sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,4 +1,9 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from abc import ABC, abstractmethod
         
     | 
| 
       1 
2 
     | 
    
         
             
            from enum import IntEnum, auto
         
     | 
| 
      
 3 
     | 
    
         
            +
            from functools import lru_cache
         
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import List, Tuple
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import ModelWorkerBatch
         
     | 
| 
       2 
7 
     | 
    
         | 
| 
       3 
8 
     | 
    
         | 
| 
       4 
9 
     | 
    
         
             
            class SpeculativeAlgorithm(IntEnum):
         
     | 
| 
         @@ -6,6 +11,7 @@ class SpeculativeAlgorithm(IntEnum): 
     | 
|
| 
       6 
11 
     | 
    
         
             
                EAGLE = auto()
         
     | 
| 
       7 
12 
     | 
    
         
             
                EAGLE3 = auto()
         
     | 
| 
       8 
13 
     | 
    
         
             
                STANDALONE = auto()
         
     | 
| 
      
 14 
     | 
    
         
            +
                NGRAM = auto()
         
     | 
| 
       9 
15 
     | 
    
         | 
| 
       10 
16 
     | 
    
         
             
                def is_none(self):
         
     | 
| 
       11 
17 
     | 
    
         
             
                    return self == SpeculativeAlgorithm.NONE
         
     | 
| 
         @@ -19,14 +25,57 @@ class SpeculativeAlgorithm(IntEnum): 
     | 
|
| 
       19 
25 
     | 
    
         
             
                def is_standalone(self):
         
     | 
| 
       20 
26 
     | 
    
         
             
                    return self == SpeculativeAlgorithm.STANDALONE
         
     | 
| 
       21 
27 
     | 
    
         | 
| 
      
 28 
     | 
    
         
            +
                def is_ngram(self):
         
     | 
| 
      
 29 
     | 
    
         
            +
                    return self == SpeculativeAlgorithm.NGRAM
         
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
                @lru_cache(maxsize=None)
         
     | 
| 
       22 
32 
     | 
    
         
             
                @staticmethod
         
     | 
| 
       23 
33 
     | 
    
         
             
                def from_string(name: str):
         
     | 
| 
       24 
34 
     | 
    
         
             
                    name_map = {
         
     | 
| 
       25 
35 
     | 
    
         
             
                        "EAGLE": SpeculativeAlgorithm.EAGLE,
         
     | 
| 
       26 
36 
     | 
    
         
             
                        "EAGLE3": SpeculativeAlgorithm.EAGLE3,
         
     | 
| 
       27 
37 
     | 
    
         
             
                        "STANDALONE": SpeculativeAlgorithm.STANDALONE,
         
     | 
| 
      
 38 
     | 
    
         
            +
                        "NGRAM": SpeculativeAlgorithm.NGRAM,
         
     | 
| 
       28 
39 
     | 
    
         
             
                        None: SpeculativeAlgorithm.NONE,
         
     | 
| 
       29 
40 
     | 
    
         
             
                    }
         
     | 
| 
       30 
41 
     | 
    
         
             
                    if name is not None:
         
     | 
| 
       31 
42 
     | 
    
         
             
                        name = name.upper()
         
     | 
| 
       32 
43 
     | 
    
         
             
                    return name_map[name]
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
            class SpecInputType(IntEnum):
         
     | 
| 
      
 47 
     | 
    
         
            +
                # NOTE: introduce this to distinguish the SpecInput types of multiple algorithms when asserting in attention backends.
         
     | 
| 
      
 48 
     | 
    
         
            +
                # If all algorithms can share the same datastrucutre of draft_input and verify_input, consider simplify it
         
     | 
| 
      
 49 
     | 
    
         
            +
                EAGLE_DRAFT = auto()
         
     | 
| 
      
 50 
     | 
    
         
            +
                EAGLE_VERIFY = auto()
         
     | 
| 
      
 51 
     | 
    
         
            +
                NGRAM_VERIFY = auto()
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
            class SpecInput(ABC):
         
     | 
| 
      
 55 
     | 
    
         
            +
                def __init__(self, spec_input_type: SpecInputType):
         
     | 
| 
      
 56 
     | 
    
         
            +
                    self.spec_input_type = spec_input_type
         
     | 
| 
      
 57 
     | 
    
         
            +
             
     | 
| 
      
 58 
     | 
    
         
            +
                def is_draft_input(self) -> bool:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    # FIXME: remove this function which is only used for assertion
         
     | 
| 
      
 60 
     | 
    
         
            +
                    # or use another variable name like `draft_input` to substitute `spec_info`
         
     | 
| 
      
 61 
     | 
    
         
            +
                    return self.spec_input_type == SpecInputType.EAGLE_DRAFT
         
     | 
| 
      
 62 
     | 
    
         
            +
             
     | 
| 
      
 63 
     | 
    
         
            +
                def is_verify_input(self) -> bool:
         
     | 
| 
      
 64 
     | 
    
         
            +
                    return self.spec_input_type in {
         
     | 
| 
      
 65 
     | 
    
         
            +
                        SpecInputType.EAGLE_VERIFY,
         
     | 
| 
      
 66 
     | 
    
         
            +
                        SpecInputType.NGRAM_VERIFY,
         
     | 
| 
      
 67 
     | 
    
         
            +
                    }
         
     | 
| 
      
 68 
     | 
    
         
            +
             
     | 
| 
      
 69 
     | 
    
         
            +
                @abstractmethod
         
     | 
| 
      
 70 
     | 
    
         
            +
                def get_spec_adjust_token_coefficient(self) -> Tuple[int, int]:
         
     | 
| 
      
 71 
     | 
    
         
            +
                    pass
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
                def get_spec_adjusted_global_num_tokens(
         
     | 
| 
      
 74 
     | 
    
         
            +
                    self, forward_batch: ModelWorkerBatch
         
     | 
| 
      
 75 
     | 
    
         
            +
                ) -> Tuple[List[int], List[int]]:
         
     | 
| 
      
 76 
     | 
    
         
            +
                    c1, c2 = self.get_spec_adjust_token_coefficient()
         
     | 
| 
      
 77 
     | 
    
         
            +
                    global_num_tokens = [x * c1 for x in forward_batch.global_num_tokens]
         
     | 
| 
      
 78 
     | 
    
         
            +
                    global_num_tokens_for_logprob = [
         
     | 
| 
      
 79 
     | 
    
         
            +
                        x * c2 for x in forward_batch.global_num_tokens_for_logprob
         
     | 
| 
      
 80 
     | 
    
         
            +
                    ]
         
     | 
| 
      
 81 
     | 
    
         
            +
                    return global_num_tokens, global_num_tokens_for_logprob
         
     | 
| 
         @@ -0,0 +1,641 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            from __future__ import annotations
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 4 
     | 
    
         
            +
            import os
         
     | 
| 
      
 5 
     | 
    
         
            +
            import time
         
     | 
| 
      
 6 
     | 
    
         
            +
            from contextlib import contextmanager
         
     | 
| 
      
 7 
     | 
    
         
            +
            from typing import TYPE_CHECKING, List
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 10 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 11 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 12 
     | 
    
         
            +
            from huggingface_hub import snapshot_download
         
     | 
| 
      
 13 
     | 
    
         
            +
             
     | 
| 
      
 14 
     | 
    
         
            +
            from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
         
     | 
| 
      
 15 
     | 
    
         
            +
            from sglang.srt.distributed.parallel_state import (
         
     | 
| 
      
 16 
     | 
    
         
            +
                GroupCoordinator,
         
     | 
| 
      
 17 
     | 
    
         
            +
                patch_tensor_parallel_group,
         
     | 
| 
      
 18 
     | 
    
         
            +
            )
         
     | 
| 
      
 19 
     | 
    
         
            +
            from sglang.srt.environ import envs
         
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.layers.logits_processor import LogitsProcessorOutput
         
     | 
| 
      
 21 
     | 
    
         
            +
            from sglang.srt.managers.schedule_batch import Req
         
     | 
| 
      
 22 
     | 
    
         
            +
            from sglang.srt.utils import is_cuda, is_hip
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            if TYPE_CHECKING:
         
     | 
| 
      
 25 
     | 
    
         
            +
                from sglang.srt.speculative.eagle_info import EagleVerifyInput
         
     | 
| 
      
 26 
     | 
    
         
            +
             
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
            if is_cuda():
         
     | 
| 
      
 29 
     | 
    
         
            +
                from sgl_kernel import fast_topk
         
     | 
| 
      
 30 
     | 
    
         
            +
            elif is_hip():
         
     | 
| 
      
 31 
     | 
    
         
            +
                from sgl_kernel import fast_topk
         
     | 
| 
      
 32 
     | 
    
         
            +
             
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 35 
     | 
    
         
            +
             
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            # Simulate acceptance length for benchmarking purposes
         
     | 
| 
      
 38 
     | 
    
         
            +
            SIMULATE_ACC_LEN = envs.SGLANG_SIMULATE_ACC_LEN.get()  # turn off if < 0
         
     | 
| 
      
 39 
     | 
    
         
            +
            SIMULATE_ACC_METHOD = envs.SGLANG_SIMULATE_ACC_METHOD.get()
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
            TREE_TRAVERSE_TIME_THRESHOLD = 1  # TODO: set this properly
         
     | 
| 
      
 42 
     | 
    
         
            +
            TREE_SPEC_KERNEL_AVAILABLE = is_cuda()  # This kernel is only available for CUDA now
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 46 
     | 
    
         
            +
            def create_extend_after_decode_spec_info(
         
     | 
| 
      
 47 
     | 
    
         
            +
                verified_id,
         
     | 
| 
      
 48 
     | 
    
         
            +
                seq_lens,
         
     | 
| 
      
 49 
     | 
    
         
            +
                accept_lens,
         
     | 
| 
      
 50 
     | 
    
         
            +
                positions,
         
     | 
| 
      
 51 
     | 
    
         
            +
                new_verified_id,
         
     | 
| 
      
 52 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 53 
     | 
    
         
            +
            ):
         
     | 
| 
      
 54 
     | 
    
         
            +
                pid = tl.program_id(axis=0)
         
     | 
| 
      
 55 
     | 
    
         
            +
                offsets = tl.arange(0, bs_upper)
         
     | 
| 
      
 56 
     | 
    
         
            +
                seq_length = tl.load(seq_lens + pid)
         
     | 
| 
      
 57 
     | 
    
         
            +
                accept_length = tl.load(accept_lens + pid)
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                accept_len_cumsum = tl.sum(
         
     | 
| 
      
 60 
     | 
    
         
            +
                    tl.load(accept_lens + offsets, mask=offsets < pid, other=0)
         
     | 
| 
      
 61 
     | 
    
         
            +
                )
         
     | 
| 
      
 62 
     | 
    
         
            +
                positions_ptr = positions + accept_len_cumsum
         
     | 
| 
      
 63 
     | 
    
         
            +
                mask = offsets < accept_length
         
     | 
| 
      
 64 
     | 
    
         
            +
                tl.store(positions_ptr + offsets, seq_length - accept_length + offsets, mask)
         
     | 
| 
      
 65 
     | 
    
         
            +
             
     | 
| 
      
 66 
     | 
    
         
            +
                accept_len_cumsum += accept_length - 1
         
     | 
| 
      
 67 
     | 
    
         
            +
                verified_id_data = tl.load(verified_id + accept_len_cumsum)
         
     | 
| 
      
 68 
     | 
    
         
            +
                tl.store(new_verified_id + pid, verified_id_data)
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
             
     | 
| 
      
 71 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 72 
     | 
    
         
            +
            def assign_req_to_token_pool(
         
     | 
| 
      
 73 
     | 
    
         
            +
                req_pool_indices,
         
     | 
| 
      
 74 
     | 
    
         
            +
                req_to_token,
         
     | 
| 
      
 75 
     | 
    
         
            +
                start_offset,
         
     | 
| 
      
 76 
     | 
    
         
            +
                end_offset,
         
     | 
| 
      
 77 
     | 
    
         
            +
                out_cache_loc,
         
     | 
| 
      
 78 
     | 
    
         
            +
                pool_len: tl.constexpr,
         
     | 
| 
      
 79 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 80 
     | 
    
         
            +
            ):
         
     | 
| 
      
 81 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 32
         
     | 
| 
      
 82 
     | 
    
         
            +
                pid = tl.program_id(axis=0)
         
     | 
| 
      
 83 
     | 
    
         
            +
                kv_start = tl.load(start_offset + pid)
         
     | 
| 
      
 84 
     | 
    
         
            +
                kv_end = tl.load(end_offset + pid)
         
     | 
| 
      
 85 
     | 
    
         
            +
                token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
         
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
                length_offset = tl.arange(0, bs_upper)
         
     | 
| 
      
 88 
     | 
    
         
            +
                start = tl.load(start_offset + length_offset, mask=length_offset < pid, other=0)
         
     | 
| 
      
 89 
     | 
    
         
            +
                end = tl.load(end_offset + length_offset, mask=length_offset < pid, other=0)
         
     | 
| 
      
 90 
     | 
    
         
            +
                out_offset = tl.sum(end - start, axis=0)
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
                out_cache_ptr = out_cache_loc + out_offset
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
                save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
         
     | 
| 
      
 95 
     | 
    
         
            +
                load_offset = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
         
     | 
| 
      
 98 
     | 
    
         
            +
                for _ in range(num_loop):
         
     | 
| 
      
 99 
     | 
    
         
            +
                    mask = save_offset < kv_end
         
     | 
| 
      
 100 
     | 
    
         
            +
                    data = tl.load(out_cache_ptr + load_offset, mask=mask)
         
     | 
| 
      
 101 
     | 
    
         
            +
                    tl.store(token_pool + save_offset, data, mask=mask)
         
     | 
| 
      
 102 
     | 
    
         
            +
                    save_offset += BLOCK_SIZE
         
     | 
| 
      
 103 
     | 
    
         
            +
                    load_offset += BLOCK_SIZE
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
             
     | 
| 
      
 106 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 107 
     | 
    
         
            +
            def assign_draft_cache_locs(
         
     | 
| 
      
 108 
     | 
    
         
            +
                req_pool_indices,
         
     | 
| 
      
 109 
     | 
    
         
            +
                req_to_token,
         
     | 
| 
      
 110 
     | 
    
         
            +
                seq_lens,
         
     | 
| 
      
 111 
     | 
    
         
            +
                extend_lens,
         
     | 
| 
      
 112 
     | 
    
         
            +
                num_new_pages_per_topk,
         
     | 
| 
      
 113 
     | 
    
         
            +
                out_cache_loc,
         
     | 
| 
      
 114 
     | 
    
         
            +
                pool_len: tl.constexpr,
         
     | 
| 
      
 115 
     | 
    
         
            +
                topk: tl.constexpr,
         
     | 
| 
      
 116 
     | 
    
         
            +
                speculative_num_steps: tl.constexpr,
         
     | 
| 
      
 117 
     | 
    
         
            +
                page_size: tl.constexpr,
         
     | 
| 
      
 118 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 119 
     | 
    
         
            +
                iter_upper: tl.constexpr,
         
     | 
| 
      
 120 
     | 
    
         
            +
            ):
         
     | 
| 
      
 121 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 128
         
     | 
| 
      
 122 
     | 
    
         
            +
                pid = tl.program_id(axis=0)
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
                if page_size == 1 or topk == 1:
         
     | 
| 
      
 125 
     | 
    
         
            +
                    copy_len = topk * speculative_num_steps
         
     | 
| 
      
 126 
     | 
    
         
            +
                    out_cache_ptr = out_cache_loc + pid * topk * speculative_num_steps
         
     | 
| 
      
 127 
     | 
    
         
            +
                else:
         
     | 
| 
      
 128 
     | 
    
         
            +
                    bs_offset = tl.arange(0, bs_upper)
         
     | 
| 
      
 129 
     | 
    
         
            +
                    copy_len = tl.load(extend_lens + pid)
         
     | 
| 
      
 130 
     | 
    
         
            +
                    cum_copy_len = tl.sum(tl.load(extend_lens + bs_offset, mask=bs_offset < pid))
         
     | 
| 
      
 131 
     | 
    
         
            +
                    out_cache_ptr = out_cache_loc + cum_copy_len
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
                # Part 1: Copy from out_cache_loc to req_to_token
         
     | 
| 
      
 134 
     | 
    
         
            +
                kv_start = tl.load(seq_lens + pid)
         
     | 
| 
      
 135 
     | 
    
         
            +
                token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
         
     | 
| 
      
 136 
     | 
    
         
            +
                num_loop = tl.cdiv(copy_len, BLOCK_SIZE)
         
     | 
| 
      
 137 
     | 
    
         
            +
                for i in range(num_loop):
         
     | 
| 
      
 138 
     | 
    
         
            +
                    copy_offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
         
     | 
| 
      
 139 
     | 
    
         
            +
                    mask = copy_offset < copy_len
         
     | 
| 
      
 140 
     | 
    
         
            +
                    data = tl.load(out_cache_ptr + copy_offset, mask=mask)
         
     | 
| 
      
 141 
     | 
    
         
            +
                    tl.store(token_pool + kv_start + copy_offset, data, mask=mask)
         
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
                if page_size == 1 or topk == 1:
         
     | 
| 
      
 144 
     | 
    
         
            +
                    return
         
     | 
| 
      
 145 
     | 
    
         
            +
             
     | 
| 
      
 146 
     | 
    
         
            +
                # Part 2: Copy the indices for the last partial page
         
     | 
| 
      
 147 
     | 
    
         
            +
                prefix_len = tl.load(seq_lens + pid)
         
     | 
| 
      
 148 
     | 
    
         
            +
                last_page_len = prefix_len % page_size
         
     | 
| 
      
 149 
     | 
    
         
            +
                offsets = tl.arange(0, page_size)
         
     | 
| 
      
 150 
     | 
    
         
            +
                mask = offsets < last_page_len
         
     | 
| 
      
 151 
     | 
    
         
            +
                num_new_pages_per_topk_ = tl.load(num_new_pages_per_topk + pid)
         
     | 
| 
      
 152 
     | 
    
         
            +
                prefix_base = token_pool + prefix_len - last_page_len
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
                for topk_id in range(topk):
         
     | 
| 
      
 155 
     | 
    
         
            +
                    value = tl.load(prefix_base + offsets, mask=mask)
         
     | 
| 
      
 156 
     | 
    
         
            +
                    tl.store(
         
     | 
| 
      
 157 
     | 
    
         
            +
                        prefix_base + topk_id * num_new_pages_per_topk_ * page_size + offsets,
         
     | 
| 
      
 158 
     | 
    
         
            +
                        value,
         
     | 
| 
      
 159 
     | 
    
         
            +
                        mask=mask,
         
     | 
| 
      
 160 
     | 
    
         
            +
                    )
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
                # Part 3: Remove the padding in out_cache_loc
         
     | 
| 
      
 163 
     | 
    
         
            +
                iter_offest = tl.arange(0, iter_upper)
         
     | 
| 
      
 164 
     | 
    
         
            +
                for topk_id in range(topk):
         
     | 
| 
      
 165 
     | 
    
         
            +
                    indices = tl.load(
         
     | 
| 
      
 166 
     | 
    
         
            +
                        prefix_base
         
     | 
| 
      
 167 
     | 
    
         
            +
                        + topk_id * num_new_pages_per_topk_ * page_size
         
     | 
| 
      
 168 
     | 
    
         
            +
                        + last_page_len
         
     | 
| 
      
 169 
     | 
    
         
            +
                        + iter_offest,
         
     | 
| 
      
 170 
     | 
    
         
            +
                        mask=iter_offest < speculative_num_steps,
         
     | 
| 
      
 171 
     | 
    
         
            +
                    )
         
     | 
| 
      
 172 
     | 
    
         
            +
                    tl.store(
         
     | 
| 
      
 173 
     | 
    
         
            +
                        out_cache_loc
         
     | 
| 
      
 174 
     | 
    
         
            +
                        + pid * topk * speculative_num_steps
         
     | 
| 
      
 175 
     | 
    
         
            +
                        + topk_id * speculative_num_steps
         
     | 
| 
      
 176 
     | 
    
         
            +
                        + iter_offest,
         
     | 
| 
      
 177 
     | 
    
         
            +
                        indices,
         
     | 
| 
      
 178 
     | 
    
         
            +
                        mask=iter_offest < speculative_num_steps,
         
     | 
| 
      
 179 
     | 
    
         
            +
                    )
         
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
      
 181 
     | 
    
         
            +
             
     | 
| 
      
 182 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 183 
     | 
    
         
            +
            def generate_draft_decode_kv_indices(
         
     | 
| 
      
 184 
     | 
    
         
            +
                req_pool_indices,
         
     | 
| 
      
 185 
     | 
    
         
            +
                req_to_token,
         
     | 
| 
      
 186 
     | 
    
         
            +
                paged_kernel_lens,
         
     | 
| 
      
 187 
     | 
    
         
            +
                kv_indices,
         
     | 
| 
      
 188 
     | 
    
         
            +
                kv_indptr,
         
     | 
| 
      
 189 
     | 
    
         
            +
                positions,
         
     | 
| 
      
 190 
     | 
    
         
            +
                pool_len: tl.constexpr,
         
     | 
| 
      
 191 
     | 
    
         
            +
                kv_indices_stride: tl.constexpr,
         
     | 
| 
      
 192 
     | 
    
         
            +
                kv_indptr_stride: tl.constexpr,
         
     | 
| 
      
 193 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 194 
     | 
    
         
            +
                iter_upper: tl.constexpr,
         
     | 
| 
      
 195 
     | 
    
         
            +
                num_tokens_upper: tl.constexpr,
         
     | 
| 
      
 196 
     | 
    
         
            +
                page_size: tl.constexpr,
         
     | 
| 
      
 197 
     | 
    
         
            +
            ):
         
     | 
| 
      
 198 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr = 128
         
     | 
| 
      
 199 
     | 
    
         
            +
                iters = tl.program_id(axis=0)
         
     | 
| 
      
 200 
     | 
    
         
            +
                bid = tl.program_id(axis=1)
         
     | 
| 
      
 201 
     | 
    
         
            +
                topk_id = tl.program_id(axis=2)
         
     | 
| 
      
 202 
     | 
    
         
            +
             
     | 
| 
      
 203 
     | 
    
         
            +
                num_steps = tl.num_programs(axis=0)
         
     | 
| 
      
 204 
     | 
    
         
            +
                num_seqs = tl.num_programs(axis=1)
         
     | 
| 
      
 205 
     | 
    
         
            +
                topk = tl.num_programs(axis=2)
         
     | 
| 
      
 206 
     | 
    
         
            +
             
     | 
| 
      
 207 
     | 
    
         
            +
                kv_indices += kv_indices_stride * iters
         
     | 
| 
      
 208 
     | 
    
         
            +
                kv_indptr += kv_indptr_stride * iters
         
     | 
| 
      
 209 
     | 
    
         
            +
                iters += 1
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
                load_offset = tl.arange(0, bs_upper)
         
     | 
| 
      
 212 
     | 
    
         
            +
                seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid, other=0)
         
     | 
| 
      
 213 
     | 
    
         
            +
                seq_len = tl.load(paged_kernel_lens + bid)
         
     | 
| 
      
 214 
     | 
    
         
            +
                cum_seq_len = tl.sum(seq_lens)
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                # Update kv_indices
         
     | 
| 
      
 217 
     | 
    
         
            +
                kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
         
     | 
| 
      
 218 
     | 
    
         
            +
                kv_ptr = kv_indices + kv_offset
         
     | 
| 
      
 219 
     | 
    
         
            +
                token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
         
     | 
| 
      
 220 
     | 
    
         
            +
             
     | 
| 
      
 221 
     | 
    
         
            +
                kv_offset = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 222 
     | 
    
         
            +
                num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
         
     | 
| 
      
 223 
     | 
    
         
            +
                for _ in range(num_loop):
         
     | 
| 
      
 224 
     | 
    
         
            +
                    mask = kv_offset < seq_len
         
     | 
| 
      
 225 
     | 
    
         
            +
                    data = tl.load(token_pool_ptr + kv_offset, mask=mask)
         
     | 
| 
      
 226 
     | 
    
         
            +
                    tl.store(kv_ptr + kv_offset, data, mask=mask)
         
     | 
| 
      
 227 
     | 
    
         
            +
                    kv_offset += BLOCK_SIZE
         
     | 
| 
      
 228 
     | 
    
         
            +
             
     | 
| 
      
 229 
     | 
    
         
            +
                extend_offset = tl.arange(0, iter_upper)
         
     | 
| 
      
 230 
     | 
    
         
            +
                if page_size == 1 or topk == 1:
         
     | 
| 
      
 231 
     | 
    
         
            +
                    extend_data = tl.load(
         
     | 
| 
      
 232 
     | 
    
         
            +
                        token_pool_ptr + seq_len + topk_id * num_steps + tl.arange(0, iter_upper),
         
     | 
| 
      
 233 
     | 
    
         
            +
                        mask=extend_offset < iters,
         
     | 
| 
      
 234 
     | 
    
         
            +
                    )
         
     | 
| 
      
 235 
     | 
    
         
            +
                else:
         
     | 
| 
      
 236 
     | 
    
         
            +
                    prefix_len = seq_len
         
     | 
| 
      
 237 
     | 
    
         
            +
                    last_page_len = prefix_len % page_size
         
     | 
| 
      
 238 
     | 
    
         
            +
                    num_new_pages_per_topk = (
         
     | 
| 
      
 239 
     | 
    
         
            +
                        last_page_len + num_steps + page_size - 1
         
     | 
| 
      
 240 
     | 
    
         
            +
                    ) // page_size
         
     | 
| 
      
 241 
     | 
    
         
            +
                    prefix_base = seq_len // page_size * page_size
         
     | 
| 
      
 242 
     | 
    
         
            +
                    start = (
         
     | 
| 
      
 243 
     | 
    
         
            +
                        prefix_base + topk_id * num_new_pages_per_topk * page_size + last_page_len
         
     | 
| 
      
 244 
     | 
    
         
            +
                    )
         
     | 
| 
      
 245 
     | 
    
         
            +
                    extend_data = tl.load(
         
     | 
| 
      
 246 
     | 
    
         
            +
                        token_pool_ptr + start + extend_offset,
         
     | 
| 
      
 247 
     | 
    
         
            +
                        mask=extend_offset < iters,
         
     | 
| 
      
 248 
     | 
    
         
            +
                    )
         
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
                tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
         
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
                # Update kv_indptr
         
     | 
| 
      
 253 
     | 
    
         
            +
                bs_offset = tl.arange(0, num_tokens_upper)
         
     | 
| 
      
 254 
     | 
    
         
            +
             
     | 
| 
      
 255 
     | 
    
         
            +
                zid = bid * topk + topk_id
         
     | 
| 
      
 256 
     | 
    
         
            +
                if zid == 0:
         
     | 
| 
      
 257 
     | 
    
         
            +
                    zid = num_seqs * topk
         
     | 
| 
      
 258 
     | 
    
         
            +
                positions = tl.load(positions + bs_offset, mask=bs_offset < zid, other=0)
         
     | 
| 
      
 259 
     | 
    
         
            +
                base = tl.sum(positions)
         
     | 
| 
      
 260 
     | 
    
         
            +
                tl.store(kv_indptr + zid, base + zid * iters)
         
     | 
| 
      
 261 
     | 
    
         
            +
             
     | 
| 
      
 262 
     | 
    
         
            +
             
     | 
| 
      
 263 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 264 
     | 
    
         
            +
            def align_evict_mask_to_page_size(
         
     | 
| 
      
 265 
     | 
    
         
            +
                seq_lens,
         
     | 
| 
      
 266 
     | 
    
         
            +
                evict_mask,
         
     | 
| 
      
 267 
     | 
    
         
            +
                page_size: tl.constexpr,
         
     | 
| 
      
 268 
     | 
    
         
            +
                num_draft_tokens: tl.constexpr,
         
     | 
| 
      
 269 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 270 
     | 
    
         
            +
            ):
         
     | 
| 
      
 271 
     | 
    
         
            +
                t_range = tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 272 
     | 
    
         
            +
             
     | 
| 
      
 273 
     | 
    
         
            +
                bid = tl.program_id(axis=0)
         
     | 
| 
      
 274 
     | 
    
         
            +
                seq_len = tl.load(seq_lens + bid)
         
     | 
| 
      
 275 
     | 
    
         
            +
                io_mask = t_range < num_draft_tokens
         
     | 
| 
      
 276 
     | 
    
         
            +
                mask_row = tl.load(
         
     | 
| 
      
 277 
     | 
    
         
            +
                    evict_mask + bid * num_draft_tokens + t_range, mask=io_mask, other=0
         
     | 
| 
      
 278 
     | 
    
         
            +
                )
         
     | 
| 
      
 279 
     | 
    
         
            +
             
     | 
| 
      
 280 
     | 
    
         
            +
                num_trues = tl.sum(mask_row)
         
     | 
| 
      
 281 
     | 
    
         
            +
                num_false = num_draft_tokens - num_trues
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
                start = (seq_len + num_false - 1) // page_size * page_size - seq_len
         
     | 
| 
      
 284 
     | 
    
         
            +
                for i in range(max(start, 0), min(start + page_size, num_draft_tokens)):
         
     | 
| 
      
 285 
     | 
    
         
            +
                    tl.store(evict_mask + bid * num_draft_tokens + i, False)
         
     | 
| 
      
 286 
     | 
    
         
            +
             
     | 
| 
      
 287 
     | 
    
         
            +
             
     | 
| 
      
 288 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 289 
     | 
    
         
            +
            def get_target_cache_loc(
         
     | 
| 
      
 290 
     | 
    
         
            +
                tgt_cache_loc,
         
     | 
| 
      
 291 
     | 
    
         
            +
                to_free_slots,
         
     | 
| 
      
 292 
     | 
    
         
            +
                accept_length,
         
     | 
| 
      
 293 
     | 
    
         
            +
                to_free_num_slots,
         
     | 
| 
      
 294 
     | 
    
         
            +
                out_cache_loc,
         
     | 
| 
      
 295 
     | 
    
         
            +
                num_verify_tokens: tl.constexpr,
         
     | 
| 
      
 296 
     | 
    
         
            +
                num_verify_tokens_upper: tl.constexpr,
         
     | 
| 
      
 297 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 298 
     | 
    
         
            +
            ):
         
     | 
| 
      
 299 
     | 
    
         
            +
                bid = tl.program_id(axis=0)
         
     | 
| 
      
 300 
     | 
    
         
            +
                offset = tl.arange(0, num_verify_tokens_upper)
         
     | 
| 
      
 301 
     | 
    
         
            +
                bs_offset = tl.arange(0, bs_upper)
         
     | 
| 
      
 302 
     | 
    
         
            +
             
     | 
| 
      
 303 
     | 
    
         
            +
                # write the first part to tgt_cache_loc
         
     | 
| 
      
 304 
     | 
    
         
            +
                accept_len_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
         
     | 
| 
      
 305 
     | 
    
         
            +
                tgt_cache_loc_start = tl.sum(accept_len_all) + bid
         
     | 
| 
      
 306 
     | 
    
         
            +
                copy_len = tl.load(accept_length + bid) + 1
         
     | 
| 
      
 307 
     | 
    
         
            +
                out_cache_loc_row = tl.load(
         
     | 
| 
      
 308 
     | 
    
         
            +
                    out_cache_loc + bid * num_verify_tokens + offset, mask=offset < copy_len
         
     | 
| 
      
 309 
     | 
    
         
            +
                )
         
     | 
| 
      
 310 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 311 
     | 
    
         
            +
                    tgt_cache_loc + tgt_cache_loc_start + offset,
         
     | 
| 
      
 312 
     | 
    
         
            +
                    out_cache_loc_row,
         
     | 
| 
      
 313 
     | 
    
         
            +
                    mask=offset < copy_len,
         
     | 
| 
      
 314 
     | 
    
         
            +
                )
         
     | 
| 
      
 315 
     | 
    
         
            +
             
     | 
| 
      
 316 
     | 
    
         
            +
                # write the second part to to_free_num_pages
         
     | 
| 
      
 317 
     | 
    
         
            +
                to_free_num_slots_all = tl.load(to_free_num_slots + bs_offset, mask=bs_offset < bid)
         
     | 
| 
      
 318 
     | 
    
         
            +
                to_free_num_slots_cur = tl.load(to_free_num_slots + bid)
         
     | 
| 
      
 319 
     | 
    
         
            +
                out_cache_loc_start = num_verify_tokens - to_free_num_slots_cur
         
     | 
| 
      
 320 
     | 
    
         
            +
                to_free_slots_start = tl.sum(to_free_num_slots_all)
         
     | 
| 
      
 321 
     | 
    
         
            +
             
     | 
| 
      
 322 
     | 
    
         
            +
                copy_len = to_free_num_slots_cur
         
     | 
| 
      
 323 
     | 
    
         
            +
                out_cache_loc_row = tl.load(
         
     | 
| 
      
 324 
     | 
    
         
            +
                    out_cache_loc + bid * num_verify_tokens + out_cache_loc_start + offset,
         
     | 
| 
      
 325 
     | 
    
         
            +
                    mask=offset < copy_len,
         
     | 
| 
      
 326 
     | 
    
         
            +
                )
         
     | 
| 
      
 327 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 328 
     | 
    
         
            +
                    to_free_slots + to_free_slots_start + offset,
         
     | 
| 
      
 329 
     | 
    
         
            +
                    out_cache_loc_row,
         
     | 
| 
      
 330 
     | 
    
         
            +
                    mask=offset < copy_len,
         
     | 
| 
      
 331 
     | 
    
         
            +
                )
         
     | 
| 
      
 332 
     | 
    
         
            +
             
     | 
| 
      
 333 
     | 
    
         
            +
             
     | 
| 
      
 334 
     | 
    
         
            +
            @torch.compile(dynamic=True)
         
     | 
| 
      
 335 
     | 
    
         
            +
            def get_src_tgt_cache_loc(
         
     | 
| 
      
 336 
     | 
    
         
            +
                seq_lens: torch.Tensor,
         
     | 
| 
      
 337 
     | 
    
         
            +
                out_cache_loc: torch.Tensor,
         
     | 
| 
      
 338 
     | 
    
         
            +
                accept_index: torch.Tensor,
         
     | 
| 
      
 339 
     | 
    
         
            +
                accept_length: torch.Tensor,
         
     | 
| 
      
 340 
     | 
    
         
            +
                draft_token_num: int,
         
     | 
| 
      
 341 
     | 
    
         
            +
                page_size: int,
         
     | 
| 
      
 342 
     | 
    
         
            +
            ):
         
     | 
| 
      
 343 
     | 
    
         
            +
                src_cache_loc = out_cache_loc[accept_index]
         
     | 
| 
      
 344 
     | 
    
         
            +
                tgt_cache_loc = torch.empty_like(src_cache_loc)
         
     | 
| 
      
 345 
     | 
    
         
            +
                extended_len = seq_lens + draft_token_num
         
     | 
| 
      
 346 
     | 
    
         
            +
                keep_len = torch.minimum(
         
     | 
| 
      
 347 
     | 
    
         
            +
                    (seq_lens + accept_length + 1 + page_size - 1) // page_size * page_size,
         
     | 
| 
      
 348 
     | 
    
         
            +
                    extended_len,
         
     | 
| 
      
 349 
     | 
    
         
            +
                )
         
     | 
| 
      
 350 
     | 
    
         
            +
                to_free_num_slots = extended_len - keep_len
         
     | 
| 
      
 351 
     | 
    
         
            +
                return src_cache_loc, tgt_cache_loc, to_free_num_slots
         
     | 
| 
      
 352 
     | 
    
         
            +
             
     | 
| 
      
 353 
     | 
    
         
            +
             
     | 
| 
      
 354 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 355 
     | 
    
         
            +
            def filter_finished_cache_loc_kernel(
         
     | 
| 
      
 356 
     | 
    
         
            +
                out_cache_loc,
         
     | 
| 
      
 357 
     | 
    
         
            +
                tgt_cache_loc,
         
     | 
| 
      
 358 
     | 
    
         
            +
                accept_length,
         
     | 
| 
      
 359 
     | 
    
         
            +
                accept_length_filter,
         
     | 
| 
      
 360 
     | 
    
         
            +
                bs_upper: tl.constexpr,
         
     | 
| 
      
 361 
     | 
    
         
            +
                num_verify_tokens_upper: tl.constexpr,
         
     | 
| 
      
 362 
     | 
    
         
            +
            ):
         
     | 
| 
      
 363 
     | 
    
         
            +
                bid = tl.program_id(0)
         
     | 
| 
      
 364 
     | 
    
         
            +
                bs_offset = tl.arange(0, bs_upper)
         
     | 
| 
      
 365 
     | 
    
         
            +
             
     | 
| 
      
 366 
     | 
    
         
            +
                accept_length_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
         
     | 
| 
      
 367 
     | 
    
         
            +
                old_start = tl.sum(accept_length_all) + bid
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
                accept_length_filter_all = tl.load(
         
     | 
| 
      
 370 
     | 
    
         
            +
                    accept_length_filter + bs_offset, mask=bs_offset < bid
         
     | 
| 
      
 371 
     | 
    
         
            +
                )
         
     | 
| 
      
 372 
     | 
    
         
            +
                new_start = tl.sum(accept_length_filter_all)
         
     | 
| 
      
 373 
     | 
    
         
            +
             
     | 
| 
      
 374 
     | 
    
         
            +
                copy_len = tl.load(accept_length_filter + bid)
         
     | 
| 
      
 375 
     | 
    
         
            +
                copy_offset = tl.arange(0, num_verify_tokens_upper)
         
     | 
| 
      
 376 
     | 
    
         
            +
                value = tl.load(
         
     | 
| 
      
 377 
     | 
    
         
            +
                    tgt_cache_loc + old_start + copy_offset, mask=copy_offset < copy_len
         
     | 
| 
      
 378 
     | 
    
         
            +
                )
         
     | 
| 
      
 379 
     | 
    
         
            +
                tl.store(
         
     | 
| 
      
 380 
     | 
    
         
            +
                    out_cache_loc + new_start + copy_offset, value, mask=copy_offset < copy_len
         
     | 
| 
      
 381 
     | 
    
         
            +
                )
         
     | 
| 
      
 382 
     | 
    
         
            +
             
     | 
| 
      
 383 
     | 
    
         
            +
             
     | 
| 
      
 384 
     | 
    
         
            +
            @torch.compile(dynamic=True)
         
     | 
| 
      
 385 
     | 
    
         
            +
            def create_accept_length_filter(
         
     | 
| 
      
 386 
     | 
    
         
            +
                accept_length: torch.Tensor,
         
     | 
| 
      
 387 
     | 
    
         
            +
                unfinished_index_device: torch.Tensor,
         
     | 
| 
      
 388 
     | 
    
         
            +
                seq_lens: torch.Tensor,
         
     | 
| 
      
 389 
     | 
    
         
            +
            ):
         
     | 
| 
      
 390 
     | 
    
         
            +
                accept_length_filter = torch.zeros_like(accept_length)
         
     | 
| 
      
 391 
     | 
    
         
            +
                accept_length_filter[unfinished_index_device] = (
         
     | 
| 
      
 392 
     | 
    
         
            +
                    accept_length[unfinished_index_device] + 1
         
     | 
| 
      
 393 
     | 
    
         
            +
                )
         
     | 
| 
      
 394 
     | 
    
         
            +
                seq_lens.add_(accept_length + 1)
         
     | 
| 
      
 395 
     | 
    
         
            +
                return accept_length_filter
         
     | 
| 
      
 396 
     | 
    
         
            +
             
     | 
| 
      
 397 
     | 
    
         
            +
             
     | 
| 
      
 398 
     | 
    
         
            +
            @torch.compile(dynamic=True)
         
     | 
| 
      
 399 
     | 
    
         
            +
            def select_top_k_tokens(
         
     | 
| 
      
 400 
     | 
    
         
            +
                i: int,
         
     | 
| 
      
 401 
     | 
    
         
            +
                topk_p: torch.Tensor,
         
     | 
| 
      
 402 
     | 
    
         
            +
                topk_index: torch.Tensor,
         
     | 
| 
      
 403 
     | 
    
         
            +
                hidden_states: torch.Tensor,
         
     | 
| 
      
 404 
     | 
    
         
            +
                scores: torch.Tensor,
         
     | 
| 
      
 405 
     | 
    
         
            +
                topk: int,
         
     | 
| 
      
 406 
     | 
    
         
            +
            ):
         
     | 
| 
      
 407 
     | 
    
         
            +
                if i == 0:
         
     | 
| 
      
 408 
     | 
    
         
            +
                    # The first step after extend
         
     | 
| 
      
 409 
     | 
    
         
            +
                    input_ids = topk_index.flatten()
         
     | 
| 
      
 410 
     | 
    
         
            +
                    hidden_states = hidden_states.repeat_interleave(topk, dim=0)
         
     | 
| 
      
 411 
     | 
    
         
            +
                    scores = topk_p  # shape: (b, topk)
         
     | 
| 
      
 412 
     | 
    
         
            +
             
     | 
| 
      
 413 
     | 
    
         
            +
                    tree_info = (
         
     | 
| 
      
 414 
     | 
    
         
            +
                        topk_p.unsqueeze(1),  # shape: (b, 1, topk)
         
     | 
| 
      
 415 
     | 
    
         
            +
                        topk_index,  # shape: (b, topk)
         
     | 
| 
      
 416 
     | 
    
         
            +
                        torch.arange(-1, topk, dtype=torch.long, device="cuda")
         
     | 
| 
      
 417 
     | 
    
         
            +
                        .unsqueeze(0)
         
     | 
| 
      
 418 
     | 
    
         
            +
                        .repeat(topk_p.shape[0], 1),  # shape: (b, topk + 1)
         
     | 
| 
      
 419 
     | 
    
         
            +
                    )
         
     | 
| 
      
 420 
     | 
    
         
            +
                else:
         
     | 
| 
      
 421 
     | 
    
         
            +
                    # The later decode steps
         
     | 
| 
      
 422 
     | 
    
         
            +
                    expand_scores = torch.mul(
         
     | 
| 
      
 423 
     | 
    
         
            +
                        scores.unsqueeze(2), topk_p.reshape(-1, topk, topk)
         
     | 
| 
      
 424 
     | 
    
         
            +
                    )  # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
         
     | 
| 
      
 425 
     | 
    
         
            +
                    topk_cs_p, topk_cs_index = fast_topk(
         
     | 
| 
      
 426 
     | 
    
         
            +
                        expand_scores.flatten(start_dim=1), topk, dim=-1
         
     | 
| 
      
 427 
     | 
    
         
            +
                    )  # (b, topk)
         
     | 
| 
      
 428 
     | 
    
         
            +
                    scores = topk_cs_p  # shape: (b, topk)
         
     | 
| 
      
 429 
     | 
    
         
            +
             
     | 
| 
      
 430 
     | 
    
         
            +
                    topk_index = topk_index.reshape(-1, topk**2)
         
     | 
| 
      
 431 
     | 
    
         
            +
                    input_ids = torch.gather(topk_index, index=topk_cs_index, dim=1).flatten()
         
     | 
| 
      
 432 
     | 
    
         
            +
             
     | 
| 
      
 433 
     | 
    
         
            +
                    if hidden_states.shape[0] > 0:
         
     | 
| 
      
 434 
     | 
    
         
            +
                        selected_input_index = topk_cs_index.flatten() // topk + torch.arange(
         
     | 
| 
      
 435 
     | 
    
         
            +
                            0, hidden_states.shape[0], step=topk, device="cuda"
         
     | 
| 
      
 436 
     | 
    
         
            +
                        ).repeat_interleave(topk)
         
     | 
| 
      
 437 
     | 
    
         
            +
                        hidden_states = hidden_states[selected_input_index, :]
         
     | 
| 
      
 438 
     | 
    
         
            +
             
     | 
| 
      
 439 
     | 
    
         
            +
                    tree_info = (
         
     | 
| 
      
 440 
     | 
    
         
            +
                        expand_scores,  # shape: (b, topk, topk)
         
     | 
| 
      
 441 
     | 
    
         
            +
                        topk_index,  # shape: (b, topk * topk)
         
     | 
| 
      
 442 
     | 
    
         
            +
                        topk_cs_index + (topk**2 * (i - 1) + topk),  # shape: (b, topk)
         
     | 
| 
      
 443 
     | 
    
         
            +
                    )
         
     | 
| 
      
 444 
     | 
    
         
            +
             
     | 
| 
      
 445 
     | 
    
         
            +
                return input_ids, hidden_states, scores, tree_info
         
     | 
| 
      
 446 
     | 
    
         
            +
             
     | 
| 
      
 447 
     | 
    
         
            +
             
     | 
| 
      
 448 
     | 
    
         
            +
            def generate_simulated_accept_index(
         
     | 
| 
      
 449 
     | 
    
         
            +
                accept_index,
         
     | 
| 
      
 450 
     | 
    
         
            +
                predict,
         
     | 
| 
      
 451 
     | 
    
         
            +
                accept_length,
         
     | 
| 
      
 452 
     | 
    
         
            +
                bs,
         
     | 
| 
      
 453 
     | 
    
         
            +
                spec_steps,
         
     | 
| 
      
 454 
     | 
    
         
            +
                simulate_acc_len: float = SIMULATE_ACC_LEN,
         
     | 
| 
      
 455 
     | 
    
         
            +
                simulate_acc_method: str = SIMULATE_ACC_METHOD,
         
     | 
| 
      
 456 
     | 
    
         
            +
            ):
         
     | 
| 
      
 457 
     | 
    
         
            +
                assert simulate_acc_len > 0.0
         
     | 
| 
      
 458 
     | 
    
         
            +
             
     | 
| 
      
 459 
     | 
    
         
            +
                if simulate_acc_method == "multinomial":
         
     | 
| 
      
 460 
     | 
    
         
            +
                    simulated_values = torch.normal(
         
     | 
| 
      
 461 
     | 
    
         
            +
                        mean=simulate_acc_len,
         
     | 
| 
      
 462 
     | 
    
         
            +
                        std=1.0,
         
     | 
| 
      
 463 
     | 
    
         
            +
                        size=(1,),
         
     | 
| 
      
 464 
     | 
    
         
            +
                        device="cpu",
         
     | 
| 
      
 465 
     | 
    
         
            +
                    )
         
     | 
| 
      
 466 
     | 
    
         
            +
                    # clamp simulated values to be between 1 and self.spec_steps
         
     | 
| 
      
 467 
     | 
    
         
            +
                    simulated_values = torch.clamp(simulated_values, min=1.0, max=spec_steps + 1)
         
     | 
| 
      
 468 
     | 
    
         
            +
                    simulate_acc_len = int(simulated_values.round().item())
         
     | 
| 
      
 469 
     | 
    
         
            +
                elif simulate_acc_method == "match-expected":
         
     | 
| 
      
 470 
     | 
    
         
            +
                    # multinomial sampling does not match the expected length
         
     | 
| 
      
 471 
     | 
    
         
            +
                    # we keep it for the sake of compatibility of existing tests
         
     | 
| 
      
 472 
     | 
    
         
            +
                    # but it's better to use "match-expected" for the cases that need to
         
     | 
| 
      
 473 
     | 
    
         
            +
                    # match the expected length, One caveat is that this will only sample
         
     | 
| 
      
 474 
     | 
    
         
            +
                    # either round down or round up of the expected length
         
     | 
| 
      
 475 
     | 
    
         
            +
                    simulate_acc_len = max(1.0, min(spec_steps + 1, simulate_acc_len))
         
     | 
| 
      
 476 
     | 
    
         
            +
                    lower = int(simulate_acc_len // 1)
         
     | 
| 
      
 477 
     | 
    
         
            +
                    upper = lower + 1 if lower < spec_steps + 1 else lower
         
     | 
| 
      
 478 
     | 
    
         
            +
                    if lower == upper:
         
     | 
| 
      
 479 
     | 
    
         
            +
                        simulate_acc_len = lower
         
     | 
| 
      
 480 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 481 
     | 
    
         
            +
                        weight_upper = simulate_acc_len - lower
         
     | 
| 
      
 482 
     | 
    
         
            +
                        weight_lower = 1.0 - weight_upper
         
     | 
| 
      
 483 
     | 
    
         
            +
                        probs = torch.tensor([weight_lower, weight_upper], device="cpu")
         
     | 
| 
      
 484 
     | 
    
         
            +
                        sampled_index = torch.multinomial(probs, num_samples=1)
         
     | 
| 
      
 485 
     | 
    
         
            +
                        simulate_acc_len = lower if sampled_index == 0 else upper
         
     | 
| 
      
 486 
     | 
    
         
            +
                else:
         
     | 
| 
      
 487 
     | 
    
         
            +
                    raise ValueError(f"Invalid simulate_acc_method: {SIMULATE_ACC_METHOD}")
         
     | 
| 
      
 488 
     | 
    
         
            +
             
     | 
| 
      
 489 
     | 
    
         
            +
                accept_indx_first_col = accept_index[:, 0].view(-1, 1)
         
     | 
| 
      
 490 
     | 
    
         
            +
                sim_accept_index = torch.full(
         
     | 
| 
      
 491 
     | 
    
         
            +
                    (bs, spec_steps + 1), -1, dtype=torch.int32, device="cuda"
         
     | 
| 
      
 492 
     | 
    
         
            +
                )
         
     | 
| 
      
 493 
     | 
    
         
            +
                sim_accept_index[:, :simulate_acc_len] = accept_indx_first_col + torch.arange(
         
     | 
| 
      
 494 
     | 
    
         
            +
                    simulate_acc_len, device=accept_index.device
         
     | 
| 
      
 495 
     | 
    
         
            +
                )
         
     | 
| 
      
 496 
     | 
    
         
            +
                accept_length.fill_(simulate_acc_len - 1)
         
     | 
| 
      
 497 
     | 
    
         
            +
                predict.fill_(100)  # some legit token id
         
     | 
| 
      
 498 
     | 
    
         
            +
                return sim_accept_index
         
     | 
| 
      
 499 
     | 
    
         
            +
             
     | 
| 
      
 500 
     | 
    
         
            +
             
     | 
| 
      
 501 
     | 
    
         
            +
            def traverse_tree(
         
     | 
| 
      
 502 
     | 
    
         
            +
                retrieve_next_token: torch.Tensor,
         
     | 
| 
      
 503 
     | 
    
         
            +
                retrieve_next_sibling: torch.Tensor,
         
     | 
| 
      
 504 
     | 
    
         
            +
                draft_tokens: torch.Tensor,
         
     | 
| 
      
 505 
     | 
    
         
            +
                grammar: BaseGrammarObject,
         
     | 
| 
      
 506 
     | 
    
         
            +
                allocate_token_bitmask: torch.Tensor,
         
     | 
| 
      
 507 
     | 
    
         
            +
            ):
         
     | 
| 
      
 508 
     | 
    
         
            +
                """
         
     | 
| 
      
 509 
     | 
    
         
            +
                Traverse the tree constructed by the draft model to generate the logits mask.
         
     | 
| 
      
 510 
     | 
    
         
            +
                """
         
     | 
| 
      
 511 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 512 
     | 
    
         
            +
                    retrieve_next_token.shape == retrieve_next_sibling.shape == draft_tokens.shape
         
     | 
| 
      
 513 
     | 
    
         
            +
                )
         
     | 
| 
      
 514 
     | 
    
         
            +
             
     | 
| 
      
 515 
     | 
    
         
            +
                allocate_token_bitmask.fill_(0)
         
     | 
| 
      
 516 
     | 
    
         
            +
             
     | 
| 
      
 517 
     | 
    
         
            +
                def dfs(
         
     | 
| 
      
 518 
     | 
    
         
            +
                    curr: int,
         
     | 
| 
      
 519 
     | 
    
         
            +
                    retrieve_next_token: torch.Tensor,
         
     | 
| 
      
 520 
     | 
    
         
            +
                    retrieve_next_sibling: torch.Tensor,
         
     | 
| 
      
 521 
     | 
    
         
            +
                    parent_pos: int,
         
     | 
| 
      
 522 
     | 
    
         
            +
                ):
         
     | 
| 
      
 523 
     | 
    
         
            +
                    if curr == 0:
         
     | 
| 
      
 524 
     | 
    
         
            +
                        # the first token generated by the target model, and thus it is always
         
     | 
| 
      
 525 
     | 
    
         
            +
                        # accepted from the previous iteration
         
     | 
| 
      
 526 
     | 
    
         
            +
                        accepted = True
         
     | 
| 
      
 527 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 528 
     | 
    
         
            +
                        parent_bitmask = allocate_token_bitmask[parent_pos]
         
     | 
| 
      
 529 
     | 
    
         
            +
                        curr_token_id = draft_tokens[curr]
         
     | 
| 
      
 530 
     | 
    
         
            +
                        # 32 boolean bitmask values are packed into 32-bit integers
         
     | 
| 
      
 531 
     | 
    
         
            +
                        accepted = (
         
     | 
| 
      
 532 
     | 
    
         
            +
                            parent_bitmask[curr_token_id // 32] & (1 << (curr_token_id % 32))
         
     | 
| 
      
 533 
     | 
    
         
            +
                        ) != 0
         
     | 
| 
      
 534 
     | 
    
         
            +
             
     | 
| 
      
 535 
     | 
    
         
            +
                    if accepted:
         
     | 
| 
      
 536 
     | 
    
         
            +
                        if curr != 0:
         
     | 
| 
      
 537 
     | 
    
         
            +
                            # Accept the current token
         
     | 
| 
      
 538 
     | 
    
         
            +
                            grammar.accept_token(draft_tokens[curr])
         
     | 
| 
      
 539 
     | 
    
         
            +
                        if not grammar.is_terminated():
         
     | 
| 
      
 540 
     | 
    
         
            +
                            # Generate the bitmask for the current token
         
     | 
| 
      
 541 
     | 
    
         
            +
                            grammar.fill_vocab_mask(allocate_token_bitmask, curr)
         
     | 
| 
      
 542 
     | 
    
         
            +
                            if retrieve_next_token[curr] != -1:
         
     | 
| 
      
 543 
     | 
    
         
            +
                                # Visit the child node
         
     | 
| 
      
 544 
     | 
    
         
            +
                                dfs(
         
     | 
| 
      
 545 
     | 
    
         
            +
                                    retrieve_next_token[curr],
         
     | 
| 
      
 546 
     | 
    
         
            +
                                    retrieve_next_token,
         
     | 
| 
      
 547 
     | 
    
         
            +
                                    retrieve_next_sibling,
         
     | 
| 
      
 548 
     | 
    
         
            +
                                    curr,
         
     | 
| 
      
 549 
     | 
    
         
            +
                                )
         
     | 
| 
      
 550 
     | 
    
         
            +
             
     | 
| 
      
 551 
     | 
    
         
            +
                        if curr != 0:
         
     | 
| 
      
 552 
     | 
    
         
            +
                            # Rollback the current token
         
     | 
| 
      
 553 
     | 
    
         
            +
                            grammar.rollback(1)
         
     | 
| 
      
 554 
     | 
    
         
            +
             
     | 
| 
      
 555 
     | 
    
         
            +
                    if retrieve_next_sibling[curr] != -1:
         
     | 
| 
      
 556 
     | 
    
         
            +
                        # Visit the sibling node
         
     | 
| 
      
 557 
     | 
    
         
            +
                        dfs(
         
     | 
| 
      
 558 
     | 
    
         
            +
                            retrieve_next_sibling[curr],
         
     | 
| 
      
 559 
     | 
    
         
            +
                            retrieve_next_token,
         
     | 
| 
      
 560 
     | 
    
         
            +
                            retrieve_next_sibling,
         
     | 
| 
      
 561 
     | 
    
         
            +
                            parent_pos,
         
     | 
| 
      
 562 
     | 
    
         
            +
                        )
         
     | 
| 
      
 563 
     | 
    
         
            +
             
     | 
| 
      
 564 
     | 
    
         
            +
                dfs(0, retrieve_next_token, retrieve_next_sibling, -1)
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
             
     | 
| 
      
 567 
     | 
    
         
            +
            def generate_token_bitmask(
         
     | 
| 
      
 568 
     | 
    
         
            +
                reqs: List[Req],
         
     | 
| 
      
 569 
     | 
    
         
            +
                verify_input: EagleVerifyInput,
         
     | 
| 
      
 570 
     | 
    
         
            +
                retrieve_next_token_cpu: torch.Tensor,
         
     | 
| 
      
 571 
     | 
    
         
            +
                retrieve_next_sibling_cpu: torch.Tensor,
         
     | 
| 
      
 572 
     | 
    
         
            +
                draft_tokens_cpu: torch.Tensor,
         
     | 
| 
      
 573 
     | 
    
         
            +
                vocab_size: int,
         
     | 
| 
      
 574 
     | 
    
         
            +
            ):
         
     | 
| 
      
 575 
     | 
    
         
            +
                """
         
     | 
| 
      
 576 
     | 
    
         
            +
                Generate the logit mask for structured output.
         
     | 
| 
      
 577 
     | 
    
         
            +
                Draft model's token can be either valid or invalid with respect to the grammar.
         
     | 
| 
      
 578 
     | 
    
         
            +
                We need to perform DFS to
         
     | 
| 
      
 579 
     | 
    
         
            +
                1. figure out which tokens are accepted by the grammar.
         
     | 
| 
      
 580 
     | 
    
         
            +
                2. if so, what is the corresponding logit mask.
         
     | 
| 
      
 581 
     | 
    
         
            +
                """
         
     | 
| 
      
 582 
     | 
    
         
            +
             
     | 
| 
      
 583 
     | 
    
         
            +
                num_draft_tokens = draft_tokens_cpu.shape[-1]
         
     | 
| 
      
 584 
     | 
    
         
            +
             
     | 
| 
      
 585 
     | 
    
         
            +
                allocate_token_bitmask = None
         
     | 
| 
      
 586 
     | 
    
         
            +
                assert len(reqs) == retrieve_next_token_cpu.shape[0]
         
     | 
| 
      
 587 
     | 
    
         
            +
                grammar = None
         
     | 
| 
      
 588 
     | 
    
         
            +
                for i, req in enumerate(reqs):
         
     | 
| 
      
 589 
     | 
    
         
            +
                    if req.grammar is not None:
         
     | 
| 
      
 590 
     | 
    
         
            +
                        if allocate_token_bitmask is None:
         
     | 
| 
      
 591 
     | 
    
         
            +
                            allocate_token_bitmask = req.grammar.allocate_vocab_mask(
         
     | 
| 
      
 592 
     | 
    
         
            +
                                vocab_size=vocab_size,
         
     | 
| 
      
 593 
     | 
    
         
            +
                                batch_size=draft_tokens_cpu.numel(),
         
     | 
| 
      
 594 
     | 
    
         
            +
                                device="cpu",
         
     | 
| 
      
 595 
     | 
    
         
            +
                            )
         
     | 
| 
      
 596 
     | 
    
         
            +
                        grammar = req.grammar
         
     | 
| 
      
 597 
     | 
    
         
            +
                        s = time.perf_counter()
         
     | 
| 
      
 598 
     | 
    
         
            +
                        traverse_tree(
         
     | 
| 
      
 599 
     | 
    
         
            +
                            retrieve_next_token_cpu[i],
         
     | 
| 
      
 600 
     | 
    
         
            +
                            retrieve_next_sibling_cpu[i],
         
     | 
| 
      
 601 
     | 
    
         
            +
                            draft_tokens_cpu[i],
         
     | 
| 
      
 602 
     | 
    
         
            +
                            req.grammar,
         
     | 
| 
      
 603 
     | 
    
         
            +
                            allocate_token_bitmask[
         
     | 
| 
      
 604 
     | 
    
         
            +
                                i * num_draft_tokens : (i + 1) * num_draft_tokens
         
     | 
| 
      
 605 
     | 
    
         
            +
                            ],
         
     | 
| 
      
 606 
     | 
    
         
            +
                        )
         
     | 
| 
      
 607 
     | 
    
         
            +
                        tree_traverse_time = time.perf_counter() - s
         
     | 
| 
      
 608 
     | 
    
         
            +
                        if tree_traverse_time > TREE_TRAVERSE_TIME_THRESHOLD:
         
     | 
| 
      
 609 
     | 
    
         
            +
                            logger.warning(
         
     | 
| 
      
 610 
     | 
    
         
            +
                                f"Bit mask generation took {tree_traverse_time} seconds with "
         
     | 
| 
      
 611 
     | 
    
         
            +
                                f"grammar: {req.grammar}"
         
     | 
| 
      
 612 
     | 
    
         
            +
                            )
         
     | 
| 
      
 613 
     | 
    
         
            +
             
     | 
| 
      
 614 
     | 
    
         
            +
                verify_input.grammar = grammar
         
     | 
| 
      
 615 
     | 
    
         
            +
                return allocate_token_bitmask
         
     | 
| 
      
 616 
     | 
    
         
            +
             
     | 
| 
      
 617 
     | 
    
         
            +
             
     | 
| 
      
 618 
     | 
    
         
            +
            def load_token_map(token_map_path: str) -> List[int]:
         
     | 
| 
      
 619 
     | 
    
         
            +
                if not os.path.exists(token_map_path):
         
     | 
| 
      
 620 
     | 
    
         
            +
                    cache_dir = snapshot_download(
         
     | 
| 
      
 621 
     | 
    
         
            +
                        os.path.dirname(token_map_path),
         
     | 
| 
      
 622 
     | 
    
         
            +
                        ignore_patterns=["*.bin", "*.safetensors"],
         
     | 
| 
      
 623 
     | 
    
         
            +
                    )
         
     | 
| 
      
 624 
     | 
    
         
            +
                    token_map_path = os.path.join(cache_dir, os.path.basename(token_map_path))
         
     | 
| 
      
 625 
     | 
    
         
            +
                hot_token_id = torch.load(token_map_path, weights_only=True)
         
     | 
| 
      
 626 
     | 
    
         
            +
                return torch.tensor(hot_token_id, dtype=torch.int64)
         
     | 
| 
      
 627 
     | 
    
         
            +
             
     | 
| 
      
 628 
     | 
    
         
            +
             
     | 
| 
      
 629 
     | 
    
         
            +
            @contextmanager
         
     | 
| 
      
 630 
     | 
    
         
            +
            def draft_tp_context(tp_group: GroupCoordinator):
         
     | 
| 
      
 631 
     | 
    
         
            +
                # Draft model doesn't use dp and has its own tp group.
         
     | 
| 
      
 632 
     | 
    
         
            +
                # We disable mscclpp now because it doesn't support 2 comm groups.
         
     | 
| 
      
 633 
     | 
    
         
            +
                with patch_tensor_parallel_group(tp_group):
         
     | 
| 
      
 634 
     | 
    
         
            +
                    yield
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
             
     | 
| 
      
 637 
     | 
    
         
            +
            def detect_nan(logits_output: LogitsProcessorOutput):
         
     | 
| 
      
 638 
     | 
    
         
            +
                logits = logits_output.next_token_logits
         
     | 
| 
      
 639 
     | 
    
         
            +
                if torch.any(torch.isnan(logits)):
         
     | 
| 
      
 640 
     | 
    
         
            +
                    logger.error("Detected errors during sampling! NaN in the logits.")
         
     | 
| 
      
 641 
     | 
    
         
            +
                    raise ValueError("Detected errors during sampling! NaN in the logits.")
         
     |