sglang 0.5.3rc0__py3-none-any.whl → 0.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +54 -37
 - sglang/bench_one_batch_server.py +340 -34
 - sglang/bench_serving.py +340 -159
 - sglang/check_env.py +1 -1
 - sglang/compile_deep_gemm.py +6 -2
 - sglang/global_config.py +1 -25
 - sglang/lang/api.py +6 -0
 - sglang/lang/backend/runtime_endpoint.py +1 -1
 - sglang/lang/interpreter.py +1 -0
 - sglang/lang/ir.py +13 -0
 - sglang/launch_server.py +9 -2
 - sglang/profiler.py +20 -3
 - sglang/srt/_custom_ops.py +1 -1
 - sglang/srt/batch_invariant_ops/__init__.py +27 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +547 -0
 - sglang/srt/checkpoint_engine/checkpoint_engine_worker.py +142 -0
 - sglang/srt/compilation/backend.py +437 -0
 - sglang/srt/compilation/compilation_config.py +20 -0
 - sglang/srt/compilation/compilation_counter.py +47 -0
 - sglang/srt/compilation/compile.py +210 -0
 - sglang/srt/compilation/compiler_interface.py +503 -0
 - sglang/srt/compilation/cuda_piecewise_backend.py +228 -0
 - sglang/srt/compilation/fix_functionalization.py +134 -0
 - sglang/srt/compilation/fx_utils.py +83 -0
 - sglang/srt/compilation/inductor_pass.py +140 -0
 - sglang/srt/compilation/pass_manager.py +66 -0
 - sglang/srt/compilation/piecewise_context_manager.py +40 -0
 - sglang/srt/compilation/weak_ref_tensor_jit.py +16 -0
 - sglang/srt/configs/__init__.py +8 -0
 - sglang/srt/configs/deepseek_ocr.py +262 -0
 - sglang/srt/configs/deepseekvl2.py +194 -96
 - sglang/srt/configs/dots_ocr.py +64 -0
 - sglang/srt/configs/dots_vlm.py +2 -7
 - sglang/srt/configs/falcon_h1.py +309 -0
 - sglang/srt/configs/load_config.py +33 -2
 - sglang/srt/configs/mamba_utils.py +117 -0
 - sglang/srt/configs/model_config.py +284 -118
 - sglang/srt/configs/modelopt_config.py +30 -0
 - sglang/srt/configs/nemotron_h.py +286 -0
 - sglang/srt/configs/olmo3.py +105 -0
 - sglang/srt/configs/points_v15_chat.py +29 -0
 - sglang/srt/configs/qwen3_next.py +11 -47
 - sglang/srt/configs/qwen3_omni.py +613 -0
 - sglang/srt/configs/qwen3_vl.py +576 -0
 - sglang/srt/connector/remote_instance.py +1 -1
 - sglang/srt/constrained/base_grammar_backend.py +6 -1
 - sglang/srt/constrained/llguidance_backend.py +5 -0
 - sglang/srt/constrained/outlines_backend.py +1 -1
 - sglang/srt/constrained/outlines_jump_forward.py +1 -1
 - sglang/srt/constrained/reasoner_grammar_backend.py +9 -6
 - sglang/srt/constrained/utils.py +12 -0
 - sglang/srt/constrained/xgrammar_backend.py +26 -15
 - sglang/srt/debug_utils/dumper.py +10 -3
 - sglang/srt/disaggregation/ascend/conn.py +2 -2
 - sglang/srt/disaggregation/ascend/transfer_engine.py +48 -10
 - sglang/srt/disaggregation/base/conn.py +17 -4
 - sglang/srt/disaggregation/common/conn.py +268 -98
 - sglang/srt/disaggregation/decode.py +172 -39
 - sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
 - sglang/srt/disaggregation/decode_schedule_batch_mixin.py +25 -16
 - sglang/srt/disaggregation/fake/conn.py +11 -3
 - sglang/srt/disaggregation/mooncake/conn.py +203 -555
 - sglang/srt/disaggregation/nixl/conn.py +217 -63
 - sglang/srt/disaggregation/prefill.py +113 -270
 - sglang/srt/disaggregation/utils.py +36 -5
 - sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +6 -6
 - sglang/srt/distributed/device_communicators/pymscclpp.py +2 -2
 - sglang/srt/distributed/device_communicators/pynccl.py +24 -12
 - sglang/srt/distributed/device_communicators/pynccl_allocator.py +2 -2
 - sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
 - sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
 - sglang/srt/distributed/naive_distributed.py +5 -4
 - sglang/srt/distributed/parallel_state.py +203 -97
 - sglang/srt/elastic_ep/elastic_ep.py +74 -0
 - sglang/srt/entrypoints/context.py +3 -2
 - sglang/srt/entrypoints/engine.py +85 -65
 - sglang/srt/entrypoints/grpc_server.py +632 -305
 - sglang/srt/entrypoints/harmony_utils.py +2 -2
 - sglang/srt/entrypoints/http_server.py +169 -17
 - sglang/srt/entrypoints/http_server_engine.py +1 -7
 - sglang/srt/entrypoints/openai/protocol.py +327 -34
 - sglang/srt/entrypoints/openai/serving_base.py +74 -8
 - sglang/srt/entrypoints/openai/serving_chat.py +202 -118
 - sglang/srt/entrypoints/openai/serving_classify.py +204 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +20 -4
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/entrypoints/openai/serving_responses.py +47 -2
 - sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
 - sglang/srt/environ.py +323 -0
 - sglang/srt/eplb/eplb_algorithms/__init__.py +18 -1
 - sglang/srt/eplb/eplb_algorithms/deepseek.py +0 -2
 - sglang/srt/eplb/eplb_algorithms/elasticity_aware.py +87 -0
 - sglang/srt/eplb/expert_distribution.py +3 -4
 - sglang/srt/eplb/expert_location.py +30 -5
 - sglang/srt/eplb/expert_location_dispatch.py +2 -2
 - sglang/srt/eplb/expert_location_updater.py +2 -2
 - sglang/srt/function_call/base_format_detector.py +17 -18
 - sglang/srt/function_call/function_call_parser.py +21 -16
 - sglang/srt/function_call/glm4_moe_detector.py +4 -8
 - sglang/srt/function_call/gpt_oss_detector.py +24 -1
 - sglang/srt/function_call/json_array_parser.py +61 -0
 - sglang/srt/function_call/kimik2_detector.py +17 -4
 - sglang/srt/function_call/utils.py +98 -7
 - sglang/srt/grpc/compile_proto.py +245 -0
 - sglang/srt/grpc/grpc_request_manager.py +915 -0
 - sglang/srt/grpc/health_servicer.py +189 -0
 - sglang/srt/grpc/scheduler_launcher.py +181 -0
 - sglang/srt/grpc/sglang_scheduler_pb2.py +81 -68
 - sglang/srt/grpc/sglang_scheduler_pb2.pyi +124 -61
 - sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +92 -1
 - sglang/srt/layers/activation.py +11 -7
 - sglang/srt/layers/attention/aiter_backend.py +17 -18
 - sglang/srt/layers/attention/ascend_backend.py +125 -10
 - sglang/srt/layers/attention/attention_registry.py +226 -0
 - sglang/srt/layers/attention/base_attn_backend.py +32 -4
 - sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
 - sglang/srt/layers/attention/double_sparsity_backend.py +2 -2
 - sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
 - sglang/srt/layers/attention/fla/chunk.py +0 -1
 - sglang/srt/layers/attention/fla/chunk_o.py +1 -1
 - sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +2 -2
 - sglang/srt/layers/attention/fla/fused_recurrent.py +4 -4
 - sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +2 -2
 - sglang/srt/layers/attention/fla/index.py +0 -2
 - sglang/srt/layers/attention/fla/layernorm_gated.py +50 -32
 - sglang/srt/layers/attention/fla/utils.py +0 -3
 - sglang/srt/layers/attention/fla/wy_fast.py +0 -2
 - sglang/srt/layers/attention/flashattention_backend.py +52 -15
 - sglang/srt/layers/attention/flashinfer_backend.py +357 -212
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +31 -33
 - sglang/srt/layers/attention/flashmla_backend.py +9 -7
 - sglang/srt/layers/attention/hybrid_attn_backend.py +12 -4
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +236 -133
 - sglang/srt/layers/attention/intel_amx_backend.py +1 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d.py +2 -1
 - sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +24 -103
 - sglang/srt/layers/attention/mamba/mamba.py +514 -1
 - sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
 - sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
 - sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
 - sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
 - sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +214 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +562 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +646 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_combined.py +261 -0
 - sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +264 -0
 - sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
 - sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +718 -0
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
 - sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
 - sglang/srt/layers/attention/nsa/transform_index.py +144 -0
 - sglang/srt/layers/attention/nsa/triton_kernel.py +136 -0
 - sglang/srt/layers/attention/nsa/utils.py +23 -0
 - sglang/srt/layers/attention/nsa_backend.py +1201 -0
 - sglang/srt/layers/attention/tbo_backend.py +6 -6
 - sglang/srt/layers/attention/torch_flex_backend.py +325 -0
 - sglang/srt/layers/attention/triton_backend.py +249 -42
 - sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +2 -2
 - sglang/srt/layers/attention/triton_ops/extend_attention.py +539 -44
 - sglang/srt/layers/attention/trtllm_mha_backend.py +7 -9
 - sglang/srt/layers/attention/trtllm_mla_backend.py +523 -48
 - sglang/srt/layers/attention/utils.py +11 -7
 - sglang/srt/layers/attention/vision.py +61 -3
 - sglang/srt/layers/attention/wave_backend.py +4 -4
 - sglang/srt/layers/attention/xpu_backend.py +1028 -0
 - sglang/srt/layers/communicator.py +19 -7
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/compile_utils.py +4 -8
 - sglang/srt/layers/deep_gemm_wrapper/configurer.py +25 -0
 - sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/entrypoint.py +3 -3
 - sglang/srt/layers/dp_attention.py +28 -1
 - sglang/srt/layers/elementwise.py +3 -1
 - sglang/srt/layers/layernorm.py +47 -15
 - sglang/srt/layers/linear.py +30 -5
 - sglang/srt/layers/logits_processor.py +161 -18
 - sglang/srt/layers/modelopt_utils.py +11 -0
 - sglang/srt/layers/moe/cutlass_moe.py +0 -2
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +213 -21
 - sglang/srt/layers/moe/ep_moe/kernels.py +36 -458
 - sglang/srt/layers/moe/ep_moe/layer.py +243 -448
 - sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +52 -25
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +17 -5
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +86 -81
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +18 -42
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton.py +3 -1
 - sglang/srt/layers/moe/rocm_moe_utils.py +0 -1
 - sglang/srt/layers/moe/router.py +51 -15
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +10 -0
 - sglang/srt/layers/moe/token_dispatcher/base.py +1 -1
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +177 -106
 - sglang/srt/layers/moe/token_dispatcher/mooncake.py +386 -0
 - sglang/srt/layers/moe/token_dispatcher/standard.py +46 -0
 - sglang/srt/layers/moe/topk.py +3 -2
 - sglang/srt/layers/moe/utils.py +27 -1
 - sglang/srt/layers/parameter.py +23 -6
 - sglang/srt/layers/quantization/__init__.py +2 -53
 - sglang/srt/layers/quantization/awq.py +183 -6
 - sglang/srt/layers/quantization/awq_triton.py +29 -0
 - sglang/srt/layers/quantization/base_config.py +20 -1
 - sglang/srt/layers/quantization/compressed_tensors/__init__.py +7 -0
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +21 -49
 - sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +421 -70
 - sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +5 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +4 -22
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
 - sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +339 -0
 - sglang/srt/layers/quantization/fp8.py +86 -20
 - sglang/srt/layers/quantization/fp8_kernel.py +55 -10
 - sglang/srt/layers/quantization/fp8_utils.py +43 -15
 - sglang/srt/layers/quantization/fpgemm_fp8.py +2 -3
 - sglang/srt/layers/quantization/gptq.py +0 -1
 - sglang/srt/layers/quantization/int8_kernel.py +18 -2
 - sglang/srt/layers/quantization/marlin_utils.py +12 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +141 -81
 - sglang/srt/layers/quantization/mxfp4.py +17 -34
 - sglang/srt/layers/quantization/petit.py +1 -1
 - sglang/srt/layers/quantization/quark/quark.py +3 -1
 - sglang/srt/layers/quantization/quark/quark_moe.py +18 -5
 - sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +0 -7
 - sglang/srt/layers/quantization/unquant.py +1 -4
 - sglang/srt/layers/quantization/utils.py +0 -1
 - sglang/srt/layers/quantization/w4afp8.py +51 -24
 - sglang/srt/layers/quantization/w8a8_int8.py +45 -27
 - sglang/srt/layers/radix_attention.py +59 -9
 - sglang/srt/layers/rotary_embedding.py +750 -46
 - sglang/srt/layers/sampler.py +84 -16
 - sglang/srt/layers/sparse_pooler.py +98 -0
 - sglang/srt/layers/utils.py +23 -1
 - sglang/srt/layers/vocab_parallel_embedding.py +4 -1
 - sglang/srt/lora/backend/base_backend.py +3 -3
 - sglang/srt/lora/backend/chunked_backend.py +348 -0
 - sglang/srt/lora/backend/triton_backend.py +9 -4
 - sglang/srt/lora/eviction_policy.py +139 -0
 - sglang/srt/lora/lora.py +7 -5
 - sglang/srt/lora/lora_manager.py +33 -7
 - sglang/srt/lora/lora_registry.py +1 -1
 - sglang/srt/lora/mem_pool.py +41 -17
 - sglang/srt/lora/triton_ops/__init__.py +4 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
 - sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +176 -0
 - sglang/srt/lora/utils.py +7 -5
 - sglang/srt/managers/cache_controller.py +83 -152
 - sglang/srt/managers/data_parallel_controller.py +156 -87
 - sglang/srt/managers/detokenizer_manager.py +51 -24
 - sglang/srt/managers/io_struct.py +223 -129
 - sglang/srt/managers/mm_utils.py +49 -10
 - sglang/srt/managers/multi_tokenizer_mixin.py +83 -98
 - sglang/srt/managers/multimodal_processor.py +1 -2
 - sglang/srt/managers/overlap_utils.py +130 -0
 - sglang/srt/managers/schedule_batch.py +340 -529
 - sglang/srt/managers/schedule_policy.py +158 -18
 - sglang/srt/managers/scheduler.py +665 -620
 - sglang/srt/managers/scheduler_input_blocker.py +1 -1
 - sglang/srt/managers/scheduler_metrics_mixin.py +150 -131
 - sglang/srt/managers/scheduler_output_processor_mixin.py +337 -122
 - sglang/srt/managers/scheduler_pp_mixin.py +341 -0
 - sglang/srt/managers/scheduler_profiler_mixin.py +62 -15
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +217 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +40 -14
 - sglang/srt/managers/tokenizer_communicator_mixin.py +141 -19
 - sglang/srt/managers/tokenizer_manager.py +462 -226
 - sglang/srt/managers/tp_worker.py +217 -156
 - sglang/srt/managers/utils.py +79 -47
 - sglang/srt/mem_cache/allocator.py +21 -22
 - sglang/srt/mem_cache/allocator_ascend.py +42 -28
 - sglang/srt/mem_cache/base_prefix_cache.py +3 -3
 - sglang/srt/mem_cache/chunk_cache.py +20 -2
 - sglang/srt/mem_cache/common.py +480 -0
 - sglang/srt/mem_cache/evict_policy.py +38 -0
 - sglang/srt/mem_cache/hicache_storage.py +44 -2
 - sglang/srt/mem_cache/hiradix_cache.py +134 -34
 - sglang/srt/mem_cache/mamba_radix_cache.py +993 -0
 - sglang/srt/mem_cache/memory_pool.py +602 -208
 - sglang/srt/mem_cache/memory_pool_host.py +134 -183
 - sglang/srt/mem_cache/multimodal_cache.py +0 -1
 - sglang/srt/mem_cache/radix_cache.py +263 -78
 - sglang/srt/mem_cache/radix_cache_cpp.py +29 -21
 - sglang/srt/mem_cache/storage/__init__.py +10 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +157 -0
 - sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +97 -0
 - sglang/srt/mem_cache/storage/backend_factory.py +223 -0
 - sglang/srt/mem_cache/storage/eic/eic_storage.py +777 -0
 - sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
 - sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +0 -1
 - sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +180 -59
 - sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +15 -9
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +217 -26
 - sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +38 -9
 - sglang/srt/mem_cache/storage/nixl/nixl_utils.py +1 -1
 - sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +17 -2
 - sglang/srt/mem_cache/swa_radix_cache.py +115 -58
 - sglang/srt/metrics/collector.py +113 -120
 - sglang/srt/metrics/func_timer.py +3 -8
 - sglang/srt/metrics/utils.py +8 -1
 - sglang/srt/model_executor/cpu_graph_runner.py +2 -2
 - sglang/srt/model_executor/cuda_graph_runner.py +81 -36
 - sglang/srt/model_executor/forward_batch_info.py +40 -50
 - sglang/srt/model_executor/model_runner.py +507 -319
 - sglang/srt/model_executor/npu_graph_runner.py +11 -5
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +539 -0
 - sglang/srt/model_loader/__init__.py +1 -1
 - sglang/srt/model_loader/loader.py +438 -37
 - sglang/srt/model_loader/utils.py +0 -1
 - sglang/srt/model_loader/weight_utils.py +200 -27
 - sglang/srt/models/apertus.py +2 -3
 - sglang/srt/models/arcee.py +2 -2
 - sglang/srt/models/bailing_moe.py +40 -56
 - sglang/srt/models/bailing_moe_nextn.py +3 -4
 - sglang/srt/models/bert.py +1 -1
 - sglang/srt/models/deepseek_nextn.py +25 -4
 - sglang/srt/models/deepseek_ocr.py +1516 -0
 - sglang/srt/models/deepseek_v2.py +793 -235
 - sglang/srt/models/dots_ocr.py +171 -0
 - sglang/srt/models/dots_vlm.py +0 -1
 - sglang/srt/models/dots_vlm_vit.py +1 -1
 - sglang/srt/models/falcon_h1.py +570 -0
 - sglang/srt/models/gemma3_causal.py +0 -2
 - sglang/srt/models/gemma3_mm.py +17 -1
 - sglang/srt/models/gemma3n_mm.py +2 -3
 - sglang/srt/models/glm4_moe.py +17 -40
 - sglang/srt/models/glm4_moe_nextn.py +4 -4
 - sglang/srt/models/glm4v.py +3 -2
 - sglang/srt/models/glm4v_moe.py +6 -6
 - sglang/srt/models/gpt_oss.py +12 -35
 - sglang/srt/models/grok.py +10 -23
 - sglang/srt/models/hunyuan.py +2 -7
 - sglang/srt/models/interns1.py +0 -1
 - sglang/srt/models/kimi_vl.py +1 -7
 - sglang/srt/models/kimi_vl_moonvit.py +4 -2
 - sglang/srt/models/llama.py +6 -2
 - sglang/srt/models/llama_eagle3.py +1 -1
 - sglang/srt/models/longcat_flash.py +6 -23
 - sglang/srt/models/longcat_flash_nextn.py +4 -15
 - sglang/srt/models/mimo.py +2 -13
 - sglang/srt/models/mimo_mtp.py +1 -2
 - sglang/srt/models/minicpmo.py +7 -5
 - sglang/srt/models/mixtral.py +1 -4
 - sglang/srt/models/mllama.py +1 -1
 - sglang/srt/models/mllama4.py +27 -6
 - sglang/srt/models/nemotron_h.py +511 -0
 - sglang/srt/models/olmo2.py +31 -4
 - sglang/srt/models/opt.py +5 -5
 - sglang/srt/models/phi.py +1 -1
 - sglang/srt/models/phi4mm.py +1 -1
 - sglang/srt/models/phimoe.py +0 -1
 - sglang/srt/models/pixtral.py +0 -3
 - sglang/srt/models/points_v15_chat.py +186 -0
 - sglang/srt/models/qwen.py +0 -1
 - sglang/srt/models/qwen2.py +0 -7
 - sglang/srt/models/qwen2_5_vl.py +5 -5
 - sglang/srt/models/qwen2_audio.py +2 -15
 - sglang/srt/models/qwen2_moe.py +70 -4
 - sglang/srt/models/qwen2_vl.py +6 -3
 - sglang/srt/models/qwen3.py +18 -3
 - sglang/srt/models/qwen3_moe.py +50 -38
 - sglang/srt/models/qwen3_next.py +43 -21
 - sglang/srt/models/qwen3_next_mtp.py +3 -4
 - sglang/srt/models/qwen3_omni_moe.py +661 -0
 - sglang/srt/models/qwen3_vl.py +791 -0
 - sglang/srt/models/qwen3_vl_moe.py +343 -0
 - sglang/srt/models/registry.py +15 -3
 - sglang/srt/models/roberta.py +55 -3
 - sglang/srt/models/sarashina2_vision.py +268 -0
 - sglang/srt/models/solar.py +505 -0
 - sglang/srt/models/starcoder2.py +357 -0
 - sglang/srt/models/step3_vl.py +3 -5
 - sglang/srt/models/torch_native_llama.py +9 -2
 - sglang/srt/models/utils.py +61 -0
 - sglang/srt/multimodal/processors/base_processor.py +21 -9
 - sglang/srt/multimodal/processors/deepseek_ocr.py +37 -0
 - sglang/srt/multimodal/processors/deepseek_vl_v2.py +0 -3
 - sglang/srt/multimodal/processors/dots_vlm.py +2 -4
 - sglang/srt/multimodal/processors/glm4v.py +1 -5
 - sglang/srt/multimodal/processors/internvl.py +20 -10
 - sglang/srt/multimodal/processors/janus_pro.py +0 -1
 - sglang/srt/multimodal/processors/mllama4.py +0 -8
 - sglang/srt/multimodal/processors/phi4mm.py +0 -1
 - sglang/srt/multimodal/processors/points_v15_chat.py +52 -0
 - sglang/srt/multimodal/processors/qwen_vl.py +83 -17
 - sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
 - sglang/srt/multimodal/processors/step3_vl.py +1 -1
 - sglang/srt/parser/conversation.py +41 -0
 - sglang/srt/parser/jinja_template_utils.py +6 -0
 - sglang/srt/parser/reasoning_parser.py +0 -1
 - sglang/srt/sampling/custom_logit_processor.py +77 -2
 - sglang/srt/sampling/sampling_batch_info.py +36 -23
 - sglang/srt/sampling/sampling_params.py +75 -0
 - sglang/srt/server_args.py +1300 -338
 - sglang/srt/server_args_config_parser.py +146 -0
 - sglang/srt/single_batch_overlap.py +161 -0
 - sglang/srt/speculative/base_spec_worker.py +34 -0
 - sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
 - sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
 - sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
 - sglang/srt/speculative/cpp_ngram/param.h +125 -0
 - sglang/srt/speculative/cpp_ngram/queue.h +71 -0
 - sglang/srt/speculative/draft_utils.py +226 -0
 - sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +26 -8
 - sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +26 -3
 - sglang/srt/speculative/eagle_info.py +786 -0
 - sglang/srt/speculative/eagle_info_v2.py +458 -0
 - sglang/srt/speculative/eagle_utils.py +113 -1270
 - sglang/srt/speculative/eagle_worker.py +120 -285
 - sglang/srt/speculative/eagle_worker_v2.py +702 -0
 - sglang/srt/speculative/ngram_info.py +433 -0
 - sglang/srt/speculative/ngram_worker.py +246 -0
 - sglang/srt/speculative/spec_info.py +49 -0
 - sglang/srt/speculative/spec_utils.py +641 -0
 - sglang/srt/speculative/standalone_worker.py +4 -14
 - sglang/srt/tokenizer/tiktoken_tokenizer.py +2 -2
 - sglang/srt/tracing/trace.py +32 -6
 - sglang/srt/two_batch_overlap.py +35 -18
 - sglang/srt/utils/__init__.py +2 -0
 - sglang/srt/{bench_utils.py → utils/bench_utils.py} +4 -2
 - sglang/srt/{utils.py → utils/common.py} +583 -113
 - sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +86 -19
 - sglang/srt/{host_shared_memory.py → utils/host_shared_memory.py} +0 -1
 - sglang/srt/{offloader.py → utils/offloader.py} +4 -4
 - sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
 - sglang/srt/utils/profile_merger.py +199 -0
 - sglang/srt/utils/rpd_utils.py +452 -0
 - sglang/srt/utils/slow_rank_detector.py +71 -0
 - sglang/srt/{torch_memory_saver_adapter.py → utils/torch_memory_saver_adapter.py} +5 -7
 - sglang/srt/warmup.py +8 -4
 - sglang/srt/weight_sync/utils.py +1 -1
 - sglang/test/attention/test_flashattn_backend.py +1 -1
 - sglang/test/attention/test_flashattn_mla_backend.py +0 -1
 - sglang/test/attention/test_prefix_chunk_info.py +0 -2
 - sglang/test/attention/test_trtllm_mla_backend.py +221 -53
 - sglang/test/few_shot_gsm8k_engine.py +2 -4
 - sglang/test/get_logits_ut.py +57 -0
 - sglang/test/kit_matched_stop.py +157 -0
 - sglang/test/longbench_v2/__init__.py +1 -0
 - sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
 - sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
 - sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
 - sglang/test/run_eval.py +120 -11
 - sglang/test/runners.py +3 -1
 - sglang/test/send_one.py +42 -7
 - sglang/test/simple_eval_common.py +8 -2
 - sglang/test/simple_eval_gpqa.py +0 -1
 - sglang/test/simple_eval_humaneval.py +0 -3
 - sglang/test/simple_eval_longbench_v2.py +344 -0
 - sglang/test/simple_eval_mmmu_vlm.py +441 -0
 - sglang/test/test_block_fp8.py +3 -4
 - sglang/test/test_block_fp8_deep_gemm_blackwell.py +0 -1
 - sglang/test/test_cutlass_moe.py +1 -2
 - sglang/test/test_cutlass_w4a8_moe.py +10 -20
 - sglang/test/test_deterministic.py +430 -0
 - sglang/test/test_deterministic_utils.py +73 -0
 - sglang/test/test_disaggregation_utils.py +93 -1
 - sglang/test/test_marlin_moe.py +0 -1
 - sglang/test/test_programs.py +1 -1
 - sglang/test/test_utils.py +432 -16
 - sglang/utils.py +10 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/METADATA +64 -43
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/RECORD +476 -346
 - sglang/srt/entrypoints/grpc_request_manager.py +0 -580
 - sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +0 -32
 - sglang/srt/managers/tp_worker_overlap_thread.py +0 -319
 - sglang/srt/mem_cache/lora_radix_cache.py +0 -421
 - sglang/srt/speculative/build_eagle_tree.py +0 -427
 - sglang/test/test_block_fp8_ep.py +0 -358
 - /sglang/srt/layers/{quantization/deep_gemm_wrapper → deep_gemm_wrapper}/__init__.py +0 -0
 - /sglang/srt/{remote_instance_weight_loader_utils.py → model_loader/remote_instance_weight_loader_utils.py} +0 -0
 - /sglang/srt/{aio_rwlock.py → utils/aio_rwlock.py} +0 -0
 - /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/WHEEL +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.3rc0.dist-info → sglang-0.5.4.dist-info}/top_level.txt +0 -0
 
| 
         @@ -0,0 +1,547 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Adapted from https://github.com/thinking-machines-lab/batch_invariant_ops/blob/main/batch_invariant_ops/batch_invariant_ops.py
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            import contextlib
         
     | 
| 
      
 4 
     | 
    
         
            +
            from collections import namedtuple
         
     | 
| 
      
 5 
     | 
    
         
            +
            from collections.abc import Callable
         
     | 
| 
      
 6 
     | 
    
         
            +
            from typing import Any, Dict
         
     | 
| 
      
 7 
     | 
    
         
            +
             
     | 
| 
      
 8 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 9 
     | 
    
         
            +
            import triton
         
     | 
| 
      
 10 
     | 
    
         
            +
            import triton.language as tl
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            __all__ = [
         
     | 
| 
      
 13 
     | 
    
         
            +
                "set_batch_invariant_mode",
         
     | 
| 
      
 14 
     | 
    
         
            +
                "is_batch_invariant_mode_enabled",
         
     | 
| 
      
 15 
     | 
    
         
            +
                "disable_batch_invariant_mode",
         
     | 
| 
      
 16 
     | 
    
         
            +
                "enable_batch_invariant_mode",
         
     | 
| 
      
 17 
     | 
    
         
            +
            ]
         
     | 
| 
      
 18 
     | 
    
         
            +
             
     | 
| 
      
 19 
     | 
    
         
            +
             
     | 
| 
      
 20 
     | 
    
         
            +
            def _matmul_launch_metadata(
         
     | 
| 
      
 21 
     | 
    
         
            +
                grid: Callable[..., Any], kernel: Any, args: Dict[str, Any]
         
     | 
| 
      
 22 
     | 
    
         
            +
            ) -> Dict[str, Any]:
         
     | 
| 
      
 23 
     | 
    
         
            +
                ret = {}
         
     | 
| 
      
 24 
     | 
    
         
            +
                m, n, k = args["M"], args["N"], args["K"]
         
     | 
| 
      
 25 
     | 
    
         
            +
                ret["name"] = f"{kernel.name} [M={m}, N={n}, K={k}]"
         
     | 
| 
      
 26 
     | 
    
         
            +
                if "tiles_per_update" in args:
         
     | 
| 
      
 27 
     | 
    
         
            +
                    ret["name"] = (
         
     | 
| 
      
 28 
     | 
    
         
            +
                        f"{kernel.name} [M={m}, N={n}, K={k}, tiles_per_update={args['tiles_per_update']:02}]"
         
     | 
| 
      
 29 
     | 
    
         
            +
                    )
         
     | 
| 
      
 30 
     | 
    
         
            +
                if "c_ptr" in args:
         
     | 
| 
      
 31 
     | 
    
         
            +
                    bytes_per_elem = args["c_ptr"].element_size()
         
     | 
| 
      
 32 
     | 
    
         
            +
                else:
         
     | 
| 
      
 33 
     | 
    
         
            +
                    bytes_per_elem = 1 if args["FP8_OUTPUT"] else 2
         
     | 
| 
      
 34 
     | 
    
         
            +
                ret[f"flops{bytes_per_elem * 8}"] = 2.0 * m * n * k
         
     | 
| 
      
 35 
     | 
    
         
            +
                ret["bytes"] = bytes_per_elem * (m * k + n * k + m * n)
         
     | 
| 
      
 36 
     | 
    
         
            +
                return ret
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 40 
     | 
    
         
            +
            def _compute_pid(tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS):
         
     | 
| 
      
 41 
     | 
    
         
            +
                group_id = tile_id // num_pid_in_group
         
     | 
| 
      
 42 
     | 
    
         
            +
                first_pid_m = group_id * GROUP_SIZE_M
         
     | 
| 
      
 43 
     | 
    
         
            +
                group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
         
     | 
| 
      
 44 
     | 
    
         
            +
                pid_m = first_pid_m + (tile_id % group_size_m)
         
     | 
| 
      
 45 
     | 
    
         
            +
                pid_n = (tile_id % num_pid_in_group) // group_size_m
         
     | 
| 
      
 46 
     | 
    
         
            +
                return pid_m, pid_n
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
            @triton.jit(launch_metadata=_matmul_launch_metadata)
         
     | 
| 
      
 50 
     | 
    
         
            +
            def matmul_kernel_persistent(
         
     | 
| 
      
 51 
     | 
    
         
            +
                a_ptr,
         
     | 
| 
      
 52 
     | 
    
         
            +
                b_ptr,
         
     | 
| 
      
 53 
     | 
    
         
            +
                c_ptr,  #
         
     | 
| 
      
 54 
     | 
    
         
            +
                bias_ptr,
         
     | 
| 
      
 55 
     | 
    
         
            +
                M,
         
     | 
| 
      
 56 
     | 
    
         
            +
                N,
         
     | 
| 
      
 57 
     | 
    
         
            +
                K,  #
         
     | 
| 
      
 58 
     | 
    
         
            +
                stride_am,
         
     | 
| 
      
 59 
     | 
    
         
            +
                stride_ak,
         
     | 
| 
      
 60 
     | 
    
         
            +
                stride_bk,
         
     | 
| 
      
 61 
     | 
    
         
            +
                stride_bn,
         
     | 
| 
      
 62 
     | 
    
         
            +
                stride_cm,
         
     | 
| 
      
 63 
     | 
    
         
            +
                stride_cn,
         
     | 
| 
      
 64 
     | 
    
         
            +
                BLOCK_SIZE_M: tl.constexpr,  #
         
     | 
| 
      
 65 
     | 
    
         
            +
                BLOCK_SIZE_N: tl.constexpr,  #
         
     | 
| 
      
 66 
     | 
    
         
            +
                BLOCK_SIZE_K: tl.constexpr,  #
         
     | 
| 
      
 67 
     | 
    
         
            +
                GROUP_SIZE_M: tl.constexpr,  #
         
     | 
| 
      
 68 
     | 
    
         
            +
                NUM_SMS: tl.constexpr,  #
         
     | 
| 
      
 69 
     | 
    
         
            +
                A_LARGE: tl.constexpr,
         
     | 
| 
      
 70 
     | 
    
         
            +
                B_LARGE: tl.constexpr,
         
     | 
| 
      
 71 
     | 
    
         
            +
                C_LARGE: tl.constexpr,
         
     | 
| 
      
 72 
     | 
    
         
            +
                HAS_BIAS: tl.constexpr,
         
     | 
| 
      
 73 
     | 
    
         
            +
            ):
         
     | 
| 
      
 74 
     | 
    
         
            +
                start_pid = tl.program_id(axis=0)
         
     | 
| 
      
 75 
     | 
    
         
            +
                num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
         
     | 
| 
      
 76 
     | 
    
         
            +
                num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
         
     | 
| 
      
 77 
     | 
    
         
            +
                k_tiles = tl.cdiv(K, BLOCK_SIZE_K)
         
     | 
| 
      
 78 
     | 
    
         
            +
                num_tiles = num_pid_m * num_pid_n
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
                offs_k_for_mask = tl.arange(0, BLOCK_SIZE_K)
         
     | 
| 
      
 81 
     | 
    
         
            +
                num_pid_in_group = GROUP_SIZE_M * num_pid_n
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True):
         
     | 
| 
      
 84 
     | 
    
         
            +
                    pid_m, pid_n = _compute_pid(
         
     | 
| 
      
 85 
     | 
    
         
            +
                        tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
         
     | 
| 
      
 86 
     | 
    
         
            +
                    )
         
     | 
| 
      
 87 
     | 
    
         
            +
                    start_m = pid_m * BLOCK_SIZE_M
         
     | 
| 
      
 88 
     | 
    
         
            +
                    start_n = pid_n * BLOCK_SIZE_N
         
     | 
| 
      
 89 
     | 
    
         
            +
                    offs_am = start_m + tl.arange(0, BLOCK_SIZE_M)
         
     | 
| 
      
 90 
     | 
    
         
            +
                    offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 
      
 91 
     | 
    
         
            +
                    if A_LARGE:
         
     | 
| 
      
 92 
     | 
    
         
            +
                        offs_am = offs_am.to(tl.int64)
         
     | 
| 
      
 93 
     | 
    
         
            +
                    if B_LARGE:
         
     | 
| 
      
 94 
     | 
    
         
            +
                        offs_bn = offs_bn.to(tl.int64)
         
     | 
| 
      
 95 
     | 
    
         
            +
                    offs_am = tl.where(offs_am < M, offs_am, 0)
         
     | 
| 
      
 96 
     | 
    
         
            +
                    offs_bn = tl.where(offs_bn < N, offs_bn, 0)
         
     | 
| 
      
 97 
     | 
    
         
            +
                    offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
         
     | 
| 
      
 98 
     | 
    
         
            +
                    offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
         
     | 
| 
      
 99 
     | 
    
         
            +
             
     | 
| 
      
 100 
     | 
    
         
            +
                    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
         
     | 
| 
      
 101 
     | 
    
         
            +
                    for ki in range(k_tiles):
         
     | 
| 
      
 102 
     | 
    
         
            +
                        if A_LARGE or B_LARGE:
         
     | 
| 
      
 103 
     | 
    
         
            +
                            offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K).to(tl.int64)
         
     | 
| 
      
 104 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 105 
     | 
    
         
            +
                            offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
         
     | 
| 
      
 106 
     | 
    
         
            +
                        a_ptrs = a_ptr + (
         
     | 
| 
      
 107 
     | 
    
         
            +
                            offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak
         
     | 
| 
      
 108 
     | 
    
         
            +
                        )
         
     | 
| 
      
 109 
     | 
    
         
            +
                        b_ptrs = b_ptr + (
         
     | 
| 
      
 110 
     | 
    
         
            +
                            offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
         
     | 
| 
      
 111 
     | 
    
         
            +
                        )
         
     | 
| 
      
 112 
     | 
    
         
            +
             
     | 
| 
      
 113 
     | 
    
         
            +
                        a = tl.load(
         
     | 
| 
      
 114 
     | 
    
         
            +
                            a_ptrs, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_SIZE_K, other=0.0
         
     | 
| 
      
 115 
     | 
    
         
            +
                        )
         
     | 
| 
      
 116 
     | 
    
         
            +
                        b = tl.load(
         
     | 
| 
      
 117 
     | 
    
         
            +
                            b_ptrs, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_SIZE_K, other=0.0
         
     | 
| 
      
 118 
     | 
    
         
            +
                        )
         
     | 
| 
      
 119 
     | 
    
         
            +
                        accumulator = tl.dot(a, b, accumulator)
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                    offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
         
     | 
| 
      
 122 
     | 
    
         
            +
                    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 
      
 123 
     | 
    
         
            +
                    if C_LARGE:
         
     | 
| 
      
 124 
     | 
    
         
            +
                        offs_cm = offs_cm.to(tl.int64)
         
     | 
| 
      
 125 
     | 
    
         
            +
                        offs_cn = offs_cn.to(tl.int64)
         
     | 
| 
      
 126 
     | 
    
         
            +
                    c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
         
     | 
| 
      
 127 
     | 
    
         
            +
                    c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
         
     | 
| 
      
 128 
     | 
    
         
            +
                    if HAS_BIAS:
         
     | 
| 
      
 129 
     | 
    
         
            +
                        bias_ptrs = bias_ptr + offs_cn
         
     | 
| 
      
 130 
     | 
    
         
            +
                        bias = tl.load(bias_ptrs, mask=offs_cn < N, other=0.0).to(tl.float32)
         
     | 
| 
      
 131 
     | 
    
         
            +
                        accumulator += bias
         
     | 
| 
      
 132 
     | 
    
         
            +
                    if c_ptr.dtype.element_ty == tl.float8e4nv:
         
     | 
| 
      
 133 
     | 
    
         
            +
                        c = accumulator.to(tl.float8e4nv)
         
     | 
| 
      
 134 
     | 
    
         
            +
                    elif c_ptr.dtype.element_ty == tl.bfloat16:
         
     | 
| 
      
 135 
     | 
    
         
            +
                        c = accumulator.to(tl.bfloat16)
         
     | 
| 
      
 136 
     | 
    
         
            +
                    elif c_ptr.dtype.element_ty == tl.float32:
         
     | 
| 
      
 137 
     | 
    
         
            +
                        c = accumulator.to(tl.float32)
         
     | 
| 
      
 138 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 139 
     | 
    
         
            +
                        c = accumulator.to(tl.float16)
         
     | 
| 
      
 140 
     | 
    
         
            +
                    tl.store(c_ptrs, c, mask=c_mask)
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
             
     | 
| 
      
 143 
     | 
    
         
            +
            def matmul_persistent(
         
     | 
| 
      
 144 
     | 
    
         
            +
                a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor | None = None
         
     | 
| 
      
 145 
     | 
    
         
            +
            ):
         
     | 
| 
      
 146 
     | 
    
         
            +
                # Check constraints.
         
     | 
| 
      
 147 
     | 
    
         
            +
                assert a.shape[1] == b.shape[0], "Incompatible dimensions"
         
     | 
| 
      
 148 
     | 
    
         
            +
                assert a.dtype == b.dtype, "Incompatible dtypes"
         
     | 
| 
      
 149 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 150 
     | 
    
         
            +
                    bias is None or bias.dim() == 1
         
     | 
| 
      
 151 
     | 
    
         
            +
                ), "Currently assuming bias is 1D, let Horace know if you run into this"
         
     | 
| 
      
 152 
     | 
    
         
            +
                NUM_SMS = torch.cuda.get_device_properties("cuda").multi_processor_count
         
     | 
| 
      
 153 
     | 
    
         
            +
                M, K = a.shape
         
     | 
| 
      
 154 
     | 
    
         
            +
                K, N = b.shape
         
     | 
| 
      
 155 
     | 
    
         
            +
                dtype = a.dtype
         
     | 
| 
      
 156 
     | 
    
         
            +
                # Allocates output.
         
     | 
| 
      
 157 
     | 
    
         
            +
                c = torch.empty((M, N), device=a.device, dtype=dtype)
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                # 1D launch kernel where each block gets its own program.
         
     | 
| 
      
 160 
     | 
    
         
            +
                def grid(META):
         
     | 
| 
      
 161 
     | 
    
         
            +
                    return (
         
     | 
| 
      
 162 
     | 
    
         
            +
                        min(
         
     | 
| 
      
 163 
     | 
    
         
            +
                            NUM_SMS,
         
     | 
| 
      
 164 
     | 
    
         
            +
                            triton.cdiv(M, META["BLOCK_SIZE_M"])
         
     | 
| 
      
 165 
     | 
    
         
            +
                            * triton.cdiv(N, META["BLOCK_SIZE_N"]),
         
     | 
| 
      
 166 
     | 
    
         
            +
                        ),
         
     | 
| 
      
 167 
     | 
    
         
            +
                    )
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                configs = {
         
     | 
| 
      
 170 
     | 
    
         
            +
                    torch.bfloat16: {
         
     | 
| 
      
 171 
     | 
    
         
            +
                        "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 172 
     | 
    
         
            +
                        "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 173 
     | 
    
         
            +
                        "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 174 
     | 
    
         
            +
                        "GROUP_SIZE_M": 8,
         
     | 
| 
      
 175 
     | 
    
         
            +
                        "num_stages": 3,
         
     | 
| 
      
 176 
     | 
    
         
            +
                        "num_warps": 8,
         
     | 
| 
      
 177 
     | 
    
         
            +
                    },
         
     | 
| 
      
 178 
     | 
    
         
            +
                    torch.float16: {
         
     | 
| 
      
 179 
     | 
    
         
            +
                        "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 180 
     | 
    
         
            +
                        "BLOCK_SIZE_N": 256,
         
     | 
| 
      
 181 
     | 
    
         
            +
                        "BLOCK_SIZE_K": 64,
         
     | 
| 
      
 182 
     | 
    
         
            +
                        "GROUP_SIZE_M": 8,
         
     | 
| 
      
 183 
     | 
    
         
            +
                        "num_stages": 3,
         
     | 
| 
      
 184 
     | 
    
         
            +
                        "num_warps": 8,
         
     | 
| 
      
 185 
     | 
    
         
            +
                    },
         
     | 
| 
      
 186 
     | 
    
         
            +
                    torch.float32: {
         
     | 
| 
      
 187 
     | 
    
         
            +
                        "BLOCK_SIZE_M": 128,
         
     | 
| 
      
 188 
     | 
    
         
            +
                        "BLOCK_SIZE_N": 128,
         
     | 
| 
      
 189 
     | 
    
         
            +
                        "BLOCK_SIZE_K": 32,
         
     | 
| 
      
 190 
     | 
    
         
            +
                        "GROUP_SIZE_M": 8,
         
     | 
| 
      
 191 
     | 
    
         
            +
                        "num_stages": 3,
         
     | 
| 
      
 192 
     | 
    
         
            +
                        "num_warps": 8,
         
     | 
| 
      
 193 
     | 
    
         
            +
                    },
         
     | 
| 
      
 194 
     | 
    
         
            +
                }
         
     | 
| 
      
 195 
     | 
    
         
            +
                # print(a.device, b.device, c.device)
         
     | 
| 
      
 196 
     | 
    
         
            +
                matmul_kernel_persistent[grid](
         
     | 
| 
      
 197 
     | 
    
         
            +
                    a,
         
     | 
| 
      
 198 
     | 
    
         
            +
                    b,
         
     | 
| 
      
 199 
     | 
    
         
            +
                    c,  #
         
     | 
| 
      
 200 
     | 
    
         
            +
                    bias,
         
     | 
| 
      
 201 
     | 
    
         
            +
                    M,
         
     | 
| 
      
 202 
     | 
    
         
            +
                    N,
         
     | 
| 
      
 203 
     | 
    
         
            +
                    K,  #
         
     | 
| 
      
 204 
     | 
    
         
            +
                    a.stride(0),
         
     | 
| 
      
 205 
     | 
    
         
            +
                    a.stride(1),  #
         
     | 
| 
      
 206 
     | 
    
         
            +
                    b.stride(0),
         
     | 
| 
      
 207 
     | 
    
         
            +
                    b.stride(1),  #
         
     | 
| 
      
 208 
     | 
    
         
            +
                    c.stride(0),
         
     | 
| 
      
 209 
     | 
    
         
            +
                    c.stride(1),  #
         
     | 
| 
      
 210 
     | 
    
         
            +
                    NUM_SMS=NUM_SMS,  #
         
     | 
| 
      
 211 
     | 
    
         
            +
                    A_LARGE=a.numel() > 2**31,
         
     | 
| 
      
 212 
     | 
    
         
            +
                    B_LARGE=b.numel() > 2**31,
         
     | 
| 
      
 213 
     | 
    
         
            +
                    C_LARGE=c.numel() > 2**31,
         
     | 
| 
      
 214 
     | 
    
         
            +
                    HAS_BIAS=bias is not None,
         
     | 
| 
      
 215 
     | 
    
         
            +
                    **configs[dtype],
         
     | 
| 
      
 216 
     | 
    
         
            +
                )
         
     | 
| 
      
 217 
     | 
    
         
            +
                return c
         
     | 
| 
      
 218 
     | 
    
         
            +
             
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 221 
     | 
    
         
            +
            def _log_softmax_kernel(
         
     | 
| 
      
 222 
     | 
    
         
            +
                input_ptr,
         
     | 
| 
      
 223 
     | 
    
         
            +
                output_ptr,
         
     | 
| 
      
 224 
     | 
    
         
            +
                input_row_stride,
         
     | 
| 
      
 225 
     | 
    
         
            +
                output_row_stride,
         
     | 
| 
      
 226 
     | 
    
         
            +
                n_cols,
         
     | 
| 
      
 227 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 228 
     | 
    
         
            +
            ):
         
     | 
| 
      
 229 
     | 
    
         
            +
                """
         
     | 
| 
      
 230 
     | 
    
         
            +
                Compute log_softmax along the last dimension of a 2D tensor.
         
     | 
| 
      
 231 
     | 
    
         
            +
                Each block handles one row of the input tensor.
         
     | 
| 
      
 232 
     | 
    
         
            +
                """
         
     | 
| 
      
 233 
     | 
    
         
            +
                # Get the row index for this block
         
     | 
| 
      
 234 
     | 
    
         
            +
                row_idx = tl.program_id(0).to(tl.int64)
         
     | 
| 
      
 235 
     | 
    
         
            +
             
     | 
| 
      
 236 
     | 
    
         
            +
                # Compute base pointers for input and output rows
         
     | 
| 
      
 237 
     | 
    
         
            +
                row_start_ptr = input_ptr + row_idx * input_row_stride
         
     | 
| 
      
 238 
     | 
    
         
            +
                output_row_start_ptr = output_ptr + row_idx * output_row_stride
         
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
                # Step 1: Find maximum value in the row for numerical stability
         
     | 
| 
      
 241 
     | 
    
         
            +
                max_val = -float("inf")
         
     | 
| 
      
 242 
     | 
    
         
            +
                for col_offset in range(0, n_cols, BLOCK_SIZE):
         
     | 
| 
      
 243 
     | 
    
         
            +
                    col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 244 
     | 
    
         
            +
                    mask = col_idx < n_cols
         
     | 
| 
      
 245 
     | 
    
         
            +
             
     | 
| 
      
 246 
     | 
    
         
            +
                    # Load values
         
     | 
| 
      
 247 
     | 
    
         
            +
                    vals = tl.load(row_start_ptr + col_idx, mask=mask, other=-float("inf"))
         
     | 
| 
      
 248 
     | 
    
         
            +
             
     | 
| 
      
 249 
     | 
    
         
            +
                    # Update maximum
         
     | 
| 
      
 250 
     | 
    
         
            +
                    max_val = tl.max(tl.maximum(vals, max_val))
         
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
                # Step 2: Compute sum of exp(x - max_val)
         
     | 
| 
      
 253 
     | 
    
         
            +
                sum_exp = 0.0
         
     | 
| 
      
 254 
     | 
    
         
            +
                for col_offset in range(0, n_cols, BLOCK_SIZE):
         
     | 
| 
      
 255 
     | 
    
         
            +
                    col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 256 
     | 
    
         
            +
                    mask = col_idx < n_cols
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
                    # Load values
         
     | 
| 
      
 259 
     | 
    
         
            +
                    vals = tl.load(row_start_ptr + col_idx, mask=mask, other=0.0)
         
     | 
| 
      
 260 
     | 
    
         
            +
             
     | 
| 
      
 261 
     | 
    
         
            +
                    # Compute exp(x - max_val) and accumulate
         
     | 
| 
      
 262 
     | 
    
         
            +
                    exp_vals = tl.exp(vals - max_val)
         
     | 
| 
      
 263 
     | 
    
         
            +
                    sum_exp += tl.sum(tl.where(mask, exp_vals, 0.0))
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                # Compute log(sum_exp)
         
     | 
| 
      
 266 
     | 
    
         
            +
                log_sum_exp = tl.log(sum_exp)
         
     | 
| 
      
 267 
     | 
    
         
            +
             
     | 
| 
      
 268 
     | 
    
         
            +
                # Step 3: Compute final log_softmax values: x - max_val - log_sum_exp
         
     | 
| 
      
 269 
     | 
    
         
            +
                for col_offset in range(0, n_cols, BLOCK_SIZE):
         
     | 
| 
      
 270 
     | 
    
         
            +
                    col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 271 
     | 
    
         
            +
                    mask = col_idx < n_cols
         
     | 
| 
      
 272 
     | 
    
         
            +
             
     | 
| 
      
 273 
     | 
    
         
            +
                    # Load values
         
     | 
| 
      
 274 
     | 
    
         
            +
                    vals = tl.load(row_start_ptr + col_idx, mask=mask)
         
     | 
| 
      
 275 
     | 
    
         
            +
             
     | 
| 
      
 276 
     | 
    
         
            +
                    # Compute log_softmax
         
     | 
| 
      
 277 
     | 
    
         
            +
                    output = vals - max_val - log_sum_exp
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                    # Store results
         
     | 
| 
      
 280 
     | 
    
         
            +
                    tl.store(output_row_start_ptr + col_idx, output, mask=mask)
         
     | 
| 
      
 281 
     | 
    
         
            +
             
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
            def log_softmax(input: torch.Tensor, dim: int = -1) -> torch.Tensor:
         
     | 
| 
      
 284 
     | 
    
         
            +
                """
         
     | 
| 
      
 285 
     | 
    
         
            +
                Compute log_softmax using Triton kernel.
         
     | 
| 
      
 286 
     | 
    
         
            +
             
     | 
| 
      
 287 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 288 
     | 
    
         
            +
                    input: Input tensor
         
     | 
| 
      
 289 
     | 
    
         
            +
                    dim: Dimension along which to compute log_softmax (only -1 or last dim supported)
         
     | 
| 
      
 290 
     | 
    
         
            +
                >> Stashed changes
         
     | 
| 
      
 291 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 292 
     | 
    
         
            +
                    Tensor with log_softmax applied along the specified dimension
         
     | 
| 
      
 293 
     | 
    
         
            +
                """
         
     | 
| 
      
 294 
     | 
    
         
            +
                if dim != -1 and dim != input.ndim - 1:
         
     | 
| 
      
 295 
     | 
    
         
            +
                    raise ValueError(
         
     | 
| 
      
 296 
     | 
    
         
            +
                        "This implementation only supports log_softmax along the last dimension"
         
     | 
| 
      
 297 
     | 
    
         
            +
                    )
         
     | 
| 
      
 298 
     | 
    
         
            +
             
     | 
| 
      
 299 
     | 
    
         
            +
                # Flatten all dimensions except the last one
         
     | 
| 
      
 300 
     | 
    
         
            +
                original_shape = input.shape
         
     | 
| 
      
 301 
     | 
    
         
            +
                input_2d = input.reshape(-1, input.shape[-1])
         
     | 
| 
      
 302 
     | 
    
         
            +
                input_2d = input_2d.contiguous()
         
     | 
| 
      
 303 
     | 
    
         
            +
             
     | 
| 
      
 304 
     | 
    
         
            +
                n_rows, n_cols = input_2d.shape
         
     | 
| 
      
 305 
     | 
    
         
            +
             
     | 
| 
      
 306 
     | 
    
         
            +
                # Allocate output tensor
         
     | 
| 
      
 307 
     | 
    
         
            +
                output = torch.empty_like(input_2d)
         
     | 
| 
      
 308 
     | 
    
         
            +
             
     | 
| 
      
 309 
     | 
    
         
            +
                # Choose block size based on the number of columns
         
     | 
| 
      
 310 
     | 
    
         
            +
                BLOCK_SIZE = 1024
         
     | 
| 
      
 311 
     | 
    
         
            +
             
     | 
| 
      
 312 
     | 
    
         
            +
                # Launch kernel with one block per row
         
     | 
| 
      
 313 
     | 
    
         
            +
                grid = (n_rows,)
         
     | 
| 
      
 314 
     | 
    
         
            +
                _log_softmax_kernel[grid](
         
     | 
| 
      
 315 
     | 
    
         
            +
                    input_2d,
         
     | 
| 
      
 316 
     | 
    
         
            +
                    output,
         
     | 
| 
      
 317 
     | 
    
         
            +
                    input_2d.stride(0),
         
     | 
| 
      
 318 
     | 
    
         
            +
                    output.stride(0),
         
     | 
| 
      
 319 
     | 
    
         
            +
                    n_cols,
         
     | 
| 
      
 320 
     | 
    
         
            +
                    BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 321 
     | 
    
         
            +
                )
         
     | 
| 
      
 322 
     | 
    
         
            +
                # Reshape output back to original shape
         
     | 
| 
      
 323 
     | 
    
         
            +
                return output.reshape(original_shape)
         
     | 
| 
      
 324 
     | 
    
         
            +
             
     | 
| 
      
 325 
     | 
    
         
            +
             
     | 
| 
      
 326 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 327 
     | 
    
         
            +
            def mean_kernel(
         
     | 
| 
      
 328 
     | 
    
         
            +
                input_ptr,
         
     | 
| 
      
 329 
     | 
    
         
            +
                output_ptr,
         
     | 
| 
      
 330 
     | 
    
         
            +
                input_stride0,
         
     | 
| 
      
 331 
     | 
    
         
            +
                input_stride1,
         
     | 
| 
      
 332 
     | 
    
         
            +
                input_stride2,
         
     | 
| 
      
 333 
     | 
    
         
            +
                output_stride0,
         
     | 
| 
      
 334 
     | 
    
         
            +
                output_stride1,
         
     | 
| 
      
 335 
     | 
    
         
            +
                M,  # size before reduction dim
         
     | 
| 
      
 336 
     | 
    
         
            +
                N,  # size of reduction dim
         
     | 
| 
      
 337 
     | 
    
         
            +
                K,  # size after reduction dim
         
     | 
| 
      
 338 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 339 
     | 
    
         
            +
            ):
         
     | 
| 
      
 340 
     | 
    
         
            +
                """
         
     | 
| 
      
 341 
     | 
    
         
            +
                Kernel for computing mean along a single dimension.
         
     | 
| 
      
 342 
     | 
    
         
            +
                Input is viewed as (M, N, K) where N is the dimension being reduced.
         
     | 
| 
      
 343 
     | 
    
         
            +
                """
         
     | 
| 
      
 344 
     | 
    
         
            +
                # Program ID gives us which output element we're computing
         
     | 
| 
      
 345 
     | 
    
         
            +
                pid = tl.program_id(0)
         
     | 
| 
      
 346 
     | 
    
         
            +
             
     | 
| 
      
 347 
     | 
    
         
            +
                # Compute output indices
         
     | 
| 
      
 348 
     | 
    
         
            +
                m_idx = pid // K
         
     | 
| 
      
 349 
     | 
    
         
            +
                k_idx = pid % K
         
     | 
| 
      
 350 
     | 
    
         
            +
             
     | 
| 
      
 351 
     | 
    
         
            +
                # Bounds check
         
     | 
| 
      
 352 
     | 
    
         
            +
                if m_idx >= M or k_idx >= K:
         
     | 
| 
      
 353 
     | 
    
         
            +
                    return
         
     | 
| 
      
 354 
     | 
    
         
            +
             
     | 
| 
      
 355 
     | 
    
         
            +
                # Accumulate sum across reduction dimension
         
     | 
| 
      
 356 
     | 
    
         
            +
                acc = 0.0
         
     | 
| 
      
 357 
     | 
    
         
            +
                for n_start in range(0, N, BLOCK_SIZE):
         
     | 
| 
      
 358 
     | 
    
         
            +
                    n_offsets = n_start + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 359 
     | 
    
         
            +
                    mask = n_offsets < N
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                    # Calculate input indices
         
     | 
| 
      
 362 
     | 
    
         
            +
                    input_idx = (
         
     | 
| 
      
 363 
     | 
    
         
            +
                        m_idx * input_stride0 + n_offsets * input_stride1 + k_idx * input_stride2
         
     | 
| 
      
 364 
     | 
    
         
            +
                    )
         
     | 
| 
      
 365 
     | 
    
         
            +
             
     | 
| 
      
 366 
     | 
    
         
            +
                    # Load and accumulate
         
     | 
| 
      
 367 
     | 
    
         
            +
                    vals = tl.load(input_ptr + input_idx, mask=mask, other=0.0)
         
     | 
| 
      
 368 
     | 
    
         
            +
                    acc += tl.sum(vals)
         
     | 
| 
      
 369 
     | 
    
         
            +
             
     | 
| 
      
 370 
     | 
    
         
            +
                # Compute mean and store
         
     | 
| 
      
 371 
     | 
    
         
            +
                mean_val = acc / N
         
     | 
| 
      
 372 
     | 
    
         
            +
                output_idx = m_idx * output_stride0 + k_idx * output_stride1
         
     | 
| 
      
 373 
     | 
    
         
            +
                tl.store(output_ptr + output_idx, mean_val)
         
     | 
| 
      
 374 
     | 
    
         
            +
             
     | 
| 
      
 375 
     | 
    
         
            +
             
     | 
| 
      
 376 
     | 
    
         
            +
            def mean_dim(
         
     | 
| 
      
 377 
     | 
    
         
            +
                input: torch.Tensor,
         
     | 
| 
      
 378 
     | 
    
         
            +
                dim: int,
         
     | 
| 
      
 379 
     | 
    
         
            +
                keepdim: bool = False,
         
     | 
| 
      
 380 
     | 
    
         
            +
                dtype: torch.dtype | None = None,
         
     | 
| 
      
 381 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 382 
     | 
    
         
            +
                """
         
     | 
| 
      
 383 
     | 
    
         
            +
                Triton implementation of torch.mean with single dimension reduction.
         
     | 
| 
      
 384 
     | 
    
         
            +
             
     | 
| 
      
 385 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 386 
     | 
    
         
            +
                    input: Input tensor
         
     | 
| 
      
 387 
     | 
    
         
            +
                    dim: Single dimension along which to compute mean
         
     | 
| 
      
 388 
     | 
    
         
            +
                    keepdim: Whether to keep the reduced dimension
         
     | 
| 
      
 389 
     | 
    
         
            +
                    dtype: Output dtype. If None, uses input dtype (or float32 for integer inputs)
         
     | 
| 
      
 390 
     | 
    
         
            +
             
     | 
| 
      
 391 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 392 
     | 
    
         
            +
                    Tensor with mean values along specified dimension
         
     | 
| 
      
 393 
     | 
    
         
            +
                """
         
     | 
| 
      
 394 
     | 
    
         
            +
                # Validate inputs
         
     | 
| 
      
 395 
     | 
    
         
            +
                assert input.is_cuda, "Input must be a CUDA tensor"
         
     | 
| 
      
 396 
     | 
    
         
            +
                assert (
         
     | 
| 
      
 397 
     | 
    
         
            +
                    -input.ndim <= dim < input.ndim
         
     | 
| 
      
 398 
     | 
    
         
            +
                ), f"Invalid dimension {dim} for tensor with {input.ndim} dimensions"
         
     | 
| 
      
 399 
     | 
    
         
            +
             
     | 
| 
      
 400 
     | 
    
         
            +
                # Handle negative dim
         
     | 
| 
      
 401 
     | 
    
         
            +
                if dim < 0:
         
     | 
| 
      
 402 
     | 
    
         
            +
                    dim = dim + input.ndim
         
     | 
| 
      
 403 
     | 
    
         
            +
             
     | 
| 
      
 404 
     | 
    
         
            +
                # Handle dtype
         
     | 
| 
      
 405 
     | 
    
         
            +
                if dtype is None:
         
     | 
| 
      
 406 
     | 
    
         
            +
                    if input.dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
         
     | 
| 
      
 407 
     | 
    
         
            +
                        dtype = torch.float32
         
     | 
| 
      
 408 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 409 
     | 
    
         
            +
                        dtype = input.dtype
         
     | 
| 
      
 410 
     | 
    
         
            +
             
     | 
| 
      
 411 
     | 
    
         
            +
                # Convert input to appropriate dtype if needed
         
     | 
| 
      
 412 
     | 
    
         
            +
                if input.dtype != dtype:
         
     | 
| 
      
 413 
     | 
    
         
            +
                    input = input.to(dtype)
         
     | 
| 
      
 414 
     | 
    
         
            +
             
     | 
| 
      
 415 
     | 
    
         
            +
                # Get input shape and strides
         
     | 
| 
      
 416 
     | 
    
         
            +
                shape = list(input.shape)
         
     | 
| 
      
 417 
     | 
    
         
            +
             
     | 
| 
      
 418 
     | 
    
         
            +
                # Calculate dimensions for kernel
         
     | 
| 
      
 419 
     | 
    
         
            +
                M = 1
         
     | 
| 
      
 420 
     | 
    
         
            +
                for i in range(dim):
         
     | 
| 
      
 421 
     | 
    
         
            +
                    M *= shape[i]
         
     | 
| 
      
 422 
     | 
    
         
            +
             
     | 
| 
      
 423 
     | 
    
         
            +
                N = shape[dim]
         
     | 
| 
      
 424 
     | 
    
         
            +
             
     | 
| 
      
 425 
     | 
    
         
            +
                K = 1
         
     | 
| 
      
 426 
     | 
    
         
            +
                for i in range(dim + 1, len(shape)):
         
     | 
| 
      
 427 
     | 
    
         
            +
                    K *= shape[i]
         
     | 
| 
      
 428 
     | 
    
         
            +
             
     | 
| 
      
 429 
     | 
    
         
            +
                # Reshape input to 3D view (M, N, K)
         
     | 
| 
      
 430 
     | 
    
         
            +
                input_3d = input.reshape(M, N, K)
         
     | 
| 
      
 431 
     | 
    
         
            +
             
     | 
| 
      
 432 
     | 
    
         
            +
                # Create output shape
         
     | 
| 
      
 433 
     | 
    
         
            +
                if keepdim:
         
     | 
| 
      
 434 
     | 
    
         
            +
                    output_shape = shape.copy()
         
     | 
| 
      
 435 
     | 
    
         
            +
                    output_shape[dim] = 1
         
     | 
| 
      
 436 
     | 
    
         
            +
                else:
         
     | 
| 
      
 437 
     | 
    
         
            +
                    output_shape = shape[:dim] + shape[dim + 1 :]
         
     | 
| 
      
 438 
     | 
    
         
            +
             
     | 
| 
      
 439 
     | 
    
         
            +
                # Create output tensor
         
     | 
| 
      
 440 
     | 
    
         
            +
                output = torch.empty(output_shape, dtype=dtype, device=input.device)
         
     | 
| 
      
 441 
     | 
    
         
            +
             
     | 
| 
      
 442 
     | 
    
         
            +
                # Reshape output for kernel
         
     | 
| 
      
 443 
     | 
    
         
            +
                if keepdim:
         
     | 
| 
      
 444 
     | 
    
         
            +
                    output_2d = output.reshape(M, 1, K).squeeze(1)
         
     | 
| 
      
 445 
     | 
    
         
            +
                else:
         
     | 
| 
      
 446 
     | 
    
         
            +
                    output_2d = output.reshape(M, K)
         
     | 
| 
      
 447 
     | 
    
         
            +
             
     | 
| 
      
 448 
     | 
    
         
            +
                # Launch kernel
         
     | 
| 
      
 449 
     | 
    
         
            +
                grid = (M * K,)
         
     | 
| 
      
 450 
     | 
    
         
            +
                BLOCK_SIZE = 1024
         
     | 
| 
      
 451 
     | 
    
         
            +
             
     | 
| 
      
 452 
     | 
    
         
            +
                mean_kernel[grid](
         
     | 
| 
      
 453 
     | 
    
         
            +
                    input_3d,
         
     | 
| 
      
 454 
     | 
    
         
            +
                    output_2d,
         
     | 
| 
      
 455 
     | 
    
         
            +
                    input_3d.stride(0),
         
     | 
| 
      
 456 
     | 
    
         
            +
                    input_3d.stride(1),
         
     | 
| 
      
 457 
     | 
    
         
            +
                    input_3d.stride(2),
         
     | 
| 
      
 458 
     | 
    
         
            +
                    output_2d.stride(0),
         
     | 
| 
      
 459 
     | 
    
         
            +
                    output_2d.stride(1) if output_2d.ndim > 1 else 0,
         
     | 
| 
      
 460 
     | 
    
         
            +
                    M,
         
     | 
| 
      
 461 
     | 
    
         
            +
                    N,
         
     | 
| 
      
 462 
     | 
    
         
            +
                    K,
         
     | 
| 
      
 463 
     | 
    
         
            +
                    BLOCK_SIZE,
         
     | 
| 
      
 464 
     | 
    
         
            +
                )
         
     | 
| 
      
 465 
     | 
    
         
            +
             
     | 
| 
      
 466 
     | 
    
         
            +
                return output
         
     | 
| 
      
 467 
     | 
    
         
            +
             
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
      
 469 
     | 
    
         
            +
            def mm_batch_invariant(a, b):
         
     | 
| 
      
 470 
     | 
    
         
            +
                return matmul_persistent(a, b)
         
     | 
| 
      
 471 
     | 
    
         
            +
             
     | 
| 
      
 472 
     | 
    
         
            +
             
     | 
| 
      
 473 
     | 
    
         
            +
            def addmm_batch_invariant(bias, a, b):
         
     | 
| 
      
 474 
     | 
    
         
            +
                return matmul_persistent(a, b, bias=bias)
         
     | 
| 
      
 475 
     | 
    
         
            +
             
     | 
| 
      
 476 
     | 
    
         
            +
             
     | 
| 
      
 477 
     | 
    
         
            +
            def _log_softmax_batch_invariant(input, dim, _half_to_float):
         
     | 
| 
      
 478 
     | 
    
         
            +
                assert not _half_to_float, "not implemented"
         
     | 
| 
      
 479 
     | 
    
         
            +
                return log_softmax(input, dim=dim)
         
     | 
| 
      
 480 
     | 
    
         
            +
             
     | 
| 
      
 481 
     | 
    
         
            +
             
     | 
| 
      
 482 
     | 
    
         
            +
            def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype | None = None):
         
     | 
| 
      
 483 
     | 
    
         
            +
                assert dtype is None or dtype == torch.float32, f"unsupported dtype: {dtype}"
         
     | 
| 
      
 484 
     | 
    
         
            +
                if len(dim) == 1:
         
     | 
| 
      
 485 
     | 
    
         
            +
                    return mean_dim(input, dim[0], keepdim=keepdim)
         
     | 
| 
      
 486 
     | 
    
         
            +
                else:
         
     | 
| 
      
 487 
     | 
    
         
            +
                    assert input.dtype in {
         
     | 
| 
      
 488 
     | 
    
         
            +
                        torch.float16,
         
     | 
| 
      
 489 
     | 
    
         
            +
                        torch.bfloat16,
         
     | 
| 
      
 490 
     | 
    
         
            +
                        torch.float32,
         
     | 
| 
      
 491 
     | 
    
         
            +
                    }, "only float types supported for now"
         
     | 
| 
      
 492 
     | 
    
         
            +
                    n_elems = 1
         
     | 
| 
      
 493 
     | 
    
         
            +
                    for d in dim:
         
     | 
| 
      
 494 
     | 
    
         
            +
                        n_elems *= input.shape[d]
         
     | 
| 
      
 495 
     | 
    
         
            +
                    return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
         
     | 
| 
      
 496 
     | 
    
         
            +
             
     | 
| 
      
 497 
     | 
    
         
            +
             
     | 
| 
      
 498 
     | 
    
         
            +
            _batch_invariant_MODE = False
         
     | 
| 
      
 499 
     | 
    
         
            +
            _batch_invariant_LIB = None
         
     | 
| 
      
 500 
     | 
    
         
            +
             
     | 
| 
      
 501 
     | 
    
         
            +
             
     | 
| 
      
 502 
     | 
    
         
            +
            def is_batch_invariant_mode_enabled():
         
     | 
| 
      
 503 
     | 
    
         
            +
                return _batch_invariant_MODE
         
     | 
| 
      
 504 
     | 
    
         
            +
             
     | 
| 
      
 505 
     | 
    
         
            +
             
     | 
| 
      
 506 
     | 
    
         
            +
            def enable_batch_invariant_mode():
         
     | 
| 
      
 507 
     | 
    
         
            +
                global _batch_invariant_MODE, _batch_invariant_LIB
         
     | 
| 
      
 508 
     | 
    
         
            +
                if _batch_invariant_MODE:
         
     | 
| 
      
 509 
     | 
    
         
            +
                    return
         
     | 
| 
      
 510 
     | 
    
         
            +
             
     | 
| 
      
 511 
     | 
    
         
            +
                _batch_invariant_MODE = True
         
     | 
| 
      
 512 
     | 
    
         
            +
                _batch_invariant_LIB = torch.library.Library("aten", "IMPL")
         
     | 
| 
      
 513 
     | 
    
         
            +
                _batch_invariant_LIB.impl("aten::mm", mm_batch_invariant, "CUDA")
         
     | 
| 
      
 514 
     | 
    
         
            +
                _batch_invariant_LIB.impl("aten::addmm", addmm_batch_invariant, "CUDA")
         
     | 
| 
      
 515 
     | 
    
         
            +
                _batch_invariant_LIB.impl(
         
     | 
| 
      
 516 
     | 
    
         
            +
                    "aten::_log_softmax", _log_softmax_batch_invariant, "CUDA"
         
     | 
| 
      
 517 
     | 
    
         
            +
                )
         
     | 
| 
      
 518 
     | 
    
         
            +
                _batch_invariant_LIB.impl("aten::mean.dim", mean_batch_invariant, "CUDA")
         
     | 
| 
      
 519 
     | 
    
         
            +
             
     | 
| 
      
 520 
     | 
    
         
            +
             
     | 
| 
      
 521 
     | 
    
         
            +
            def disable_batch_invariant_mode():
         
     | 
| 
      
 522 
     | 
    
         
            +
                global _batch_invariant_MODE, _batch_invariant_LIB
         
     | 
| 
      
 523 
     | 
    
         
            +
                if _batch_invariant_LIB is not None:
         
     | 
| 
      
 524 
     | 
    
         
            +
                    _batch_invariant_LIB._destroy()
         
     | 
| 
      
 525 
     | 
    
         
            +
                _batch_invariant_MODE = False
         
     | 
| 
      
 526 
     | 
    
         
            +
                _batch_invariant_LIB = None
         
     | 
| 
      
 527 
     | 
    
         
            +
             
     | 
| 
      
 528 
     | 
    
         
            +
             
     | 
| 
      
 529 
     | 
    
         
            +
            @contextlib.contextmanager
         
     | 
| 
      
 530 
     | 
    
         
            +
            def set_batch_invariant_mode(enabled: bool = True):
         
     | 
| 
      
 531 
     | 
    
         
            +
                global _batch_invariant_MODE, _batch_invariant_LIB
         
     | 
| 
      
 532 
     | 
    
         
            +
                old_data = (_batch_invariant_MODE, _batch_invariant_LIB)
         
     | 
| 
      
 533 
     | 
    
         
            +
                if enabled:
         
     | 
| 
      
 534 
     | 
    
         
            +
                    enable_batch_invariant_mode()
         
     | 
| 
      
 535 
     | 
    
         
            +
                else:
         
     | 
| 
      
 536 
     | 
    
         
            +
                    disable_batch_invariant_mode()
         
     | 
| 
      
 537 
     | 
    
         
            +
                yield
         
     | 
| 
      
 538 
     | 
    
         
            +
                if _batch_invariant_LIB is not None:
         
     | 
| 
      
 539 
     | 
    
         
            +
                    _batch_invariant_LIB._destroy()
         
     | 
| 
      
 540 
     | 
    
         
            +
                _batch_invariant_MODE, _batch_invariant_LIB = old_data
         
     | 
| 
      
 541 
     | 
    
         
            +
             
     | 
| 
      
 542 
     | 
    
         
            +
             
     | 
| 
      
 543 
     | 
    
         
            +
            AttentionBlockSize = namedtuple("AttentionBlockSize", ["block_m", "block_n"])
         
     | 
| 
      
 544 
     | 
    
         
            +
             
     | 
| 
      
 545 
     | 
    
         
            +
             
     | 
| 
      
 546 
     | 
    
         
            +
            def get_batch_invariant_attention_block_size() -> AttentionBlockSize:
         
     | 
| 
      
 547 
     | 
    
         
            +
                return AttentionBlockSize(block_m=16, block_n=16)
         
     | 
| 
         @@ -0,0 +1,142 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # Copyright 2023-2024 SGLang Team
         
     | 
| 
      
 2 
     | 
    
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 
      
 3 
     | 
    
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 
      
 4 
     | 
    
         
            +
            # You may obtain a copy of the License at
         
     | 
| 
      
 5 
     | 
    
         
            +
            #
         
     | 
| 
      
 6 
     | 
    
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 
      
 7 
     | 
    
         
            +
            #
         
     | 
| 
      
 8 
     | 
    
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 
      
 9 
     | 
    
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 
      
 10 
     | 
    
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 
      
 11 
     | 
    
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 
      
 12 
     | 
    
         
            +
            # limitations under the License.
         
     | 
| 
      
 13 
     | 
    
         
            +
            # ==============================================================================
         
     | 
| 
      
 14 
     | 
    
         
            +
            """
         
     | 
| 
      
 15 
     | 
    
         
            +
            Checkpoint-engine integration for SGLang.
         
     | 
| 
      
 16 
     | 
    
         
            +
            This module provides weight update functionality via IPC for checkpoint-engine compatibility.
         
     | 
| 
      
 17 
     | 
    
         
            +
            """
         
     | 
| 
      
 18 
     | 
    
         
            +
            import logging
         
     | 
| 
      
 19 
     | 
    
         
            +
            from typing import Callable, Dict, Optional
         
     | 
| 
      
 20 
     | 
    
         
            +
             
     | 
| 
      
 21 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 22 
     | 
    
         
            +
            import zmq
         
     | 
| 
      
 23 
     | 
    
         
            +
             
     | 
| 
      
 24 
     | 
    
         
            +
            try:
         
     | 
| 
      
 25 
     | 
    
         
            +
                from checkpoint_engine.worker import update_weights_from_ipc
         
     | 
| 
      
 26 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 27 
     | 
    
         
            +
                raise ImportError(
         
     | 
| 
      
 28 
     | 
    
         
            +
                    "checkpoint-engine is not installed. "
         
     | 
| 
      
 29 
     | 
    
         
            +
                    "Please install it with: pip install sglang[checkpoint-engine]"
         
     | 
| 
      
 30 
     | 
    
         
            +
                )
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
            class SGLangCheckpointEngineWorkerExtension:
         
     | 
| 
      
 36 
     | 
    
         
            +
                """
         
     | 
| 
      
 37 
     | 
    
         
            +
                Worker extension for SGLang to support checkpoint-engine IPC weight updates.
         
     | 
| 
      
 38 
     | 
    
         
            +
                This class provides the interface needed for checkpoint-engine integration.
         
     | 
| 
      
 39 
     | 
    
         
            +
                """
         
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
                def __init__(self):
         
     | 
| 
      
 42 
     | 
    
         
            +
                    self._zmq_ctx: Optional[zmq.Context] = None
         
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
                def get_device_uuid(self) -> str:
         
     | 
| 
      
 45 
     | 
    
         
            +
                    """Get the UUID of current device."""
         
     | 
| 
      
 46 
     | 
    
         
            +
                    # We need to implement this to get the device UUID
         
     | 
| 
      
 47 
     | 
    
         
            +
                    # This will be overridden when integrated into SGLang's worker
         
     | 
| 
      
 48 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 49 
     | 
    
         
            +
                        "This method should be overridden by SGLang integration"
         
     | 
| 
      
 50 
     | 
    
         
            +
                    )
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
                def get_device_id(self) -> int:
         
     | 
| 
      
 53 
     | 
    
         
            +
                    """Get the device ID."""
         
     | 
| 
      
 54 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 55 
     | 
    
         
            +
                        "This method should be overridden by SGLang integration"
         
     | 
| 
      
 56 
     | 
    
         
            +
                    )
         
     | 
| 
      
 57 
     | 
    
         
            +
             
     | 
| 
      
 58 
     | 
    
         
            +
                def get_model_loader(self) -> Callable:
         
     | 
| 
      
 59 
     | 
    
         
            +
                    """Get the model weight loader function."""
         
     | 
| 
      
 60 
     | 
    
         
            +
                    raise NotImplementedError(
         
     | 
| 
      
 61 
     | 
    
         
            +
                        "This method should be overridden by SGLang integration"
         
     | 
| 
      
 62 
     | 
    
         
            +
                    )
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                def get_post_hook(self) -> Optional[Callable]:
         
     | 
| 
      
 65 
     | 
    
         
            +
                    """Get the post-processing hook after weight loading."""
         
     | 
| 
      
 66 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
                def update_weights_from_ipc(self, zmq_handles: Dict[str, str]):
         
     | 
| 
      
 69 
     | 
    
         
            +
                    """
         
     | 
| 
      
 70 
     | 
    
         
            +
                    Update weights from IPC communication.
         
     | 
| 
      
 71 
     | 
    
         
            +
                    Args:
         
     | 
| 
      
 72 
     | 
    
         
            +
                        zmq_handles: Dict mapping device UUID to ZMQ socket path
         
     | 
| 
      
 73 
     | 
    
         
            +
                    """
         
     | 
| 
      
 74 
     | 
    
         
            +
                    if self._zmq_ctx is None:
         
     | 
| 
      
 75 
     | 
    
         
            +
                        self._zmq_ctx = zmq.Context()
         
     | 
| 
      
 76 
     | 
    
         
            +
                    device_uuid = self.get_device_uuid()
         
     | 
| 
      
 77 
     | 
    
         
            +
                    device_id = self.get_device_id()
         
     | 
| 
      
 78 
     | 
    
         
            +
                    if device_uuid not in zmq_handles:
         
     | 
| 
      
 79 
     | 
    
         
            +
                        raise ValueError(
         
     | 
| 
      
 80 
     | 
    
         
            +
                            f"Device UUID {device_uuid} not found in zmq_handles: {list(zmq_handles.keys())}"
         
     | 
| 
      
 81 
     | 
    
         
            +
                        )
         
     | 
| 
      
 82 
     | 
    
         
            +
                    update_weights_from_ipc(
         
     | 
| 
      
 83 
     | 
    
         
            +
                        self._zmq_ctx,
         
     | 
| 
      
 84 
     | 
    
         
            +
                        zmq_handles[device_uuid],
         
     | 
| 
      
 85 
     | 
    
         
            +
                        device_id=device_id,
         
     | 
| 
      
 86 
     | 
    
         
            +
                        run=self.get_model_loader(),
         
     | 
| 
      
 87 
     | 
    
         
            +
                        post_hook=self.get_post_hook(),
         
     | 
| 
      
 88 
     | 
    
         
            +
                    )
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
            class SGLangCheckpointEngineWorkerExtensionImpl(SGLangCheckpointEngineWorkerExtension):
         
     | 
| 
      
 92 
     | 
    
         
            +
                """
         
     | 
| 
      
 93 
     | 
    
         
            +
                Implementation of SGLangCheckpointEngineWorkerExtension that integrates with SGLang's model runner.
         
     | 
| 
      
 94 
     | 
    
         
            +
                This class provides the concrete implementation for checkpoint-engine IPC weight updates.
         
     | 
| 
      
 95 
     | 
    
         
            +
                """
         
     | 
| 
      
 96 
     | 
    
         
            +
             
     | 
| 
      
 97 
     | 
    
         
            +
                def __init__(self, model_runner):
         
     | 
| 
      
 98 
     | 
    
         
            +
                    super().__init__()
         
     | 
| 
      
 99 
     | 
    
         
            +
                    self.model_runner = model_runner
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                def get_device_uuid(self) -> str:
         
     | 
| 
      
 102 
     | 
    
         
            +
                    """Get the UUID of current device."""
         
     | 
| 
      
 103 
     | 
    
         
            +
                    # Get device UUID for current device
         
     | 
| 
      
 104 
     | 
    
         
            +
                    device_id = torch.cuda.current_device()
         
     | 
| 
      
 105 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 106 
     | 
    
         
            +
                        return f"GPU-{torch.cuda.get_device_properties(device_id).uuid!s}"
         
     | 
| 
      
 107 
     | 
    
         
            +
                    except AssertionError as e:
         
     | 
| 
      
 108 
     | 
    
         
            +
                        raise ValueError(f"Failed to get GPU UUID for device {device_id}") from e
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
                def get_device_id(self) -> int:
         
     | 
| 
      
 111 
     | 
    
         
            +
                    """Get the device ID."""
         
     | 
| 
      
 112 
     | 
    
         
            +
                    return torch.cuda.current_device()
         
     | 
| 
      
 113 
     | 
    
         
            +
             
     | 
| 
      
 114 
     | 
    
         
            +
                def get_model_loader(self) -> Callable:
         
     | 
| 
      
 115 
     | 
    
         
            +
                    """Get the model weight loader function."""
         
     | 
| 
      
 116 
     | 
    
         
            +
                    return self.model_runner.model.load_weights
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                def get_post_hook(self) -> Optional[Callable]:
         
     | 
| 
      
 119 
     | 
    
         
            +
                    """Get the post-processing hook after weight loading."""
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
                    def post_hook():
         
     | 
| 
      
 122 
     | 
    
         
            +
                        # Perform post-processing after weight loading similar to DefaultModelLoader
         
     | 
| 
      
 123 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 124 
     | 
    
         
            +
                            from sglang.srt.model_loader.loader import device_loading_context
         
     | 
| 
      
 125 
     | 
    
         
            +
             
     | 
| 
      
 126 
     | 
    
         
            +
                            # Process quantization methods after loading weights
         
     | 
| 
      
 127 
     | 
    
         
            +
                            for _, module in self.model_runner.model.named_modules():
         
     | 
| 
      
 128 
     | 
    
         
            +
                                quant_method = getattr(module, "quant_method", None)
         
     | 
| 
      
 129 
     | 
    
         
            +
                                if quant_method is not None:
         
     | 
| 
      
 130 
     | 
    
         
            +
                                    # Move parameters to device if needed for quantization processing
         
     | 
| 
      
 131 
     | 
    
         
            +
                                    target_device = torch.device(
         
     | 
| 
      
 132 
     | 
    
         
            +
                                        "cuda", torch.cuda.current_device()
         
     | 
| 
      
 133 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 134 
     | 
    
         
            +
                                    with device_loading_context(module, target_device):
         
     | 
| 
      
 135 
     | 
    
         
            +
                                        quant_method.process_weights_after_loading(module)
         
     | 
| 
      
 136 
     | 
    
         
            +
                            # Call model-specific post-loading hook if available
         
     | 
| 
      
 137 
     | 
    
         
            +
                            if hasattr(self.model_runner.model, "post_load_weights"):
         
     | 
| 
      
 138 
     | 
    
         
            +
                                self.model_runner.model.post_load_weights()
         
     | 
| 
      
 139 
     | 
    
         
            +
                        except Exception as e:
         
     | 
| 
      
 140 
     | 
    
         
            +
                            logger.warning(f"Post-hook processing failed: {e}")
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                    return post_hook
         
     |