_seq_lens_cpu)
         
     | 
| 
      
 584 
     | 
    
         
            +
                            cu_seqlens_q = torch.nn.functional.pad(
         
     | 
| 
      
 585 
     | 
    
         
            +
                                torch.cumsum(
         
     | 
| 
      
 586 
     | 
    
         
            +
                                    forward_batch.extend_seq_lens, dim=0, dtype=torch.int32
         
     | 
| 
      
 587 
     | 
    
         
            +
                                ),
         
     | 
| 
      
 588 
     | 
    
         
            +
                                (1, 0),
         
     | 
| 
      
 589 
     | 
    
         
            +
                            )
         
     | 
| 
      
 590 
     | 
    
         
            +
             
     | 
| 
      
 591 
     | 
    
         
            +
                            self.forward_decode_metadata.max_seq_len_q = max_seq_len_q
         
     | 
| 
      
 592 
     | 
    
         
            +
                            self.forward_decode_metadata.sum_seq_lens_q = sum_seq_lens_q
         
     | 
| 
      
 593 
     | 
    
         
            +
                            self.forward_decode_metadata.cu_seqlens_q = cu_seqlens_q
         
     | 
| 
      
 594 
     | 
    
         
            +
                            self.forward_decode_metadata.seq_lens_q = forward_batch.extend_seq_lens
         
     | 
| 
      
 595 
     | 
    
         
            +
             
     | 
| 
       352 
596 
     | 
    
         
             
                        forward_batch.decode_trtllm_mla_metadata = self.forward_decode_metadata
         
     | 
| 
       353 
597 
     | 
    
         
             
                    else:
         
     | 
| 
       354 
598 
     | 
    
         
             
                        return super().init_forward_metadata(forward_batch)
         
     | 
| 
         @@ -434,6 +678,86 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       434 
678 
     | 
    
         | 
| 
       435 
679 
     | 
    
         
             
                    return q_out, k_nope_out, k_rope_out
         
     | 
| 
       436 
680 
     | 
    
         | 
| 
      
 681 
     | 
    
         
            +
                def pad_draft_extend_query(
         
     | 
| 
      
 682 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 683 
     | 
    
         
            +
                    q: torch.Tensor,
         
     | 
| 
      
 684 
     | 
    
         
            +
                    padded_q: torch.Tensor,
         
     | 
| 
      
 685 
     | 
    
         
            +
                    seq_lens_q: torch.Tensor,
         
     | 
| 
      
 686 
     | 
    
         
            +
                    cu_seqlens_q: torch.Tensor,
         
     | 
| 
      
 687 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 688 
     | 
    
         
            +
                    """Pad draft extended query using Triton kernel."""
         
     | 
| 
      
 689 
     | 
    
         
            +
                    batch_size = cu_seqlens_q.shape[0] - 1
         
     | 
| 
      
 690 
     | 
    
         
            +
                    max_seq_len_q = padded_q.shape[1]
         
     | 
| 
      
 691 
     | 
    
         
            +
                    num_heads = padded_q.shape[2]
         
     | 
| 
      
 692 
     | 
    
         
            +
                    head_dim = padded_q.shape[3]
         
     | 
| 
      
 693 
     | 
    
         
            +
             
     | 
| 
      
 694 
     | 
    
         
            +
                    # Launch Triton kernel with 3D grid for parallelized head and dim processing
         
     | 
| 
      
 695 
     | 
    
         
            +
                    BLOCK_SIZE = 64
         
     | 
| 
      
 696 
     | 
    
         
            +
                    num_head_blocks = triton.cdiv(num_heads, BLOCK_SIZE)
         
     | 
| 
      
 697 
     | 
    
         
            +
                    num_dim_blocks = triton.cdiv(head_dim, BLOCK_SIZE)
         
     | 
| 
      
 698 
     | 
    
         
            +
                    grid = (batch_size * max_seq_len_q, num_head_blocks, num_dim_blocks)
         
     | 
| 
      
 699 
     | 
    
         
            +
             
     | 
| 
      
 700 
     | 
    
         
            +
                    pad_draft_extend_query_kernel[grid](
         
     | 
| 
      
 701 
     | 
    
         
            +
                        q_ptr=q,
         
     | 
| 
      
 702 
     | 
    
         
            +
                        padded_q_ptr=padded_q,
         
     | 
| 
      
 703 
     | 
    
         
            +
                        seq_lens_q_ptr=seq_lens_q,
         
     | 
| 
      
 704 
     | 
    
         
            +
                        cumsum_ptr=cu_seqlens_q,
         
     | 
| 
      
 705 
     | 
    
         
            +
                        batch_size=batch_size,
         
     | 
| 
      
 706 
     | 
    
         
            +
                        max_seq_len=max_seq_len_q,
         
     | 
| 
      
 707 
     | 
    
         
            +
                        num_heads=num_heads,
         
     | 
| 
      
 708 
     | 
    
         
            +
                        head_dim=head_dim,
         
     | 
| 
      
 709 
     | 
    
         
            +
                        BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 710 
     | 
    
         
            +
                    )
         
     | 
| 
      
 711 
     | 
    
         
            +
                    return padded_q
         
     | 
| 
      
 712 
     | 
    
         
            +
             
     | 
| 
      
 713 
     | 
    
         
            +
                def unpad_draft_extend_output(
         
     | 
| 
      
 714 
     | 
    
         
            +
                    self,
         
     | 
| 
      
 715 
     | 
    
         
            +
                    raw_out: torch.Tensor,
         
     | 
| 
      
 716 
     | 
    
         
            +
                    cu_seqlens_q: torch.Tensor,
         
     | 
| 
      
 717 
     | 
    
         
            +
                    seq_lens_q: torch.Tensor,
         
     | 
| 
      
 718 
     | 
    
         
            +
                    sum_seq_lens_q: int,
         
     | 
| 
      
 719 
     | 
    
         
            +
                ) -> torch.Tensor:
         
     | 
| 
      
 720 
     | 
    
         
            +
                    """Unpad draft extended output using Triton kernel."""
         
     | 
| 
      
 721 
     | 
    
         
            +
                    # raw_out: (batch_size, token_per_batch, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 722 
     | 
    
         
            +
                    batch_size = seq_lens_q.shape[0]
         
     | 
| 
      
 723 
     | 
    
         
            +
                    token_per_batch = raw_out.shape[1]  # max_seq_len
         
     | 
| 
      
 724 
     | 
    
         
            +
                    tp_q_head_num = raw_out.shape[2]  # num_heads
         
     | 
| 
      
 725 
     | 
    
         
            +
                    v_head_dim = raw_out.shape[3]  # head_dim
         
     | 
| 
      
 726 
     | 
    
         
            +
                    total_tokens = sum_seq_lens_q
         
     | 
| 
      
 727 
     | 
    
         
            +
             
     | 
| 
      
 728 
     | 
    
         
            +
                    # Check if we're in CUDA graph mode (buffers are pre-allocated)
         
     | 
| 
      
 729 
     | 
    
         
            +
                    if self.unpad_output_buffer is not None:
         
     | 
| 
      
 730 
     | 
    
         
            +
                        # Use pre-allocated buffer for CUDA graph compatibility
         
     | 
| 
      
 731 
     | 
    
         
            +
                        output = self.unpad_output_buffer[:total_tokens, :, :].to(
         
     | 
| 
      
 732 
     | 
    
         
            +
                            dtype=raw_out.dtype
         
     | 
| 
      
 733 
     | 
    
         
            +
                        )
         
     | 
| 
      
 734 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 735 
     | 
    
         
            +
                        # Dynamic allocation for non-CUDA graph mode
         
     | 
| 
      
 736 
     | 
    
         
            +
                        output = torch.empty(
         
     | 
| 
      
 737 
     | 
    
         
            +
                            (total_tokens, tp_q_head_num, v_head_dim),
         
     | 
| 
      
 738 
     | 
    
         
            +
                            dtype=raw_out.dtype,
         
     | 
| 
      
 739 
     | 
    
         
            +
                            device=raw_out.device,
         
     | 
| 
      
 740 
     | 
    
         
            +
                        )
         
     | 
| 
      
 741 
     | 
    
         
            +
             
     | 
| 
      
 742 
     | 
    
         
            +
                    # Launch Triton kernel with 3D grid for parallelized head and dim processing
         
     | 
| 
      
 743 
     | 
    
         
            +
                    BLOCK_SIZE = 64
         
     | 
| 
      
 744 
     | 
    
         
            +
                    num_head_blocks = triton.cdiv(tp_q_head_num, BLOCK_SIZE)
         
     | 
| 
      
 745 
     | 
    
         
            +
                    num_dim_blocks = triton.cdiv(v_head_dim, BLOCK_SIZE)
         
     | 
| 
      
 746 
     | 
    
         
            +
                    grid = (batch_size * token_per_batch, num_head_blocks, num_dim_blocks)
         
     | 
| 
      
 747 
     | 
    
         
            +
             
     | 
| 
      
 748 
     | 
    
         
            +
                    unpad_draft_extend_output_kernel[grid](
         
     | 
| 
      
 749 
     | 
    
         
            +
                        raw_out_ptr=raw_out,
         
     | 
| 
      
 750 
     | 
    
         
            +
                        output_ptr=output,
         
     | 
| 
      
 751 
     | 
    
         
            +
                        accept_length_ptr=seq_lens_q,
         
     | 
| 
      
 752 
     | 
    
         
            +
                        cumsum_ptr=cu_seqlens_q,
         
     | 
| 
      
 753 
     | 
    
         
            +
                        batch_size=batch_size,
         
     | 
| 
      
 754 
     | 
    
         
            +
                        token_per_batch=token_per_batch,
         
     | 
| 
      
 755 
     | 
    
         
            +
                        tp_q_head_num=tp_q_head_num,
         
     | 
| 
      
 756 
     | 
    
         
            +
                        v_head_dim=v_head_dim,
         
     | 
| 
      
 757 
     | 
    
         
            +
                        BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 758 
     | 
    
         
            +
                    )
         
     | 
| 
      
 759 
     | 
    
         
            +
                    return output[:total_tokens, :, :]
         
     | 
| 
      
 760 
     | 
    
         
            +
             
     | 
| 
       437 
761 
     | 
    
         
             
                def forward_decode(
         
     | 
| 
       438 
762 
     | 
    
         
             
                    self,
         
     | 
| 
       439 
763 
     | 
    
         
             
                    q: torch.Tensor,  # q_nope
         
     | 
| 
         @@ -482,7 +806,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       482 
806 
     | 
    
         
             
                        q_rope_reshaped = q_rope.view(
         
     | 
| 
       483 
807 
     | 
    
         
             
                            -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
         
     | 
| 
       484 
808 
     | 
    
         
             
                        )
         
     | 
| 
       485 
     | 
    
         
            -
                        query =  
     | 
| 
      
 809 
     | 
    
         
            +
                        query = _concat_mla_absorb_q_general(q_nope, q_rope_reshaped)
         
     | 
| 
       486 
810 
     | 
    
         
             
                    else:
         
     | 
| 
       487 
811 
     | 
    
         
             
                        # For FP8 path, we already have the query and rope parts merged because of the quantize_and_rope_for_fp8 function
         
     | 
| 
       488 
812 
     | 
    
         
             
                        query = q.view(-1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
         @@ -527,7 +851,7 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       527 
851 
     | 
    
         
             
                        qk_rope_head_dim=self.qk_rope_head_dim,
         
     | 
| 
       528 
852 
     | 
    
         
             
                        block_tables=metadata.block_kv_indices,
         
     | 
| 
       529 
853 
     | 
    
         
             
                        seq_lens=forward_batch.seq_lens.to(torch.int32),
         
     | 
| 
       530 
     | 
    
         
            -
                        max_seq_len=metadata. 
     | 
| 
      
 854 
     | 
    
         
            +
                        max_seq_len=metadata.max_seq_len_k,
         
     | 
| 
       531 
855 
     | 
    
         
             
                        bmm1_scale=bmm1_scale,
         
     | 
| 
       532 
856 
     | 
    
         
             
                    )
         
     | 
| 
       533 
857 
     | 
    
         | 
| 
         @@ -545,49 +869,193 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend): 
     | 
|
| 
       545 
869 
     | 
    
         
             
                    save_kv_cache: bool = True,
         
     | 
| 
       546 
870 
     | 
    
         
             
                    q_rope: Optional[torch.Tensor] = None,
         
     | 
| 
       547 
871 
     | 
    
         
             
                    k_rope: Optional[torch.Tensor] = None,
         
     | 
| 
      
 872 
     | 
    
         
            +
                    cos_sin_cache: Optional[torch.Tensor] = None,
         
     | 
| 
      
 873 
     | 
    
         
            +
                    is_neox: Optional[bool] = False,
         
     | 
| 
       548 
874 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
      
 875 
     | 
    
         
            +
                    # TODO refactor to avoid code duplication
         
     | 
| 
      
 876 
     | 
    
         
            +
                    merge_query = q_rope is not None
         
     | 
| 
      
 877 
     | 
    
         
            +
                    if (
         
     | 
| 
      
 878 
     | 
    
         
            +
                        self.data_type == torch.float8_e4m3fn
         
     | 
| 
      
 879 
     | 
    
         
            +
                    ) and forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 880 
     | 
    
         
            +
                        # For FP8 path, we quantize the query and rope parts and merge them into a single tensor
         
     | 
| 
      
 881 
     | 
    
         
            +
                        # Note: rope application in deepseek_v2.py:forward_absorb_prepare is skipped for FP8 decode path of this trtllm_mla backend
         
     | 
| 
      
 882 
     | 
    
         
            +
                        assert all(
         
     | 
| 
      
 883 
     | 
    
         
            +
                            x is not None for x in [q_rope, k_rope, cos_sin_cache]
         
     | 
| 
      
 884 
     | 
    
         
            +
                        ), "For FP8 path and using flashinfer.rope.mla_rope_quantize we need all of q_rope, k_rope and cos_sin_cache to be not None."
         
     | 
| 
      
 885 
     | 
    
         
            +
                        q, k, k_rope = self.quantize_and_rope_for_fp8(
         
     | 
| 
      
 886 
     | 
    
         
            +
                            q,
         
     | 
| 
      
 887 
     | 
    
         
            +
                            q_rope,
         
     | 
| 
      
 888 
     | 
    
         
            +
                            k.squeeze(1),
         
     | 
| 
      
 889 
     | 
    
         
            +
                            k_rope.squeeze(1),
         
     | 
| 
      
 890 
     | 
    
         
            +
                            forward_batch,
         
     | 
| 
      
 891 
     | 
    
         
            +
                            cos_sin_cache,
         
     | 
| 
      
 892 
     | 
    
         
            +
                            is_neox,
         
     | 
| 
      
 893 
     | 
    
         
            +
                        )
         
     | 
| 
      
 894 
     | 
    
         
            +
                        merge_query = False
         
     | 
| 
      
 895 
     | 
    
         
            +
             
     | 
| 
      
 896 
     | 
    
         
            +
                    # Save KV cache if requested
         
     | 
| 
      
 897 
     | 
    
         
            +
                    if save_kv_cache:
         
     | 
| 
      
 898 
     | 
    
         
            +
                        assert (
         
     | 
| 
      
 899 
     | 
    
         
            +
                            k is not None and k_rope is not None
         
     | 
| 
      
 900 
     | 
    
         
            +
                        ), "For populating trtllm_mla kv cache, both k_nope and k_rope should be not None."
         
     | 
| 
      
 901 
     | 
    
         
            +
                        forward_batch.token_to_kv_pool.set_mla_kv_buffer(
         
     | 
| 
      
 902 
     | 
    
         
            +
                            layer, forward_batch.out_cache_loc, k, k_rope
         
     | 
| 
      
 903 
     | 
    
         
            +
                        )
         
     | 
| 
      
 904 
     | 
    
         
            +
             
     | 
| 
      
 905 
     | 
    
         
            +
                    # TODO refactor to avoid code duplication
         
     | 
| 
      
 906 
     | 
    
         
            +
                    # Prepare query tensor inline
         
     | 
| 
      
 907 
     | 
    
         
            +
                    if merge_query:
         
     | 
| 
      
 908 
     | 
    
         
            +
                        # For FP16 path, we merge the query and rope parts into a single tensor
         
     | 
| 
      
 909 
     | 
    
         
            +
                        q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 910 
     | 
    
         
            +
                        q_rope_reshaped = q_rope.view(
         
     | 
| 
      
 911 
     | 
    
         
            +
                            -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
         
     | 
| 
      
 912 
     | 
    
         
            +
                        )
         
     | 
| 
      
 913 
     | 
    
         
            +
                        q = _concat_mla_absorb_q_general(q_nope, q_rope_reshaped)
         
     | 
| 
      
 914 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 915 
     | 
    
         
            +
                        # For FP8 path, we already have the query and rope parts merged because of the quantize_and_rope_for_fp8 function
         
     | 
| 
      
 916 
     | 
    
         
            +
                        q = q.view(-1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
      
 917 
     | 
    
         
            +
             
     | 
| 
      
 918 
     | 
    
         
            +
                    q = q.view(-1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
      
 919 
     | 
    
         
            +
             
     | 
| 
      
 920 
     | 
    
         
            +
                    if k_rope is not None:
         
     | 
| 
      
 921 
     | 
    
         
            +
                        k = torch.cat([k, k_rope], dim=-1)
         
     | 
| 
      
 922 
     | 
    
         
            +
                    k = k.view(-1, layer.tp_k_head_num, layer.head_dim)
         
     | 
| 
      
 923 
     | 
    
         
            +
             
     | 
| 
      
 924 
     | 
    
         
            +
                    v = v.view(-1, layer.tp_k_head_num, layer.v_head_dim)
         
     | 
| 
      
 925 
     | 
    
         
            +
             
     | 
| 
       549 
926 
     | 
    
         
             
                    if (
         
     | 
| 
       550 
927 
     | 
    
         
             
                        forward_batch.forward_mode.is_target_verify()
         
     | 
| 
       551 
     | 
    
         
            -
                        or forward_batch.forward_mode.is_draft_extend()
         
     | 
| 
      
 928 
     | 
    
         
            +
                        or forward_batch.forward_mode.is_draft_extend(include_v2=True)
         
     | 
| 
       552 
929 
     | 
    
         
             
                    ):
         
     | 
| 
       553 
     | 
    
         
            -
                         
     | 
| 
       554 
     | 
    
         
            -
                             
     | 
| 
      
 930 
     | 
    
         
            +
                        metadata = (
         
     | 
| 
      
 931 
     | 
    
         
            +
                            getattr(forward_batch, "decode_trtllm_mla_metadata", None)
         
     | 
| 
      
 932 
     | 
    
         
            +
                            or self.forward_decode_metadata
         
     | 
| 
       555 
933 
     | 
    
         
             
                        )
         
     | 
| 
       556 
     | 
    
         
            -
             
     | 
| 
       557 
     | 
    
         
            -
             
     | 
| 
       558 
     | 
    
         
            -
                         
     | 
| 
       559 
     | 
    
         
            -
             
     | 
| 
      
 934 
     | 
    
         
            +
             
     | 
| 
      
 935 
     | 
    
         
            +
                        # Ensure query has shape [bs, num_draft_tokens, num_q_heads, head_dim]
         
     | 
| 
      
 936 
     | 
    
         
            +
                        bs = forward_batch.batch_size
         
     | 
| 
      
 937 
     | 
    
         
            +
             
     | 
| 
      
 938 
     | 
    
         
            +
                        k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
         
     | 
| 
      
 939 
     | 
    
         
            +
                        kv_cache = k_cache.view(-1, self.page_size, self.kv_cache_dim).unsqueeze(1)
         
     | 
| 
      
 940 
     | 
    
         
            +
             
     | 
| 
      
 941 
     | 
    
         
            +
                        q_scale = 1.0
         
     | 
| 
      
 942 
     | 
    
         
            +
                        k_scale = (
         
     | 
| 
      
 943 
     | 
    
         
            +
                            layer.k_scale_float
         
     | 
| 
      
 944 
     | 
    
         
            +
                            if getattr(layer, "k_scale_float", None) is not None
         
     | 
| 
      
 945 
     | 
    
         
            +
                            else 1.0
         
     | 
| 
       560 
946 
     | 
    
         
             
                        )
         
     | 
| 
      
 947 
     | 
    
         
            +
                        q = q.to(self.data_type)
         
     | 
| 
       561 
948 
     | 
    
         | 
| 
       562 
     | 
    
         
            -
             
     | 
| 
       563 
     | 
    
         
            -
                         
     | 
| 
       564 
     | 
    
         
            -
             
     | 
| 
       565 
     | 
    
         
            -
             
     | 
| 
       566 
     | 
    
         
            -
             
     | 
| 
      
 949 
     | 
    
         
            +
                        bmm1_scale = q_scale * k_scale * layer.scaling
         
     | 
| 
      
 950 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_target_verify():
         
     | 
| 
      
 951 
     | 
    
         
            +
                            seq_lens = (
         
     | 
| 
      
 952 
     | 
    
         
            +
                                forward_batch.seq_lens.to(torch.int32)
         
     | 
| 
      
 953 
     | 
    
         
            +
                                + forward_batch.spec_info.draft_token_num
         
     | 
| 
      
 954 
     | 
    
         
            +
                            )
         
     | 
| 
      
 955 
     | 
    
         
            +
                            max_seq_len = (
         
     | 
| 
      
 956 
     | 
    
         
            +
                                metadata.max_seq_len_k + forward_batch.spec_info.draft_token_num
         
     | 
| 
      
 957 
     | 
    
         
            +
                            )
         
     | 
| 
      
 958 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 959 
     | 
    
         
            +
                            seq_lens = forward_batch.seq_lens.to(torch.int32)
         
     | 
| 
      
 960 
     | 
    
         
            +
                            max_seq_len = metadata.max_seq_len_k
         
     | 
| 
      
 961 
     | 
    
         
            +
                            # Check if we're in CUDA graph mode (buffers are pre-allocated)
         
     | 
| 
      
 962 
     | 
    
         
            +
                            if self.padded_q_buffer is not None:
         
     | 
| 
      
 963 
     | 
    
         
            +
                                # Use pre-allocated buffer for CUDA graph compatibility
         
     | 
| 
      
 964 
     | 
    
         
            +
                                padded_q = self.padded_q_buffer[
         
     | 
| 
      
 965 
     | 
    
         
            +
                                    :bs, : metadata.max_seq_len_q, :, :
         
     | 
| 
      
 966 
     | 
    
         
            +
                                ].to(dtype=q.dtype)
         
     | 
| 
      
 967 
     | 
    
         
            +
                            else:
         
     | 
| 
      
 968 
     | 
    
         
            +
                                # Dynamic allocation for non-CUDA graph mode
         
     | 
| 
      
 969 
     | 
    
         
            +
                                padded_q = torch.zeros(
         
     | 
| 
      
 970 
     | 
    
         
            +
                                    bs,
         
     | 
| 
      
 971 
     | 
    
         
            +
                                    metadata.max_seq_len_q,
         
     | 
| 
      
 972 
     | 
    
         
            +
                                    layer.tp_q_head_num,
         
     | 
| 
      
 973 
     | 
    
         
            +
                                    layer.head_dim,
         
     | 
| 
      
 974 
     | 
    
         
            +
                                    dtype=q.dtype,
         
     | 
| 
      
 975 
     | 
    
         
            +
                                    device=q.device,
         
     | 
| 
      
 976 
     | 
    
         
            +
                                )
         
     | 
| 
      
 977 
     | 
    
         
            +
                            q = self.pad_draft_extend_query(
         
     | 
| 
      
 978 
     | 
    
         
            +
                                q, padded_q, metadata.seq_lens_q, metadata.cu_seqlens_q
         
     | 
| 
      
 979 
     | 
    
         
            +
                            )
         
     | 
| 
      
 980 
     | 
    
         
            +
             
     | 
| 
      
 981 
     | 
    
         
            +
                        # TODO may use `mla_rope_quantize_fp8` fusion
         
     | 
| 
      
 982 
     | 
    
         
            +
                        q = q.view(bs, -1, layer.tp_q_head_num, layer.head_dim)
         
     | 
| 
      
 983 
     | 
    
         
            +
                        assert kv_cache.dtype == self.data_type
         
     | 
| 
      
 984 
     | 
    
         
            +
             
     | 
| 
      
 985 
     | 
    
         
            +
                        raw_out = flashinfer.decode.trtllm_batch_decode_with_kv_cache_mla(
         
     | 
| 
      
 986 
     | 
    
         
            +
                            query=q,
         
     | 
| 
      
 987 
     | 
    
         
            +
                            kv_cache=kv_cache,
         
     | 
| 
      
 988 
     | 
    
         
            +
                            workspace_buffer=self.workspace_buffer,
         
     | 
| 
      
 989 
     | 
    
         
            +
                            qk_nope_head_dim=self.qk_nope_head_dim,
         
     | 
| 
      
 990 
     | 
    
         
            +
                            kv_lora_rank=self.kv_lora_rank,
         
     | 
| 
      
 991 
     | 
    
         
            +
                            qk_rope_head_dim=self.qk_rope_head_dim,
         
     | 
| 
      
 992 
     | 
    
         
            +
                            block_tables=metadata.block_kv_indices,
         
     | 
| 
      
 993 
     | 
    
         
            +
                            seq_lens=seq_lens,
         
     | 
| 
      
 994 
     | 
    
         
            +
                            max_seq_len=max_seq_len,
         
     | 
| 
      
 995 
     | 
    
         
            +
                            bmm1_scale=bmm1_scale,
         
     | 
| 
      
 996 
     | 
    
         
            +
                        )
         
     | 
| 
      
 997 
     | 
    
         
            +
             
     | 
| 
      
 998 
     | 
    
         
            +
                        # Reshape output directly without slicing
         
     | 
| 
      
 999 
     | 
    
         
            +
             
     | 
| 
      
 1000 
     | 
    
         
            +
                        if forward_batch.forward_mode.is_draft_extend(include_v2=True):
         
     | 
| 
      
 1001 
     | 
    
         
            +
                            raw_out = self.unpad_draft_extend_output(
         
     | 
| 
      
 1002 
     | 
    
         
            +
                                raw_out,
         
     | 
| 
      
 1003 
     | 
    
         
            +
                                metadata.cu_seqlens_q,
         
     | 
| 
      
 1004 
     | 
    
         
            +
                                metadata.seq_lens_q,
         
     | 
| 
      
 1005 
     | 
    
         
            +
                                metadata.sum_seq_lens_q,
         
     | 
| 
      
 1006 
     | 
    
         
            +
                            )
         
     | 
| 
      
 1007 
     | 
    
         
            +
                        output = raw_out.view(-1, layer.tp_q_head_num * layer.v_head_dim)
         
     | 
| 
      
 1008 
     | 
    
         
            +
                        return output
         
     | 
| 
      
 1009 
     | 
    
         
            +
             
     | 
| 
      
 1010 
     | 
    
         
            +
                    if forward_batch.attn_attend_prefix_cache:
         
     | 
| 
      
 1011 
     | 
    
         
            +
                        # MHA for chunked prefix kv cache when running model with MLA
         
     | 
| 
      
 1012 
     | 
    
         
            +
                        assert forward_batch.prefix_chunk_idx is not None
         
     | 
| 
      
 1013 
     | 
    
         
            +
                        assert forward_batch.prefix_chunk_cu_seq_lens is not None
         
     | 
| 
      
 1014 
     | 
    
         
            +
                        assert q_rope is None
         
     | 
| 
      
 1015 
     | 
    
         
            +
                        assert k_rope is None
         
     | 
| 
      
 1016 
     | 
    
         
            +
                        chunk_idx = forward_batch.prefix_chunk_idx
         
     | 
| 
      
 1017 
     | 
    
         
            +
             
     | 
| 
      
 1018 
     | 
    
         
            +
                        output_shape = (q.shape[0], layer.tp_q_head_num, layer.v_head_dim)
         
     | 
| 
      
 1019 
     | 
    
         
            +
                        return flashinfer.prefill.trtllm_ragged_attention_deepseek(
         
     | 
| 
       567 
1020 
     | 
    
         
             
                            query=q,
         
     | 
| 
       568 
1021 
     | 
    
         
             
                            key=k,
         
     | 
| 
       569 
1022 
     | 
    
         
             
                            value=v,
         
     | 
| 
       570 
1023 
     | 
    
         
             
                            workspace_buffer=self.workspace_buffer,
         
     | 
| 
       571 
     | 
    
         
            -
                            seq_lens= 
     | 
| 
      
 1024 
     | 
    
         
            +
                            seq_lens=forward_batch.prefix_chunk_seq_lens[chunk_idx],
         
     | 
| 
       572 
1025 
     | 
    
         
             
                            max_q_len=self.forward_prefill_metadata.max_seq_len,
         
     | 
| 
       573 
     | 
    
         
            -
                            max_kv_len= 
     | 
| 
      
 1026 
     | 
    
         
            +
                            max_kv_len=forward_batch.prefix_chunk_max_seq_lens[chunk_idx],
         
     | 
| 
       574 
1027 
     | 
    
         
             
                            bmm1_scale=layer.scaling,
         
     | 
| 
       575 
1028 
     | 
    
         
             
                            bmm2_scale=1.0,
         
     | 
| 
       576 
     | 
    
         
            -
                            o_sf_scale 
     | 
| 
      
 1029 
     | 
    
         
            +
                            o_sf_scale=-1.0,
         
     | 
| 
       577 
1030 
     | 
    
         
             
                            batch_size=forward_batch.batch_size,
         
     | 
| 
       578 
1031 
     | 
    
         
             
                            window_left=-1,
         
     | 
| 
       579 
1032 
     | 
    
         
             
                            cum_seq_lens_q=self.forward_prefill_metadata.cum_seq_lens,
         
     | 
| 
       580 
     | 
    
         
            -
                            cum_seq_lens_kv= 
     | 
| 
      
 1033 
     | 
    
         
            +
                            cum_seq_lens_kv=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
         
     | 
| 
       581 
1034 
     | 
    
         
             
                            enable_pdl=False,
         
     | 
| 
       582 
     | 
    
         
            -
                            is_causal= 
     | 
| 
       583 
     | 
    
         
            -
                            return_lse= 
     | 
| 
       584 
     | 
    
         
            -
             
     | 
| 
       585 
     | 
    
         
            -
                    else:
         
     | 
| 
       586 
     | 
    
         
            -
                        # replace with trtllm ragged attention once accuracy is resolved.
         
     | 
| 
       587 
     | 
    
         
            -
                        output = super().forward_extend(
         
     | 
| 
       588 
     | 
    
         
            -
                            q, k, v, layer, forward_batch, save_kv_cache, q_rope, k_rope
         
     | 
| 
      
 1035 
     | 
    
         
            +
                            is_causal=False,
         
     | 
| 
      
 1036 
     | 
    
         
            +
                            return_lse=True,
         
     | 
| 
      
 1037 
     | 
    
         
            +
                            out=torch.zeros(*output_shape, dtype=q.dtype, device=q.device),
         
     | 
| 
       589 
1038 
     | 
    
         
             
                        )
         
     | 
| 
       590 
     | 
    
         
            -
             
     | 
| 
      
 1039 
     | 
    
         
            +
             
     | 
| 
      
 1040 
     | 
    
         
            +
                    return flashinfer.prefill.trtllm_ragged_attention_deepseek(
         
     | 
| 
      
 1041 
     | 
    
         
            +
                        query=q,
         
     | 
| 
      
 1042 
     | 
    
         
            +
                        key=k,
         
     | 
| 
      
 1043 
     | 
    
         
            +
                        value=v,
         
     | 
| 
      
 1044 
     | 
    
         
            +
                        workspace_buffer=self.workspace_buffer,
         
     | 
| 
      
 1045 
     | 
    
         
            +
                        seq_lens=self.forward_prefill_metadata.seq_lens,
         
     | 
| 
      
 1046 
     | 
    
         
            +
                        max_q_len=self.forward_prefill_metadata.max_seq_len,
         
     | 
| 
      
 1047 
     | 
    
         
            +
                        max_kv_len=self.forward_prefill_metadata.max_seq_len,
         
     | 
| 
      
 1048 
     | 
    
         
            +
                        bmm1_scale=layer.scaling,
         
     | 
| 
      
 1049 
     | 
    
         
            +
                        bmm2_scale=1.0,
         
     | 
| 
      
 1050 
     | 
    
         
            +
                        o_sf_scale=1.0,
         
     | 
| 
      
 1051 
     | 
    
         
            +
                        batch_size=forward_batch.batch_size,
         
     | 
| 
      
 1052 
     | 
    
         
            +
                        window_left=-1,
         
     | 
| 
      
 1053 
     | 
    
         
            +
                        cum_seq_lens_q=self.forward_prefill_metadata.cum_seq_lens,
         
     | 
| 
      
 1054 
     | 
    
         
            +
                        cum_seq_lens_kv=self.forward_prefill_metadata.cum_seq_lens,
         
     | 
| 
      
 1055 
     | 
    
         
            +
                        enable_pdl=False,
         
     | 
| 
      
 1056 
     | 
    
         
            +
                        is_causal=True,
         
     | 
| 
      
 1057 
     | 
    
         
            +
                        return_lse=forward_batch.mha_return_lse,
         
     | 
| 
      
 1058 
     | 
    
         
            +
                    )
         
     | 
| 
       591 
1059 
     | 
    
         | 
| 
       592 
1060 
     | 
    
         | 
| 
       593 
1061 
     | 
    
         
             
            class TRTLLMMLAMultiStepDraftBackend(FlashInferMLAMultiStepDraftBackend):
         
     | 
| 
         @@ -598,10 +1066,17 @@ class TRTLLMMLAMultiStepDraftBackend(FlashInferMLAMultiStepDraftBackend): 
     | 
|
| 
       598 
1066 
     | 
    
         
             
                ):
         
     | 
| 
       599 
1067 
     | 
    
         
             
                    super().__init__(model_runner, topk, speculative_num_steps)
         
     | 
| 
       600 
1068 
     | 
    
         | 
| 
       601 
     | 
    
         
            -
                    for i in range(self.speculative_num_steps):
         
     | 
| 
      
 1069 
     | 
    
         
            +
                    for i in range(self.speculative_num_steps - 1):
         
     | 
| 
       602 
1070 
     | 
    
         
             
                        self.attn_backends[i] = TRTLLMMLABackend(
         
     | 
| 
       603 
1071 
     | 
    
         
             
                            model_runner,
         
     | 
| 
       604 
1072 
     | 
    
         
             
                            skip_prefill=True,
         
     | 
| 
       605 
1073 
     | 
    
         
             
                            kv_indptr_buf=self.kv_indptr[i],
         
     | 
| 
       606 
1074 
     | 
    
         
             
                            q_indptr_decode_buf=self.q_indptr_decode,
         
     | 
| 
       607 
1075 
     | 
    
         
             
                        )
         
     | 
| 
      
 1076 
     | 
    
         
            +
             
     | 
| 
      
 1077 
     | 
    
         
            +
             
     | 
| 
      
 1078 
     | 
    
         
            +
            def _concat_mla_absorb_q_general(q_nope, q_rope):
         
     | 
| 
      
 1079 
     | 
    
         
            +
                if _is_cuda and q_nope.shape[-1] == 512 and q_rope.shape[-1] == 64:
         
     | 
| 
      
 1080 
     | 
    
         
            +
                    return concat_mla_absorb_q(q_nope, q_rope)
         
     | 
| 
      
 1081 
     | 
    
         
            +
                else:
         
     | 
| 
      
 1082 
     | 
    
         
            +
                    return torch.cat([q_nope, q_rope], dim=-1)
         
     |